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NEW CONGRUENCES INVOLVING PRODUCTS OF
TWO BINOMIAL COEFFICIENTS

GUO-SHUAI MAO AND ZHI-WEI SUN

Abstract. Let p > 3 be a prime and let a be a positive integer.
We show that if p ≡ 1 (mod 4) or a > 1 then

b 34p
ac∑

k=0

(
2k
k

)2
16k

≡
(
−1

pa

)
(mod p3)

with (−) the Jacobi symbol, which confirms a conjecture of Z.-W.
Sun. We also establish the following new congruences:

(p−1)/2∑
k=0

(
2k
k

)(
3k
k

)
27k

≡
(p

3

) 2p + 1

3
(mod p2),

(p−1)/2∑
k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

≡
(p

3

) 3p + 1

4
(mod p2),

(p−1)/2∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

≡
(
−1

p

)
2p−1 (mod p2).

1. Introduction

Let p > 3 be a prime. In 1862 J. Wolstenholme [W] established the
well-known congruence

1

2

(
2p

p

)
=

(
2p− 1

p

)
≡ 1 (mod p3).
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In 2006, as a corollary of the combinatorial identity

l∑
k=0

(−1)m−k
(
l

k

)(
m− k
n

)(
2k

k − 2l +m

)

=
l∑

k=0

(
l

k

)(
2k

n

)(
n− l

m+ n− 3k − l

)
with l,m, n ∈ N = {0, 1, 2, . . .}, H. Pan and Z.-W. Sun [PS06] obtained
that

p−1∑
k=0

(
2k

k + d

)
≡
(
p− d

3

)
(mod p) for all d = 0, . . . , p,

where (−) is the Jacobi symbol. Later Sun and R. Tauraso [ST] showed
further that

p−1∑
k=0

(
2k

k

)
≡
(p

3

)
(mod p2).

For a general integer m 6≡ 0 (mod p), Sun [Su10] and [Su13a] deter-
mined

p−1∑
k=0

(
2k
k

)
mk

and

(p−1)/2∑
k=0

(
2k
k

)
mk

modulo p2 via Lucas sequences.
Now we turn to congruences for combinatorial sums with summands

involving products of two binomial coefficients. For any k ∈ N, we
clearly have(

−1/2

k

)2

=

(
2k
k

)2
16k

,

(
−1/3

k

)(
−2/3

k

)
=

(
2k
k

)(
3k
k

)
27k

,(
−1/4

k

)(
−3/4

k

)
=

(
4k
2k

)(
2k
k

)
64k

,

(
−1/6

k

)(
−5/6

k

)
=

(
6k
3k

)(
3k
k

)
432k

.

Let p > 3 be a prime. In 2003, via the Gross-Koblitz formula and
the p-adic Γ-function, E. Mortenson [M1, M2] proved the following
congruences

p−1∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
(mod p2),

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

≡
(p

3

)
(mod p2),

p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

≡
(
−2

p

)
(mod p2),

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

≡
(
−1

p

)
(mod p2).
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These supercongruences were conjectured in [RV] motivated by the p-
adic analogues of Gaussian hypergeometric series and the Calabi-Yau
manifolds. In 2011 Sun [Su11] showed further that

p−1∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
− p2Ep−3 (mod p3)

and
(p−1)/2∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
+ p2Ep−3 (mod p3), (1.1)

where E0, E1, E2, . . . are the Euler numbers defined by

2

ex + e−x
=
∞∑
n=0

En
xn

n!

(
|x| < π

2

)
.

It is well known that

E0 = 1, and En = −
bn/2c∑
k=1

(
n

2k

)
En−2k for n = 1, 2, 3, . . . .

The series
∑∞

k=0

(
2k
k

)2
/((2k+1)16k) can be evaluated via Mathematica,

namely we have
∞∑
k=0

(
2k
k

)2
(2k + 1)16k

=
4G

π
,

where G is the Catalan constant
∑∞

k=0(−1)k/(2k + 1)2. Motivated by
this, Sun [Su14] determined

(p−3)/2∑
k=0

(
2k
k

)2
(2k + 1)16k

and

p−1∑
k=(p+1)/2

(
2k
k

)2
(2k + 1)16k

modulo p3 for any prime p > 3. Sun [Su11, Conjecture 5.12] also
conjectured for any prime p > 3 that

p−1∑
k=0

(
2k
k

)(
3k
k

)
(2k + 1)27k

≡
(p

3

)
(mod p2),

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

≡
(
−1

p

)
− 3p2Ep−3 (mod p3),

p−1∑
k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

≡
(p

3

)
(mod p2),
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which were confirmed by Z.-H. Sun [S16] via the WZ method. Note
that

(
4k
2k

)
/(2k + 1) is the 2k-th Catalan number C2k and

(
3k
k

)
/(2k + 1)

is the k-th second-order Catalan number C
(2)
k . The Catalan numbers

play important roles in enumerative combinatorics and they have lots
of combinatorial interpretations.

Let p = 2n + 1 be an odd prime, and let λ ∈ {0, 1, . . . , p− 1}. It is
easy to see that

p−1∑
x=0

(
x(x− 1)(x− λ)

p

)

≡
p−1∑
x=0

xn(x− 1)n(x− λ)n ≡ (−1)n−1
n∑

k=0

(
n

k

)2

λk

≡(−1)n−1
n∑

k=0

(
−1/2

k

)2

λk = −
(
−1

p

) (p−1)/2∑
k=0

(
2k
k

)2
16k

λk (mod p).

(See [A, Theorem 2] for this basic fact and [Su13, Theorem 1.1] for an
extension of this.) As p |

(
2k
k

)
for all k = (p + 1)/2, . . . , p − 1, we also

have

b 3
4
pc∑

k=0

(
2k
k

)2
16k

λk ≡
(p−1)/2∑
k=0

(
2k
k

)2
16k

λk ≡
p−1∑
k=0

(
2k
k

)2
16k

λk (mod p2).

Thus, such sums are related to the number of the points on the cubic
curve Ep(λ) : y2 = x(x− 1)(x− λ) over the finite field Fp = Z/pZ. In

view of (1.1), it is natural to determine
∑b3p/4c

k=0

(
2k
k

)2
/16k mod p3. There

are some earlier congruences involving sums of the type
∑b3p/4c

k=1 ak; for
example, Sun [Su95] showed that

b 3
4
pc∑

k=1

(−1)k−1

k
≡

(p−1)/2∑
k=1

1

k2k
(mod p)

for any odd prime p, and Pan and Sun [PS14] proved the supercongru-
ence

b 3
4
pc∑

k=0

(
2k
k

)
4k
≡
(

2

p

)
(mod p2)

for any prime p ≡ 1 (mod 4).
With the above backgrounds, we first establish the following result.

Theorem 1.1. Let p be any odd prime.
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(i) We have

b3p/4c∑
k=0

(
2k
k

)2
16k

≡

{
1 (mod p3) if p ≡ 1 (mod 4),

−1 + p2/(2
(
(p−3)/2
(p−3)/4

)2
) (mod p3) if p ≡ 3 (mod 4).

(1.2)
(ii) For each a = 2, 3, 4, . . ., we have

b 3
4
pac∑

k=0

(
2k
k

)2
16k

≡
(
−1

pa

)
(mod p3). (1.3)

Remark 1.1. Part (i) in the case p ≡ 1 (mod 4) and part (ii) were
conjectured by Sun [Su11]. A more challenging conjecture of Sun [Su11,
Conjecture 1.3] involving products of three binomial coefficients states
that for any prime p > 3 and positive integer a with pa ≡ 1 (mod 3)
we have

b 2
3
pac∑

k=0

(21k + 8)

(
2k

k

)3

≡ 8pa (mod pa+4).

Our second theorem is as follows.

Theorem 1.2. Let p > 3 be a prime. Then we have

(p−1)/2∑
k=0

(
2k
k

)(
3k
k

)
27k

≡
(p

3

) 2p + 1

3
(mod p2), (1.4)

(p−1)/2∑
k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

≡
(p

3

) 3p + 1

4
(mod p2), (1.5)

(p−1)/2∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

≡
(
−1

p

)
2p−1 (mod p2). (1.6)

Remark 1.2. We are also able to show the congruence

(p−1)/2∑
k=0

(
2k
k

)(
3k
k

)
(2k + 1)27k

≡
(p

3

)
(3p + 2− 2p+1) (mod p2)

for any prime p > 3.

Our proof of Theorem 1.1 given in the next section is somewhat
sophisticated. It utilizes Kummer’s classical theorem on the p-adic

valuation of a binomial coefficient, a curious identity for
∑n

k=0

(
n
k

)−2
given in [SWZ], and a congruence of Sun [Su11] on

∑(p−1)/2
k=1 4k/(k2

(
2k
k

)
)

modulo p. Our proof of Theorem 1.2 presented in Section 3 employs
two identities (3.3) and (3.4) recently observed in [S16].
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2. Proof of Theorem 1.1

Lemma 2.1. (Sun [Su11, (1.4)]) For any prime p > 3 we have

(p−1)/2∑
k=1

4k

k2
(
2k
k

) ≡ (−1)(p−1)/24Ep−3 (mod p). (2.1)

Proof of Theorem 1.1(i). In view of (1.1), (1.2) has the following equiv-
alent form:

b3p/4c∑
k=(p+1)/2

(
2k
k

)2
16k

≡ −p2Ep−3 +
1− (−1)(p−1)/2

2
· p2

2
(
(p−3)/2
bp/4c

)2 (mod p3).

(2.2)
By [Su11, Lemma 2.1],

k

(
2k

k

)(
2(p− k)

p− k

)
≡ (−1)b2k/pc−12p (mod p2) for all k = 1, . . . , p− 1.

Thus
b3p/4c∑

k=(p+1)/2

(
2k
k

)2
16k

≡
b3p/4c∑

k=(p+1)/2

4p2

k2
(
2(p−k)
p−k

)2
16k

=

(p−1)/2∑
j=bp/4c+1

4p2

(p− j)2
(
2j
j

)2
16p−j

≡p
2

4

(p−1)/2∑
j=bp/4c+1

16j

j2
(
2j
j

)2 (mod p3)

and hence we have reduced (2.2) to the following simpler form
n∑

k=bn/2c+1

16k

k2
(
2k
k

)2 ≡ −4Ep−3 +
1− (−1)n(

n−1
bn/2c

)2 (mod p), (2.3)

where n = (p− 1)/2.
For each k = 0, . . . , n, clearly(

n

k

)
≡
(
−1/2

k

)
=

(
2k
k

)
(−4)k

(mod p).

Thus
n∑

k=bn/2c+1

16k

k2
(
2k
k

)2 ≡ n∑
k=bn/2c+1

1

k2
(
n
k

)2 ≡ 4
n∑

k=bn/2c+1

1(
n−1
k−1

)2 (mod p).

Note that
n∑

k=bn/2c+1

1(
n−1
k−1

)2 =
n−1∑

k=bn/2c

1(
n−1
k

)2 =
1

2

n−1∑
k=0

1(
n−1
k

)2 +
1− (−1)n

4
(

n−1
bn/2c

)2
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and
n−1∑
k=0

1(
n−1
k

)2 =
2n2

n+ 1

n∑
k=1

1

k
(
2n+1−k
n−k

) (2.4)

(cf. [SWZ]). So we have
n∑

k=bn/2c+1

16k

k2
(
2k
k

)2 − 1− (−1)n(
n−1
bn/2c

)2
≡ 4n2

n+ 1

n∑
k=1

1

k
(
2n+1−k
n−k

) ≡ 2
n∑

k=1

1

k
( −k
n−k

) (mod p).

Observe that
n∑

k=1

1

k
( −k
n−k

) =
n∑

k=1

(−1)n−k

k
(
n−1
k−1

) = n
n∑

k=1

(−1)n−k

k2
(
n
k

)
≡(−1)n−1

2

n∑
k=1

4k

k2
(
2k
k

) (mod p).

Therefore, with the help of Lemma 2.1, we finally obtain
n∑

k=bn/2c+1

16k

k2
(
2k
k

)2−1− (−1)n(
n−1
bn/2c

)2 ≡ (−1)n−1
n∑

k=1

4k

k2
(
2k
k

) ≡ −4Ep−3 (mod p).

This proves (2.3) and hence (1.2) follows. �
Now we give a lemma which is a natural extension of (1.1).

Lemma 2.2. Let p > 3 be a prime and let a be any positive integer.
Then

(pa−1)/2∑
k=0

(
2k
k

)2
16k

≡
(
−1

pa

)
+

(
−1

pa−1

)
p2Ep−3 (mod p3). (2.5)

Proof. Theorem 1.2 of Sun [Su13] states that for any d = 0, . . . , (p−1)/2
we have

(p−1)/2∑
k=0

(
2k
k

)(
2k
k+d

)
16k

≡
(
−1

p

)
+

(−1)d

4
p2Ep−3

(
d+

1

2

)
(mod p3),

where En(x) denotes the Euler polynomial of degree n given by

En(x) =
n∑

k=0

Ek

2k

(
x− 1

2

)n−k

.

In the case d = 0 this yields (1.1). Modifying this proof of (1.1)
slightly we immediately get (2.5). �
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In 1852, Kummer (cf. [R, pp. 22-24]) proved that for any m,n ∈ N
the p-adic valuation of the binomial coefficient

(
m+n
m

)
is equal to the

number of carry-overs when performing the addition ofm and n written
in base p.

Lemma 2.3. Let p be an odd prime and let a ∈ {1, 2, 3, . . .}. For any
k = 1, 2, . . . , (pa − 1)/2, we have

ordp

(
pa − k

pa−1
2
− k

)
≤ a− 1,

where ordp(x) denotes the p-adic valuation of a p-adic integer x.

Proof. It is well known that

ordp(n!) =
∞∑
j=1

⌊
n

pj

⌋
.

Thus

ordp

(
pa − k

pa−1
2
− k

)
=

a−1∑
j=1

(⌊
pa − k
pj

⌋
−
⌊

(pa + 1)/2

pj

⌋
−
⌊

(pa − 1)/2− k
pj

⌋)
does not exceed a − 1 as each summand in the sum is at most one.
This concludes the proof. �

Proof of Theorem 1.1(ii). In view of Lemma 2.2, we just need to verify
that

b3pa/4c∑
k=(pa+1)/2

(
2k
k

)2
16k

≡
(
−1

pa−1

)
p2Ep−3 (mod p3). (2.6)

Let k and l be positive integers with k+ l = pa and 0 < l < pa/2. Then(
2k
k

)2(
2pa−2
pa−1

)2 =
(2pa − 2l)!2

(2pa − 2)!2

(
(pa − 1)!

(pa − l)!

)4

=

∏
0<i<l(p

a − i)4∏
1<j<2l(2p

a − j)2

and hence(
2k
k

)2(
2pa−2
pa−1

)2 · (2l − 1)!2

(l − 1)!4
=

∏
0<i<l(1− pa/i)4∏

1<j<2l(1− 2pa/j)2
≡ 1 (mod p).

Note that(
2pa − 2

pa − 1

)2

= p2a
pa−1∏
j=2

(
2pa − j

j

)2

≡ p2a (mod p2a+1)
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and (
2k

k

)2

=

(
pa + (2k − pa)

0pa + k

)2

≡
(

2k − pa

k

)2

= 0 (mod p2)

by Lucas’ theorem. So we have

l2

4

(
2l

l

)2

=
(2l − 1)!2

(l − 1)!4
6≡ 0 (mod p2a)

and (
2k

k

)2

≡ p2a
(l − 1)!4

(2l − 1)!2
=

4p2a

l2
(
2l
l

)2 (mod p3).

Therefore

b3pa/4c∑
k=(pa+1)/2

(
2k
k

)2
16k

≡
b3pa/4c∑

k=(pa+1)/2

4p2a

16k(pa − k)2
(
2(pa−k)
pa−k

)2
≡p

2a

4

(pa−1)/2∑
l=bpa/4c+1

16l

l2
(
2l
l

)2 (mod p3).

For k = 1, . . . , (pa − 1)/2, clearly(
(pa−1)/2

k

)(
2k
k

)
/(−4)k

=

(
(pa−1)/2

k

)(−1/2
k

) =
k−1∏
j=0

(pa − 1)/2− j
−1/2− j

=
k−1∏
j=0

(
1− pa

2j + 1

)
≡ 1 (mod p).

Thus

b3pa/4c∑
k=(pa+1)/2

(
2k
k

)2
16k

≡p
2a

4

(pa−1)/2∑
k=bpa/4c+1

1

k2
(
(pa−1)/2

k

)2
≡p2a

(pa−1)/2∑
k=bpa/4c+1

1(
(pa−3)/2

k−1

)2 (mod p3).

So (2.6) is reduced to

p2a−2
(pa−3)/2∑
k=bpa/4c

1(
(pa−3)/2

k

)2 ≡ −( −1

pa−1

)
Ep−3 (mod p). (2.7)
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If pa ≡ 1 (mod 4), then (pa − 3)/2 is odd and hence

(pa−3)/2∑
k=bpa/4c

1(
(pa−3)/2

k

)2 =
1

2

(pa−3)/2∑
k=0

1(
(pa−3)/2

k

)2 .
If pa ≡ 3 (mod 4), then a ∈ {3, 5, . . .} and

(pa−3)/2∑
k=bpa/4c

1(
(pa−3)/2

k

)2 =
1

2

(pa−3)/2∑
k=0

1(
(pa−3)/2

k

)2 +
1

2
· 1(

(pa−3)/2
(pa−3)/4

)2 .
In the case pa ≡ 3 (mod 4), as the fractional parts of (pa− 3)/(2p) and
(pa − 3)/(4p) are (p− 3)/(2p) and (p− 3)/(4p) respectively, we have⌊

(pa − 3)/2

p

⌋
= 2

⌊
(pa − 3)/4

p

⌋
and hence

ordp

(
(pa − 3)/2

(pa − 3)/4

)2

= 2
a−1∑
j=1

(⌊
(pa − 3)/2

pj

⌋
− 2

⌊
(pa − 3)/4

pj

⌋)
< 2a−2.

No matter pa ≡ 1 (mod 4) or not, we always have

p2a−2
(pa−3)/2∑
k=bpa/4c

1(
(pa−3)/2

k

)2 ≡ p2a−2

2

(pa−3)/2∑
k=0

1(
(pa−3)/2

k

)2 (mod p).

So (2.7) has the following equivalent form:

p2a−2
(pa−3)/2∑

k=0

1(
(pa−3)/2

k

)2 ≡ −2

(
−1

pa−1

)
Ep−3 (mod p). (2.8)

The identity (2.4) with n = (pa − 1)/2 yields that

(pa−3)/2∑
k=0

1(
(pa−3)/2

k

)2 =
2((pa − 1)/2)2

(pa + 1)/2

(pa−1)/2∑
k=1

1

k
(

pa−k
(pa−1)/2−k

) .
So (2.8) is reduced to

p2a−2
(pa−1)/2∑

k=1

1

k
(

pa−k
(pa+1)/2

) ≡ −2

(
−1

pa−1

)
Ep−3 (mod p). (2.9)

In view of Lemma 2.3, if 1 6 k 6 (pa − 1)/2 and pa−1 - k, then

p2a−2

k
(

pa−k
(pa+1)/2

) ≡ 0 (mod p).
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Thus

p2a−2
(pa−1)/2∑

k=1

1

k
(

pa−k
(pa+1)/2

) ≡p2a−2 (p−1)/2∑
j=1

1

pa−1j
(
pa−pa−1j
(pa+1)/2

)
=
pa + 1

2

(p−1)/2∑
j=1

1

j(p− j)
(
pa−pa−1j−1
(pa−1)/2

)
≡− 1

2

(p−1)/2∑
j=1

1

j2
(
pa−pa−1j−1
(pa−1)/2

) (mod p).

For each j = 1, . . . , (p− 1)/2, by Lucas’ theorem we have(
pa−1(p− j)− 1

(pa − 1)/2

)
=

(
pa−1(p− 1− j) + pa−1 − 1

pa−1(p− 1)/2 + (pa−1 − 1)/2

)
≡
(
p− 1− j
(p− 1)/2

)(
pa−1 − 1

(pa−1 − 1)/2

)
≡(−1)(p

a−1−1)/2
(
p− j − 1

(p− 1)/2

)
(mod p),

also(
p− j − 1

(p− 1)/2

)
=

(
p− 1− j

(p− 1)/2− j

)
= (−1)(p−1)/2−j

(
−p+ (p− 1)/2

(p− 1)/2− j

)
≡(−1)(p−1)/2−j

(
(p− 1)/2

j

)
≡ (−1)(p−1)/2−j

(
−1/2

j

)
=(−1)(p−1)/2

(
2j
j

)
4j

(mod p).

Therefore

p2a−2
(pa−1)/2∑

k=1

1

k
(

pa−k
(pa+1)/2

) ≡ (−1)(p
a−1+1)/2

2

(p−1)/2∑
j=1

1

j2
(
p−j−1
(p−1)/2

)
≡(−1)(p

a−1+1)/2

2
(−1)(p−1)/2

(p−1)/2∑
j=1

4j

j2
(
2j
j

) (mod p).

This, together with (2.1), yields the desired (2.9).
The proof of Theorem 1.1(ii) is now complete. �
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3. Proof of Theorem 1.2

Lemma 3.1. Let p > 3 be a prime, and let m ∈ {1, 2, . . . , (p− 1)/2}.
For any p-adic integer t, we have(

m+ pt− 1

(p− 1)/2

)(
−1− pt−m

(p− 1)/2

)
≡ pt

m
(mod p2). (3.1)

Proof. Since(
m+ pt− 1

(p− 1)/2

)
=

∏m−1
r=0 (pt+ r)×

∏(p−1)/2−m
s=1 (pt− s)

((p− 1)/2)!

≡(m− 1)!pt(−1)(p−1)/2−m((p− 1)/2−m)!

((p− 1)/2)!
(mod p2),

and (
−m− pt− 1

(p− 1)/2

)
=

∏(p−1)/2
j=1 (−m− pt− j)

((p− 1)/2)!

≡(−1)(p−1)/2(m+ 1)(m+ 2) · · · (m+ (p− 1)/2)

((p− 1)/2)!
(mod p),

we have(
m+ pt− 1

(p− 1)/2

)(
−m− pt− 1

(p− 1)/2

)
≡pt(m− 1)!(−1)m((p− 1)/2−m)!(m+ 1)(m+ 2) · · · (m+ (p− 1)/2)

((p− 1)/2)!2

=
pt

m

(−1)m((p− 1)/2−m)!(m+ (p− 1)/2)!

((p− 1)/2)!2
=
pt

m
(−1)m

(
p−1

(p−1)/2

)(
p−1

(p−1)/2+m

)
≡pt
m

(−1)m(−1)(p−1)/2(−1)(p−1)/2+m =
pt

m
(mod p2).

This concludes the proof. �

Remark 3.1. Let p > 3 be a prime and let m ∈ {(p+ 1)/2, . . . , p− 1}.
For any p-adic integer t, by Lemma 3.1 we have(

m+ pt− 1

(p− 1)/2

)(
−1− pt−m

(p− 1)/2

)
=

(
(m− p) + p(t+ 1)− 1

(p− 1)/2

)(
−1− p(t+ 1)− (m− p)

(p− 1)/2

)
≡p(t+ 1)

m− p
≡ p(t+ 1)

m
(mod p2).
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Lemma 3.2. Let p > 3 be a prime. For k ∈ {1, 2, . . . , p − 1} and
p-adic integer t, we have(

pt

k

)(
−1− pt

k

)
≡ −p

2t2

k2
− pt

k
(mod p3). (3.2)

Proof. This is almost trivial. In fact,(
pt

k

)(
−1− pt

k

)
=

pt

pt− k

(
−1 + pt

k

)(
−1− pt

k

)
≡ pt

pt− k

(
−1

k

)2

=
pt(p2t2 + ptk + k2)

(pt)3 − k3

≡− p2t2

k2
− pt

k
(mod p3).

This proves (3.2). �

Recall that those Hn =
∑

0<k6n 1/k with n ∈ N are called harmonic
numbers. If a prime p does not divide an integer a, then we let qp(a)
denote the Fermat quotient (ap−1 − 1)/p.

Lemma 3.3. (Lemma [L]). For any prime p > 3, we have

Hbp/2c ≡ −2qp(2) (mod p), Hbp/4c ≡ −3qp(2) (mod p),

Hbp/3c ≡ −
3

2
qp(3) (mod p) and Hbp/6c ≡ −2qp(2)− 3

2
qp(3) (mod p).

For n ∈ N, define

Sn(x) =
n∑

k=0

(
x

k

)(
−1− x
k

)
and Tn(x) =

n∑
k=0

(
x

k

)(
−1− x
k

)
1 + 2x

1 + 2k
.

By [S16, (2.2)] with a = x+ 1 and b = 0, we have

Sn(x) + Sn(x+ 1) = 2

(
x

n

)(
−2− x
n

)
. (3.3)

By [S16, (2.2)] with b = 2, we get

Tn(x)− Tn(x− 1) = 2

(
x− 1

n

)(
−x− 1

n

)
. (3.4)

Proof of Theorem 1.2. For any p-adic integer a, we let 〈a〉p denote the
least nonnegative integer r with a ≡ r (mod p). For convenience, we
also set n = (p− 1)/2.
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We first prove (1.4). For any p-adic integer a 6≡ 0 (mod p), by using
(3.3) we get

Sn(a)− (−1)〈a〉pSn(a− 〈a〉p)

=

〈a〉p−1∑
k=0

(−1)k(Sn(a− k) + Sn(a− k − 1))

=

〈a〉p−1∑
k=0

(−1)k2

(
a− k − 1

n

)(
k − a− 1

n

)
and hence

Sn(a)− (−1)〈a〉pSn(pt)

=2

〈a〉p−1∑
k=0

(−1)k
(
〈a〉p + pt− k − 1

n

)(
−1− pt− (〈a〉p − k)

n

)
,

where t := (a− 〈a〉p)/p. By Lemma 3.2,

Sn(pt) =
n∑

k=0

(
pt

k

)(
−1− pt

k

)
≡ 1−

n∑
k=1

pt

k
= 1− ptHn (mod p2).

So, with helps of Lemma 3.1 and Remark 3.1, we have

Sn(a)− (−1)〈a〉p(1− ptHn) ≡ 2

〈a〉p−1∑
k=0

(−1)k
p(t+ δk)

〈a〉p − k
(mod p2), (3.5)

where δk takes 1 or 0 according as 〈a〉p − k > p/2 or not.
Observe that

(p−1)/2∑
k=0

(
2k
k

)(
3k
k

)
27k

=
n∑

k=0

(
−1/3

k

)(
−2/3

k

)
= Sn(a)

with a = −1/3. Note that

〈a〉p =

{
(p− 1)/3 if p ≡ 1 (mod 3),

(2p− 1)/3 if p ≡ 2 (mod 3).

Hence

t :=
a− 〈a〉p

p
=

{
−1/3 if p ≡ 1 (mod 3),

−2/3 if p ≡ 2 (mod 3).

Case 1. p ≡ 1 (mod 3).
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In this case, 〈a〉p = (p − 1)/3, t = −1/3, and δk = 0 for all k =
0, . . . , 〈a〉p − 1. Thus, in view of (3.5), we have

Sn

(
−1

3

)
− (−1)(p−1)/3(1− ptHn)

≡2pt(−1)(p−1)/3
(p−1)/3∑
j=1

(−1)j

j
= 2pt

(
H(p−1)/6 −H(p−1)/3

)
(mod p2).

Combining this with Lemma 3.3 and recalling that t = −1/3, we im-
mediately obtain the desired congruence

Sn

(
−1

3

)
≡ 1 +

2

3
p qp(2) (mod p2).

Case 2. p ≡ 2 (mod 3).
In this case, we have 〈a〉p = (2p− 1)/3, t = −2/3 and

δk =

{
1 if 0 ≤ k < (p+ 1)/6,

0 if (p+ 1)/6 ≤ k ≤ 〈a〉p − 1.

So, by (3.5) we have

Sn

(
−1

3

)
− (−1)(2p−1)/3(1− ptHn)

≡2p(t+ 1)

(p−5)/6∑
k=0

(−1)k

〈a〉p − k
+ 2pt

(2p−4)/3∑
k=(p+1)/6

(−1)k

〈a〉p − k

=2p(t+ 1)(−1)(2p−1)/3
(2p−1)/3∑
j=(p+1)/2

(−1)j

j
+ 2pt(−1)(2p−1)/3

(p−1)/2∑
j=1

(−1)j

j

=− 2p(t+ 1)

(2p−1)/3∑
j=1

(−1)j

j
+ 2p

(p−1)/2∑
j=1

(−1)j

j

=− 2p(t+ 1)
(
Hbp/3c −Hb2p/3c

)
+ 2p

(
Hbp/4c −Hbp/2c

)
(mod p2).

Note that

Hb2p/3c =

(p−1)/2∑
k=1

(
1

k
+

1

p− k

)
−

(p−1)/3∑
j=1

1

p− j
≡ Hbp/3c (mod p).

Therefore,

Sn

(
−1

3

)
+ 1− ptHbp/2c ≡ 2p

(
Hbp/4c −Hbp/2c

)
(mod p2).
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This, together with Lemma 3.3 and the fact that t = −2/3, yields the
desired congruence

Sn

(
−1

3

)
≡ −1− 2

3
p qp(2) (mod p2).

In view of the above, we have completed the proof of (1.4).
Our next goal is to show (1.5) and (1.6). For any p-adic integer a

with a(2a+ 1) 6≡ 0 (mod p), if we set t = (a−〈a〉p)/p then by (3.4) we
have

Tn(a)− Tn(pt) =

〈a〉p∑
k=1

(Tn(a− k + 1)− Tn(a− k))

=

〈a〉p∑
k=1

2

(
a− k
n

)(
k − a− 2

n

)

=2

〈a〉p∑
k=1

(
mk + pt− 1

n

)(
−1− pt−mk

n

)
,

where mk = 〈a〉p − k + 1. In view of Lemmas 3.2 and 3.3,

Tn(pt)− (1 + 2pt) =
n∑

k=0

(
pt

k

)(
−1− pt

k

)
1 + 2pt

1 + 2k
− (1 + 2pt)

≡
(
pt

n

)(
−1− pt

n

)
1 + 2pt

p
−

n−1∑
k=1

pt

k(1 + 2k)

≡
(
−p

2t2

n2
− pt

n

)
1 + 2pt

p
−

n−1∑
k=1

pt

k(1 + 2k)

≡2t+ 2pt− pt
n−1∑
k=1

1

k
+ 2pt

n−1∑
k=1

1

2k + 1

≡2t− 2pt− ptHn + 2pt

(
Hp−1 −

Hn

2

)
≡2t− 2pt+ 4ptqp(2) (mod p2)

and hence

Tn(pt) ≡ 1 + 2t+ 4ptqp(2) (mod p2).
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Therefore, with the helps of Lemma 3.1 and Remark 3.1, we have

Tn(a)− (1 + 2t+ 4ptqp(2))

≡2

〈a〉p∑
k=1

(
mk + pt− 1

n

)(
−1− pt−mk

n

)

≡2

〈a〉p∑
k=1

p(t+ δk)

mk

= 2

〈a〉p∑
j=1

pt

j
+ 2

〈a〉p∑
j=1

j>p/2

1

j
(mod p2),

where δk takes 1 or 0 according as mk > p/2 or not. Below we deal
with a = −1/6,−1/4.

Clearly,

Hp−k = Hp−1 −
∑

0<j<k

1

p− j
≡ Hk−1 (mod p)

for all k = 1, . . . , p− 1. Thus, with the help of Lemma 3.3 we have

Hb3p/4c ≡ Hp−1−b3p/4c = Hbp/4c ≡ −3qp(2) (mod p)

and

Hb5p/6c ≡ Hp−1−b5p/6c = Hbp/6c ≡ −2qp(2)− 3

2
qp(3) (mod p).

Case I. 〈a〉p < n.
If a = −1/6, then p ≡ 1 (mod 6), 〈a〉p = (p − 1)/6 and t = −1/6.

By the above,

Tn

(
−1

6

)
≡2

3
− 2

3
pqp(2)− p

3
Hbp/6c

≡2

3
− 2

3
pqp(2)− p

3

(
−2qp(2)− 3

2
qp(3)

)
≡2

3
+
p

2
qp(3) (mod p2)

and thus

n∑
k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

=
3

2
Tn

(
−1

6

)
≡ 1 +

3

4
pqp(3) =

3p + 1

4
(mod p2).
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If a = −1/4, then p ≡ 1 (mod 4), 〈a〉p = (p − 1)/4 and t = −1/4.
By the above,

Tn

(
−1

4

)
≡1

2
− pqp(2)− p

2
Hbp/4c

≡1

2
− pqp(2)− p

2
(−3qp(2))

≡1

2
+
p

2
qp(2) (mod p2)

and thus
n∑

k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

= 2Tn(−1/4) ≡ 1 + pqp(2) = 2p−1 (mod p2).

Case II. 〈a〉p > n.
If a = −1/6, then p ≡ 5 (mod 6), 〈a〉p = (5p − 1)/6 and t = −5/6.

By the above,

Tn

(
−1

6

)
≡− 2

3
+

2

3
pqp(2) +

p

3
Hb5p/6c

≡− 2

3
+

2

3
pqp(2) +

p

3

(
−2qp(2)− 3

2
qp(3)

)
≡− 2

3
− p

2
qp(3) (mod p2)

and hence
n∑

k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

=
3

2
Tn

(
−1

6

)
≡ −1− 3

4
pqp(3) = −3p + 1

4
(mod p2).

If a = −1/4, then p ≡ 3 (mod 4), 〈a〉p = (3p − 1)/4 and t = −3/4.
So

Tn

(
−1

4

)
≡− 1

2
+ pqp(2) +

p

2
Hb3p/4c

≡− 1

2
+ pqp(2) +

p

2
(−3qp(2))

≡− 1

2
− p

2
qp(2) (mod p2)

and hence
n∑

k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

= 2Tn

(
−1

4

)
≡ −1− pqp(2) = −2p−1 (mod p2).

The proof of Theorem 1.2 is now complete. �
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