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NEW CONGRUENCES INVOLVING PRODUCTS OF
TWO BINOMIAL COEFFICIENTS

GUO-SHUAI MAO AND ZHI-WEI SUN

ABSTRACT. Let p > 3 be a prime and let a be a positive integer.
We show that if p=1 (mod 4) or a > 1 then

[2p%] (zk) 2

£ ()

k=0

with (=) the Jacobi symbol, which confirms a conjecture of Z.-W.
Sun. We also establish the following new congruences:
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1. INTRODUCTION

Let p > 3 be a prime. In 1862 J. Wolstenholme [W] established the
well-known congruence

{3)-(7 )
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In 2006, as a corollary of the combinatorial identity

ki:o(—l)’"’“ WG )
()( D)

with I,m,n e N= { ...}, H. Pan and Z.-W. Sun [PS06] obtained
that

p—1 y
z<k+d>z<%>

k=0
where (—) is the Jacobi symbol. Later Sun and R. Tauraso [ST] showed

further that
p—1 k
5 (2) = 2) omar

For a general integer m # 0 (mod p), Sun [Sul0] and [Sul3a] deter-
mined

p—1 <2k> (p—1)/2 (2k
Z # and Lk
k=0 k=0

modulo p? via Lucas sequences.

Now we turn to congruences for combinatorial sums with summands
involving products of two binomial coefficients. For any k£ € N, we
clearly have

(-5 ()00)- %
(V))-5 () () -

Let p > 3 be a prime. In 2003, via the Gross-Koblitz formula and
the p-adic I'-function, E. Mortenson [M1, M2| proved the following
congruences

£ 00 = (5) i 008 = ) i
500 - (2) oty £ G = (51) o
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These supercongruences were conjectured in [RV] motivated by the p-
adic analogues of Gaussian hypergeometric series and the Calabi-Yau
manifolds. In 2011 Sun [Sull] showed further that

p—1 1
k) [~ 2 3
k - (_> _p Ep—3 (mOdp )
— 16 p
and
(r—1)/2 (2k)2 1
Z k—k =(— ) +p’E, 3 (mod p?), (1.1)
— 16 P
where Ey, E1, Es, ... are the Euler numbers defined by
2 - n
. _Np» <|$| < Z)
et ter L~ n! 2

It is well known that

Ey=1, and F,, = — Z <27;€>En2k formn=1,2,3,....

k=1

The series Y, (2:)2/((2k+1) 16%) can be evaluated via Mathematica,

namely we have

00 2k 2

3 (k) 4@

k. Y

22k + 1I6F 7«
where G is the Catalan constant Y ;- ,(—1)"/(2k + 1)%. Motivated by
this, Sun [Sul4] determined

(p—3)/2 (2k:)2 p—1 (2k)2
k k
g ——~—— and E e
k k
pare (2k +1)16 o 1)/2 (2k+1)16
modulo p? for any prime p > 3. Sun [Sull, Conjecture 5.12] also
conjectured for any prime p > 3 that

S~ () (o 7).

|_|

p—

; 2]{5 —|— 1)27*
— GG (-1 2 3
Z Qk—i— 1)64% = (?) — 3p°E,—3 (mod p°),

(s50) (i)

(2k + 1)432F

[
=l

p

> = (g) (mod p?),
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which were confirmed by Z.-H. Sun [S16] via the WZ method. Note
that (;F)/(2k + 1) is the 2k-th Catalan number Cy, and (3")/(2k + 1)
is the k-th second-order Catalan number 0,52). The Catalan numbers
play important roles in enumerative combinatorics and they have lots
of combinatorial interpretations.

Let p = 2n+ 1 be an odd prime, and let A € {0,1,...,p — 1}. It is
easy to see that

(e (x(m — 1)z — )\))

p

= 2 (x—1)"(xz ="

i
o
Il
T
—
S~—
3
L
byl
Il 3
(e}
VRS
> 3
~_
no
>
ol

n (P—1)/2 2k\2

—-1/2\° ~1 &)

=(-1)""" No=—|— E—F (mod p).
e (- (2) R
(See [A, Theorem 2] for this basic fact and [Sul3, Theorem 1.1] for an
extension of this.) As p | (Zkk) forall k = (p+1)/2,...,p— 1, we also
have

157 (2k 2 (p—1)/2 (2k)2 p—1 (2k)2
1k6k M\ = Z 1k6k A= 1k6k A (mod p?).
k=0 k=0 k=0

Thus, such sums are related to the number of the points on the cubic
curve E,(A\) : y* = z(z — 1)(z — \) over the finite field F, = Z/pZ. In
view of (1.1), it is natural to determine Z,E?’:péélj (2;)2/16’“ mod p3. There

: . . 3p/4
are some earlier congruences involving sums of the type ,E P 1/ ) ay; for

example, Sun [Su95| showed that

—

v . D)2
(-1 !
— d

for any odd prime p, and Pan and Sun [PS14] proved the supercongru-
ence

Eo

=1

15p) ok
2
Z (4%) = (—) (mod p?)
k=0 p
for any prime p =1 (mod 4).
With the above backgrounds, we first establish the following result.

Theorem 1.1. Let p be any odd prime.
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(i) We have

3p/4] (2:)2 {1 (mod p?) if p=1 (mod 4),

2 9 = Y14 )@Y (mod 1) if p =3 (mod 4)

=0 +p°/( ((p_g)/4) ) (mod p°) ifp (mod 4)
(1.2)

(ii) For each a = 2,3,4, ..., we have

12p%] opy 2

() _ (1 3
; L= (pa) (mod p?). (1.3)
Remark 1.1. Part (i) in the case p = 1 (mod 4) and part (ii) were
conjectured by Sun [Sull]. A more challenging conjecture of Sun [Sull,
Conjecture 1.3] involving products of three binomial coefficients states
that for any prime p > 3 and positive integer a with p* = 1 (mod 3)

we have
[%paj ok 3
Z (21k +8) ( p ) = 8p” (mod p***).
k=0
Our second theorem is as follows.

Theorem 1.2. Let p > 3 be a prime. Then we have

(r—1)/2 (2k\ (3K p
> = ()T e

(p—1)/2 Gk (Sk) D

_ p) 3P +1 2

=(5) —— d 1.5
; 2k+ 1)432F (3 g (med 7). (15)
(p—1)/2 (4k) (2k) 1
Z 2k Ak = (_—> 2°~! (mod p?) (1.6)

- = : :

prt (2k 4+ 1)64 D
Remark 1.2. We are also able to show the congruence

(p-1)/2 (2:) (3}5)

% 2k + 1)27F (5) @ 22 (mod )

for any prime p > 3.

Our proof of Theorem 1.1 given in the next section is somewhat
sophisticated. It utilizes Kummer’s classical theorem on the p-adic

valuation of a binomial coefficient, a curious identity for >p_o (}) -
given in [SWZ], and a congruence of Sun [Sull] on 377 1/2 4k /(%2 (%)

modulo p. Our proof of Theorem 1.2 presented in Sectlon 3 employs
two identities (3.3) and (3.4) recently observed in [S16].
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2. PROOF OF THEOREM 1.1

Lemma 2.1. (Sun [Sull, (1.4)]) For any prime p > 3 we have

(p—1)/2 4k

= B0

Proof of Theorem 1.1(i). In view of (1.1), (1.2) has the following equiv-
alent form:

= (—1)?"V24E, 4 (mod p). (2.1)

[3p/4] (2k)2 1—( 1)(%1)/2 2
k) _ 2 -\~ p 3
E =—p°E, 5+ . (mod p°).
16+ g 2 —3)/2)?
h=(pi1)/2 2(",017)
(2.2)

By [Sull, Lemma 2.1],

k<2k) (Z(p B k)) = (—1)2k/Pl=19)p (mod p?) forall k=1,...,p—1.

k p—k
Thus
[3p/4] 2k\ 2 [3p/4] (p—1)/2
I S
ko 2(p—k 2 (2] g
iz O e B2 16r o (0 — )2 (%) 160

? (p—1)/2
>

. i\ 2
j=lp/aj+1 I (ij)

167

(mod p°)

and hence we have reduced (2.2) to the following simpler form

gL - ()"
Z k2 (2k)2 = _4Ep73 + W (mOd p)? (23)
k=|n/2]+1 k ln/2]
where n = (p — 1)/2.
For each k£ = 0,...,n, clearly

()= - G o .
1)

u 16F - 1 1
Z o = Z YOS =4 Z (n71)2 (mod p).

2
k=[n/2]+1 k2 (%) k=|n/2]+1
Note that

Thus

n

1 o 1 1o 1 1—(—1)"
> e 2 =3 *
k=|n/2]

N2
k=|n/2)+1 (kfi)
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and

n—1 n

1 2n? 1

—— = — (2.4)
TR Y Gy

(cf. [SWZ]). So we have

n

5 168 1 (=1)"
2 n—1\2
k=|n/2]+1 k? (2:) (Ln/21J)

n

A & 1 B 1
:n+1zk(2n+1k) :2Zm (mod p).

k=1 n—k

Observe that

Therefore, with the help of Lemma 2.1, we finally obtain

n n

165 1—(—1)" ) 4
T = (-1 = —4FE, 3 (mod p).
kLnE/;JH 2 (L) kz:; k2 (%) !

This proves (2.3) and hence (1.2) follows. O
Now we give a lemma which is a natural extension of (1.1).

Lemma 2.2. Let p > 3 be a prime and let a be any positive integer.

Then
(p*—1)/2 (2k)2 1 1
k) _ 2 3
o = (p_a> + (pa_l) p E,_3 (mod p°). (2.5)

1
Proof. Theorem 1.2 of Sun [Sul3] states that foranyd = 0,..., (p—1)/2
we have

"G (—_1) (—1)

1
. + TPQEP_3 (d + 5) (mod p3),

k=0

16*
k=0

where E,(x) denotes the Euler polynomial of degree n given by
"\ B 1\" "
ain =35 (ra)

In the case d = 0 this yields (1.1). Modifying this proof of (1.1)
slightly we immediately get (2.5). O
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In 1852, Kummer (cf. [R, pp. 22-24]) proved that for any m,n € N
the p-adic valuation of the binomial coefficient (mwt") is equal to the
number of carry-overs when performing the addition of m and n written
in base p.

Lemma 2.3. Let p be an odd prime and let a € {1,2,3,...}. For any
k=1,2,...,(p* —1)/2, we have

“—k
ord, (pf_l B k) <a-—1,
2

where ord,(z) denotes the p-adic valuation of a p-adic integer x.
Proof. 1t is well known that

ord,(n!) = i L%J .

J=1

Thus

eol)- B 15[y

J=1

does not exceed ¢ — 1 as each summand in the sum is at most one.
This concludes the proof. O

Proof of Theorem 1.1(ii). In view of Lemma 2.2, we just need to verify
that

[3p%/4]  (2k\2
-1
> (1'@61 = ( >p2Ep_3 (mod p?). (2.6)

a—1
k=G t1)/2 b
Let k and [ be positive integers with £+ = p® and 0 < I < p®/2. Then

() (@ -2 ((pa - 1)!)4 e — )

@22 2 =22\ = D')  Theen(2® =)

pe—1

and hence

" @ -1)2  Tlyera(l—p°/i)

o ' = — =1 (mod p).
(2151_’12)2 =" TLejeu(l—2p"/5)?
Note that
2]9“ _9 2 apa—l 2pa N2 . .
:p2 . J Ep2 (mod pz +1)
p*—1 J
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2k\°  (p"+ (2k — pM)\?
k) Op® + k
by Lucas’ theorem. So we have

(2 - i

and

2k — p»\*
( kp) =0 (mod p?)

(=1
and
ok\> L (=11t 4p
=p° = d p%).
<k;> b (21 —1)!12 lz(zl)Q (mod p7)
l
Therefore
[3p%/4] 2K\ 2 [3p® /4] o
> ey
k. a_
gz 10 ey 165 (0 — k)2 (CUY)

9q (P*—=1)/2 I

P 16
I E 5 2l 3 (mod p3)

i=peyaj+1 20

For k=1,...,(p* —1)/2, clearly
((P“—kl)/Q) ((1!7‘1—1)/2

1 " —1)/2—
G5/ (=F () 1;[ —1/2—j

k
k—1
= (1 - 1) =1 (mod p).
=0
Thus
130°/4] a2 gy (°—1)/2
I
If - E 1 2
b=y 10 b k(7 /)

(p*—1)/2

) 1
=" > pi3)/2

2
et (V27)
So (2.6) is reduced to
(p*—3)/2

2a—2 1 . -1
D Z W =— < _1) E, 3 (mod p). (2.7)

k=Lpe/4]
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If p* =1 (mod 4), then (p* — 3)/2 is odd and hence

(p*—3)/2 1 1 (p*—3)/2 1
Y 5 D o
b /4] ((P“—k?))/?) 2 o ((P“—IC?’)/Q)
If p* = 3 (mod 4), then a € {3,5,...} and
(p“—i)ﬂ 1 1 (10“—23)/2 1 . 1 1
a3y 2 9 e a2 o T a2
S IR IR

In the case p* = 3 (mod 4), as the fractional parts of (p* —3)/(2p) and
(p* — 3)/(4p) are (p — 3)/(2p) and (p — 3)/(4p) respectively, we have

{(p“ —p3)/2J _y {(p“ —p3)/4J
and hence

ordp(gp _3/2) _2]2:({17 _3/2J 2{—(])&;].3)/4J)<2a—2.

1
No matter p* =1 (mod 4) or not, we always have

(p*—3)/2 2a—2 (P*=3)/2

2a—2 1 _p 1
P Z — 5 = Z — (mod p).
e ()2 S ()

So (2.7) has the following equivalent form:

(p*—3)/2 1 1
p2? Z — =2 <_> E,_3 (mod p). (2.8)
k=0

a_ a—1
(7977 P
The identity (2.4) with n = (p® — 1)/2 yields that
(p*—3)/2 a (p*—1)/2
pz 1 _ 20 = 1)/2)? pz 1
a __ 2 a a—k :
k=0 ((p kg)/Q) (p* +1)/2 k=1 k((pagl)/2—k)
So (2.8) is reduced to

pi—1)/2 .
Z ( K 7Y =-2 (ﬁ) E,_3 (mod p). (2.9)
=1 (pa+1)/2 p
In view of Lemma 2.3, if 1 <k < (p® — 1)/2 and p*~' t k, then
2a—2
p

— 7 - = 0 (mod p)
k((p€+1];/2)
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Thus
a_1)/2 s (p—1)/2 1
= k() = )
1 (r—1)/2 1
R = (RO
1 (r—1)/2 1
=-3 (mod p).

T pai_pa—1i_1y
j=1 ‘72(1) (p’f—l);2 1)
For each j =1,...,(p—1)/2, by Lucas’ theorem we have
(p“‘l(p —J) - 1) :( P p—1=g) +pt -1 )
(p* =1)/2 prHp = 1)/2 4 (pet = 1)/2
_(p—l—j)( -1 )
\-1/2/\(p ' - 1)/2

= e (D700 o )

also

(o) = ly) = (G150 05)
=(—1)P-D/2i <(p _jl)/2> = (—1)-D/2-i (_1'/2>

J
2
(pfl)/2(3_')
47

=(-1) (mod p).
Therefore
(p*=1)/2 a—1 (p—1)/2
Pt Y 1 _ (=perEne
aik- - 1
k=1 k(( Za7+1)/2) 2 =1 J? (1; ]1)/2)

(_1)(pa‘1+1)/2 47

—1)/2
5 Z 2] (mod p).

This, together with (2.1), yields the desired (2.9).
The proof of Theorem 1.1(ii) is now complete. U
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3. PROOF OF THEOREM 1.2

Lemma 3.1. Let p > 3 be a prime, and let m € {1,2,...,(p—1)/2}.
For any p-adic integer t, we have

(o L) = R

Proof. Since

(m ot — 1) Tt ) < TIPS (ot — )

(p—1)/2 (r—1)/2)!
_(m = Dlpt(—1)P D2 ((p — 1)/2 — m)! )
- =12 mod 27
and
(—m —pt — 1) B Hg-i}l)/Q(—m —pt—7)
p-1/2 )" (r-1/2)
(=)@ V2(m 4 1) (m+2) - (m+ (p— 1)/2)
- =D/ o)
we have

m4pt—1\ /[—m —pt —1
( (p—l)/2)( (p—1)/2 )
_pt(m = DI(=D)"((p = 1)/2 = m)i(m + )(m +2)---(m + (p — 1)/2)

((p—1)/2)1?
DM 02— mlnt =1/ pt o (60)
m ((p—1)/2)2 m (ptyy24m)
E%t(—m(—n@1>/2(—1)<p1>/2+m _ %t (mod p?).
This concludes the proof. O

Remark 3.1. Let p > 3 be a prime and let m € {(p+1)/2,...,p — 1}.
For any p-adic integer ¢, by Lemma 3.1 we have

I

_((m—=p +pt+1)—1\/—1—pt+1)—(m—p

S(Hl)(ppé)fl) )( (p—1)/2 )
m—p

(mod p?).
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Lemma 3.2. Let p > 3 be a prime. For k € {1,2,...,p — 1} and
p-adic integer t, we have

Proof. This is almost trivial. In fact,

() )

_pt (—1)2 _ pt(p*t? + ptk + k?)

pt—k\ k (pt)? — k3
2,2
pt t
= — ? — E (mOd p3)
This proves (3.2). O

Recall that those H,, = > (_,., 1/k with n € N are called harmonic
numbers. If a prime p does not divide an integer a, then we let g,(a)
denote the Fermat quotient (a?~' —1)/p.

Lemma 3.3. (Lemma [L]). For any prime p > 3, we have
Hpjo) = —2q,(2) (mod p), Hipa) = —3q,(2) (mod p),
Hipss) = —;qp(?ﬁ (mod p) and Hypye) = ~245(2) — gqp(3) (mod p).
For n € N, define

£ () m o £ 0

k=0

By [S16, (2.2)] with a = 2 + 1 and b = 0, we have

S (2) + Sz +1) =2 (;’f‘;) (_QH_ "””) | (3.3)
By [S16, (2.2)] with b = 2, we get
To(z) — Tp(x — 1) = 2 (‘T ; 1) <_”Tn_ 1). (3.4)

Proof of Theorem 1.2. For any p-adic integer a, we let (a), denote the
least nonnegative integer r with a = r (mod p). For convenience, we
also set n = (p—1)/2.
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We first prove (1.4). For any p-adic integer a # 0 (mod p), by using
(3.3) we get

Sn(a) — <_1)<a>p8n(a - <a>p>
(a)p—1

= Y (~1)*(Sula — k) + Sula — k — 1))

_<“>p‘1(_1)k2(a - 1) (k —a- 1)
N n n
k=0

n n

» <“>”‘1(_1)k<<a>p +pt— k- 1) (—1 —pt = ((a)y - k>)7

where t := (a — (a),)/p. By Lemma 3.2,

S(pt) = i (Zf) (_1k_pt) =1- kZil%t =1 — ptH, (mod p?).

k=0

So, with helps of Lemma 3.1 and Remark 3.1, we have

(a)p—1
Sy(a) — (=1) (1 — ptH,) =2 Z kp L+ 5’2 (mod p?), (3.5)

where d; takes 1 or 0 according as (a), — k > p/2 or not.
Observe that

(piﬂ (12);;:) _ Z": (_2 /3) (—i/3> _ 5.(a)

k=0 k=0

with @ = —1/3. Note that

(a) :{(p—l)/S if p=1 (mod 3),
P (2p —1)/3 if p=2 (mod 3).

Hence

. a—{a) {—1/3 if p=1 (mod 3),

p |-2/3 ifp=2 (mod3).
Case 1. p=1 (mod 3).
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In this case, (a), = (p —1)/3, t = —1/3, and 0, = 0 for all k =
0,...,(a), — 1. Thus, in view of (3.5), we have

5;(—1)—(—9@4V%1—puh)

3
(p—1)/3 (_ )j
=2pt(=1)070 Y = 20t (Hinyjo = Hgmryya) (mod 7).
j=1

Combining this with Lemma 3.3 and recalling that ¢ = —1/3, we im-
mediately obtain the desired congruence

S, (—%) = 1+ 2pgy(2) (mod p?).

Case 2. p =2 (mod 3).
In this case, we have (a), = (2p —1)/3, t = —2/3 and

5 1 if0<k<(p+1)/6,
"Tlo if(p+1)/6 <k < (a),— 1.

So, by (3.5) we have

S, (_1) — (_1)(219—1)/3(1 — ptH,)

3
—5)/ (2p—4)/3 =
=2p(t+1) Z +2pt Z ay, —k
=0 k=(p+1)/6 P

(2])—1)/3 (_1)] )

=2p(t + 1)(—=1)P 3 N popy(—1)@rY/ Z

=iz J =1
(217 1)/3( 1)] (p 1 /2

=—2pt+1) >

=1
== 2p(t+ 1) (Hipsa) — Hizpyz)) + 2P (H w4y = Hippzy) (mod p?).
Note that

(p—1)/2 1 (p—1)/3
Higps) = > (E ) EHLp/S (mod p).
k=1 j=1 p—
Therefore,

1
S, <—§) +1 = ptHyp) = 2p (Hipja) — Hippzy) (mod p?).
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This, together with Lemma 3.3 and the fact that ¢ = —2/3, yields the
desired congruence

5,(~3) =1 3062 (mod )

In view of the above, we have completed the proof of (1.4).

Our next goal is to show (1.5) and (1.6). For any p-adic integer a
with a(2a+ 1) # 0 (mod p), if we set t = (a — (a),)/p then by (3.4) we
have

T (a) )= (Tu(a—k+1)—Ty(a—Fk))
:<“>P2(a—k>(k—a—2)
n n
k=1
_2<a>p my +pt — 1\ (=1 — pt —my,
N = n n ’

where my, = (a), — k + 1. In view of Lemmas 3.2 and 3.3,

" (pt\ (=1 —pt\ 1+ 2pt
Tn(pt)—(1+2pt)zz<k)( . >1+2k—(1+2pt)
k=0
_(pt\ (—1—pt\ 1+ 2pt ”25 ot
“\n n P < k(1 + 2k)

[ p pt\ 1+ 2pt ”Zl ot
N n? n P « k(1 + 2k)

n—1 n—1
1 1
:2t+2pt—pt§ E+2pt§ ST
k=1 k=1

H,
=2t — 2pt + 4ptq,(2) (mod p?)
and hence

T.(pt) = 1+ 2t + 4ptq,(2) (mod p?).
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Therefore, with the helps of Lemma 3.1 and Remark 3.1, we have

Th(a) — (142t + 4ptq,(2))

(a)p
o mg+pt — 1\ [(—1 — pt — my
= ()

k=1
(a)p (a)p

_zzpt”k zmz Z (mod p?),

J>p/2
where J;, takes 1 or 0 according as my > p/2 or not. Below we deal

with a = —1/6, —1/4.
Clearly,

Hy y=H,1— > LN ; (mod p)
O<]<kp J

forall k=1,...,p— 1. Thus, with the help of Lemma 3.3 we have
Hgpja) = Hy 1 3p/a) = Hpja) = =34,(2) (mod p)

and

— §qp(3) (mod p).

Hisps6) = Hp—1-5p/6) = Hipje) = —24p(2) 5

Case L. (a), <n.
If @ = —1/6, then p =1 (mod 6), (a), = (p —1)/6 and t = —1/6.
By the above,

1 2 2 D
T\ ——=)==—=pg,(2) —-H
2 2 D 3
=— — - 2) — = —2q,(2) — =
3~ 3P(2) — 3 ( 0 (2) qu(S))
_2.p 2
=3 + 2qp(3) (mod p?)

and thus

n 6kY (3k
(3k) (k) 3 1 . 3 3P 41 )
E kK T2} =1 12,
— (2k +1)432F 2 ( 6 T 4pqp(3) 1 (mod p*)




18 GUO-SHUAI MAO AND ZHI-WEI SUN

If @ = —1/4, then p =1 (mod 4), (a), = (p—1)/4 and t = —1/4.
By the above,

1 1 P
T, (‘1) =5 - pgp(2) — 2w/
1 P
=5~ Pap(2) — 5(—3qp(2))
_1.p 2
=3 + 2qp(2) (mod p?)

and thus

=2T,(—1/4) = 1+ pg,(2) = 2"~ (mod p?).

~ )
; (2k + 1)64%

Case I1. (a), > n.
If a = —1/6, then p =5 (mod 6), (a), = (5p — 1)/6 and t = —5/6.
By the above,

1 2 2 p

+ gqu<2) + g (‘2%(2) N gqp(?’))

and hence

n 6kY (3k
() () 3 1\ 3 P41 )
E Kk _Cp ()= 17 _ |
0 (2k +1)432k 27" ( 6 4pqp(3) 1 (mod p?)

If a = —1/4, then p = 3 (mod 4), (a), = 3p —1)/4 and t = —3/4.

So
1 1 P
1, (—;J =-3 + pap(2) + 513074
1 P
== 5 +pap(2) + 5(=34,(2))
1
= 5 Eqp(Q) (mod p2)
and hence

4

> (21(@22 <1§g4k =2In (_1) = -1 - pg(2) = =27 (mod p?).

k=0

The proof of Theorem 1.2 is now complete. O
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