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TWO ¢-ANALOGUES OF EULER’S FORMULA ((2) = 72/6

ZHI-WEI SUN

ABSTRACT. It is well known that ((2) = 72/6 as discovered by Euler.
In this paper we present the following two g-analogues of this celebrated

formula:
. gF (1 + g2F 1) 00 )4
PO =2 (1 — g2++1)2 H 2” 1)
k=0 =i
and k
00 [e%¢) n n
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S (=) (1 =gt ?)

where ¢ is any complex number with |¢| < 1. We also give a g-analogue of
the identity ¢(4) = 7*/90, and pose a problem on g-analogues of Euler’s
formula for ¢(2m) (m = 3,4,...).

1. INTRODUCTION

For n € N={0,1,2,...}, the g-analogue of n is defined as

==L = 3 ez

1 _
q 0<k<n

Note that lim, ,1[n], = n. For |q| < 1, the ¢-Gamma function introduced
by F. H. Jackson [J] in 1905 is given by

oo

- 1—4q"
Ty(x) == (1—q)" " ]] [T,

n=1
In view of the basic properties of the ¢-Gamma function (cf. [AAR, pp. 493—
496]), we have

00 (1 _ an)Q 1 2 1 2
(1.1) llm(l—q)llf—llmr = — | =m,
< oy (L= ey 2 2

which is essentially equivalent to Wallis” formula

since
2n>2

1 -1 L) 1
1:[ 2n1 q2n+1)_( _Q)Hm or |q| < 1.
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In light of (1.1),

7 (-¢™? o l-q 7
tim(1—q) | [ g = g7 = g
lal<1 n=1 lal<1

and hence we may view Ramanujan’s formula

s _\k 00 1 — g4n)2
> g = gy (0 <)

(equivalent to Example (iv) in B. C. Berndt [B91, p. 139]) as a g-analogue

of Leibniz’s classical identity

= (
Z2/<;+1 Z'

k=0

Recently, V.J.W. Guo and J.-C. Liu |GL| gave some g-analogues of two
Ramanujan-type series for 1/7.
Let C be the field of complex numbers. The Riemann zeta function is

given by
— 1
= — C with R(s) > 1
¢(s) ; — forseCwi (s)

In 1734 L. Euler obtained the elegant formula

2

s

(1.2) ¢(2) = 5

In 2011 Kh. Hessami Pilehrood and T. Hessami Pilehrood [HP] gave an in-
teresting g-analogue of the known identity 3327 1/(n?(*")) = ((2), which
states that

where
{Qn] _ o (K],
L H?:ﬂ]]?]
is the g-analogue of the central binomial coefficient (2:)

Euler’s celebrated formula (1.2) plays very important roles in modern
mathematics. Though >, ¢"/ [n]g (with ¢| < 1) is a natural g-analogue of
((2), it seems hopeless to use it to give a g-analogue of (1.2). As nobody
has given a g-analogue of Euler’s formula (1.2) before, we aim to present
two g-analogues of (1.2) in this paper.

Our main result is as follows.
Theorem 1.1. For any q € C with |q| < 1, we have

q 1 + q2k+1 0 (1 _ q2n)4
(1.3) Z 1= )2 - H (1— g 1y®

n=1
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o 2k [(=1)Fk/2] o0 1—q )2(1 4n)2

q
(1.4) Z (1 — g?k+1)2 H (1 —g2n=1)2(1 — g4n—2)2’

k=0 n=1

Clearly,

— —2¢(2
> Gl L@ O
k= n=1 k=1
and hence (1.2) has the equivalent form
- 1 2
(1.5) o =
— (2k+1) 8

Now we explain why (1.5) follows from (1.3) or (1.4). In view of (1.1),

. 22OO (1_q2n)4 2
%11111(1_(1 ) H (1— g2 1)t =7,
lgl<1 n=1

lim (1 _ q2)(1 _ q4> H (1 _ q2n>2(1 _ q4n)2 — 2

o 11 (1 — g2 1)2(1 — gin-2)2
Thus
o0 2n\4 2

. 2 (1 —dq ) ™
(1 6) !}E}Ill(l - Q) H (1 2n_1)4 Z

lg|<1 n=1 q
and

|‘31‘_21 vt (1 _ q2n—1)2(1 _ q4n—2)2 8

On the other hand,

q 1 _|_q2k+1) ' 0 qlc(l _|_q2k+1) o0 2
lim (1 — q) = lim —_— = _—
im0 Y- e = i S T =S
—1)R2 o 2k-l(-DFR2] 2

¢** _ q _
=) Z R T 2 R 2 ORI

lal<1 lal<1 k=0
Therefore (1.3) and (1.4) indeed give g-analogues of (1.2).

We also deduce a g-analogue of the known formula ((4) = 7*/90, which
has the equivalent form

1) P
' c (2k+1)" 96

Theorem 1.2. For any q € C with |q| < 1, we have

o q 1 + 4q2k+1 T q4k+2) o0 (1 o q2n>8
(1.8) Z — g2k t1)a - (1= @ 1)
k=0 n=1
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As is clearly seen, the left-hand side of (1.8) times (1 — ¢)* tends to
6> poyl/(2k + 1)* as ¢ — 1. In view of (1.6), the right-hand side of (1.8)
times (1 —q)* has the limit 7%/16 as ¢ — 1. So (1.8) implies (1.7) and hence
it gives a g-analogue of the formula ((4) = 7*/90.

We will show Theorems 1.1 and 1.2 in the next section.

The Bernoulli numbers By, By, ... are given by By = 1 and

- 1
Z(nz )Bk:O (n=1,2,3,...).

k=0
Euler proved (cf. [IR, pp. 231-232]) that for each m = 1,2,3,... we have

22m—1ﬂ.2m
(2m)!

To seek for g-analogues of (1.9) is our novel idea in this paper. We don’t

(L.9) ¢@m) = (1! Bom.

know whether one can find a g-analogue of (1.9) similar to (1.3), (1.4) and
(1.8) for m = 3,4,5, ..., and this problem might stimulate further research.

2. PROOFS OF THEOREMS 1.1 AND 1.2

Recall that the triangular numbers are the integers

1
T, = @ (n=0,1,2,...).
As usual, we set
(2.1) Y(g) = q™ for|gl <1.
n=0

Lemma 2.1. For |q| < 1 we have

o0 1 — q2n
(2.2) V(q) = H gt

n=1

Remark 2.2. This is a well-known result due to Gauss (cf. Berndt [B06,
(1.3.14), p. 11]).

Lemma 2.3. Let n € N and

ta(n) == {(w,r,y,2) e N*: T, + T, + T, + T, = n}|.
Then
(2.3) ty(n) =oc(2n+1),

where o(m) denotes the sum of all positive divisors of a positive integer m.
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Remark 2.4. This is also a known result, see [B06, (3.6.6.), p.72]. In con-
trast with (2.3), for any positive integer n Jacobi showed that

ra(n) = {(w,z,y,2) € Z* : w? + 2> +9y* + 2* = n}| :8Zd
4d|n

(cf. [B06, (3.3.1), p.59]).

Lemma 2.5. For |q| < 1 we have

2 SO S s
n=0
Proof. For each k € N, clearly

k 2k+1
(1 +gq - -
( ) ::2qk(1 _»q2k+1) 2 __qk(l __q2k+1> 1

(1 — g2+1)2
—9g" Z ( ) s VP Z g2+
Z 27 + 1)q&+D+1/2)-1/2
5=0
Thus
o 2k+1 X x*
_ g2kt
=0 (1 q k=0 ]=o
= ( > d) g =N "o (2n 4 1)q"
n=0 *d|2n+1 n=0
This concludes the proof. Il

Lemma 2.6. For each n € N, we have

— (—=1)d=1)/
(2.5) [{(u,0,2,9) € N*: T4 T, +20,4+2T, = n}| = > d—( 4) |
dl4n+3

Remark 2.7. This is a known result due to K. S. Williams [W].

Proof of Theorem 1.1. In view of Lemmas 2.1 and 2.3,

ORI | % — 0@ = Y taln)g

o0

o(2n+1)q"

Combining this with (2.4) we immediately obtain (1.3).
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By Lemmas 2.1 and 2.6, we have

(1—¢*)*(1 —¢")?
1_q2n1 1_q4n2)

o0

1=

=1(q)*P(¢%)? = Z {(u,v,2,y) € N*: T, + T, + 2T, + 2T, = n}|q"

n=0
DIPIEE S
n=0 d|4n+3
e 4j+1)-1 + 1)—1 Z (474+1)(4k+3)—3) /4
Jj=0 k=
+Z J q((4]+3)(4k+1) 3)/4
7=0 k=0

i ( quj(4k+3 k Z ja1 j(4k+1 )
§=0

k=0

For |z] < 1, clearly

1
Z]—l—lZ]—ZjZ]l Zdz d21—2)1:<1_2)2.

Therefore
[ iy
e Al —q )
> (g 4'“;13 ) = X
ar — g2 (1 q4 +1) G212
This proves (1.4). The proof of Theorem 1.1 is now complete. O

Remark 2.8. In light of (1.6) and (2.6), we have the curious formula

o 2
(2.7) lim (1—¢)*) o@2n+1)¢" = T
lgl<1 n=0

Lemma 2.9. Letn € N and
ts(n) = [{(z1,...,28) EN®: Ty, + Ty + -+ + Ty = n}l.

Then
(n+1)3

(2.8) ts(n) = Y =

2fd|n+1

Remark 2.10. This is a result due to A. M. Legendre, see [B06, p. 139] or
[ORW, Theorem 5|.
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Proof of Theorem 1.2. For z € C with |z| < 1, we have

2N b (B3 ko ER A D(R+2)
g ()R () -y
and hence
2(1+4z + 2?)
(1—2)*

S~ k
=(1+42+42%) ) k(k+1)( k:+2)%
k=1

o k
= (k(k+ 1)(k +2) + 4k — Dk(k + 1) + (k — 2)(k — 1)k:)%
k=1
:ik?’zk.
k=1
Thus
> 2k+1 2k+1 4k+2 o 3
g1+ 4q +t4q 3 _(2k+1)m "\ n
Z (1 — g2k+1)d sz Z Zﬁ ¢
k=0 k=0 m=1 n=1 \2fdn

Combining this with Lemma 2.9 we obtain

i q2k 1+ 4q2k+l + q4k+2>

(1 — g2yt = ts(n—1)g" " =9(g)*.

n=1

So, with the help of Lemma 2.1 we get the desired identity (1.8). This
completes the proof. O
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