Proc. Amer. Math. Soc. 147(2019), no. 5, 1953-1961.
ON ¢-ANALOGUES OF SOME SERIES FOR © AND =?

QING-HU HOU', CHRISTIAN KRATTENTHALER! AND ZHI-WEI SUN*

ABSTRACT. We obtain a new g-analogue of the classical Leibniz series
Srso(—1)F/(2k + 1) = 7/4, namely

i (_1)qu(k+3)/2 (q2; q2)oo(q8; q8)oo

1—g 1 (g56%) 000 6%) o0

where ¢ is a complex number with |¢] < 1. We also show that the
Zeilberger-type series Y po,(3k — 1)16'“/(1@(2:))3 = 72/2 has two ¢-
analogues with |¢| < 1, one of which is

k=0

sy 2l = @ (G0)3 (¢ a)n (4% ¢)3,
Zq (n+1)/2 . =(1—gq) " tx
n=0

1—¢ (a3 ¢%)3 (¢4

1. INTRODUCTION

Let ¢ be a complex number with |¢|] < 1. As usual, for n € N =
{0,1,2,...} and a complex number a, we define the g-shifted factorial by

n—1

(a;q)n = [ [(1 = ad").

k=0
(An empty product is considered to take the value 1, and thus (a;q)o = 1.)
We also adopt the standard notion

. S B . _ o k
(a3 q)o = lim (a; ), = g(l aq®).

By the definition of the ¢-Gamma function [6, p. 20], we have

@ide _p, (1o e

(4; ¢*) 2
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Therefore,
2. 2\2 1 2 1—
hm(l_q)mzr =) i ¢ _T (1.1)
g—1 (q;¢%)%, 2) ¢=1l—¢q¢> 2
and e
(¢5q")% _
AT
In view of this, Ramanujan’s formula
(9 (gheh)%
> = (gl <1) (1.2)

— q2k+1
“—~1—gq (¢% a*)%

(equivalent to Example (iv) in [2, p. 139]) can be viewed as a g-analogue of
Leibniz’s identity

Z 2(k: F1 4 (1.3)

k=0

Guo and Liu [8] used the WZ method to deduce the identities

iqml — 0" (@R (@ D)
— 1—g¢ (a* )3 (g% 4%
and
S e L (62 (%00 0
Sy @R _ e

~ l—q (¢4¢3 (¢%d)%

with |¢| < 1, which are g-analogues of Ramanujan’s formulas [3, p. 352]

> (6n +1)<1'/:,31)n = (6n—|—1)g52n :%

and

S (60 + (-1 2 S+ 1); (5?2) = 2?,

n=0 n=0
where (a), = [[iZ4(a + k) is the Pochhammer symbol. Note that

% =(-1)" (_1/2> = @ for all n € N.

n! n

Quite recently, Sun [12] provided g-analogues of Euler’s classical formulas

¢(2) = m%/6 and ¢(4) = 7*/90.
In 1993, Zeilberger [13] used the WZ method to show that

> nl6 . 21k—8 7n?
;(21n+13)—8<2n+1) Z} o)y 6
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A complicated g-analogue of the identity > 5o, (21k — 8)/(k*(%))* = ((2)
was given by Hessami Pilehrood and Hessami Pilehrood [9] in 2011. Fol-
lowing Zeilberger’s work, in 2008 Guillera [7, Identity 1] employed the WZ
method to obtain the Zeilberger-type series

i (3k —1)16* 7

— = . (1.6)
= B0 2
In this paper we study g-analogues of the identities (1.3) and (1.6).
Now we state our main results.
Theorem 1.1. For |q| < 1 we have
00 1 k k(k+3)/2 2. .2 ~ 8. 8 o
Z( )"q _ (5 0)=(0%9) (17)

1= (g% (0% %)

The above identity gives a new g-analogue of Leibniz’s identity (1.3) since

(%6%) (%) . 1 N L
513[#1_(])(q;612)oo(q4;q$)oo =ate\g)te\g) =) =7

Theorem 1.2. For |g| <1 we have

io: 20(n+1) (] | g20+2 _ 9gdn+d) (@ a%)3 1 i on
q q — 44 =3
= (6 )2 (— 1 Qg 2 —(1- QZ”H
(1.8)
and
o 2 L= (GO (GO _ (@) Lo
Z 3. 2\3 _(_Q) L o2\4 ()
1—¢q (@3 ¢%)3 (a; %)%

=0

Multiplying both sides of (1.8) by (1 — ¢)? and then letting ¢ — 1, we
obtain

1 — 24ny |6 ] — 1 1 72
4;( R R I QZ 2n+ < 4>C() 16’

which is equivalent to (1.6). In view of (1. ) and the fact that

_ 3nt2 N3 (e n+l
Jim gn(r+0/2 L — 4 (593 (-9 _ (3n+2)16

g1 1—gq (@6 2+ 133"

the identity (1.9) is also a g-analogue of (1.6). The expansions of both sides
of (1.9) are

14 2q — ¢* 4+ 3¢" — 6¢° + 3¢° +8¢" — 16¢° + 8¢° + 10¢" + - - - .



4 QING-HU HOU, CHRISTIAN KRATTENTHALER AND ZHI-WEI SUN
In [11, Conjecture 1.4], Sun presented several conjectural identities similar

to Zeilberger-type series (one of which is Y 77 (10k — 3)8%/(k? (2:)2(316’“)) —

72/2), but we could not find g-analogues of them.

We are going to show Theorems 1.1 and 1.2 in Sections 2 and 3 respec-

tively. Finally, in Section 4, we give alternative proofs for (1.4) and (1.5).

2. PROOF OF THEOREM 1.1

As usual, for € Z we let T, denote the triangular number z(z + 1)/2.

Lemma 2.1. Let n € N, and define
ta(n) == |{(z,y) € N*: T, + 4T, = n}|.

Then
tan) = Y (=12 (2.1)

d|8n+5
d</8n+5

Proof. By Theorem 3.2.1 of [4, p. 56|, for any positive integer m we have
ra(m) =4y (=1)V2,
2td|m

where ro(m) := [{(z,y) € Z* : 2* + y* = m}|. Observe that
ta(n) =[{(z,y) €N?: (2 +1)*+4(2y +1)* = 8n + 5}|

1 1
:ZH(%IU) €7 2+ (2y)? =8n+5} = §T2(8n +5)
(_1)(d71)/2 + (_1)((8n+5)/d—1)/2

1 d—1)/2
25 Z (_1)( )2 Z 5

d|8n+5 d|8n+5
d<+/8n+5
_ Z (_1)(d71)/2.
d|gn+5
d</8n+5
This proves (2.1). ]

As usual, for |g| < 1 we define

vig) = ¢
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By a known formula of Gauf} (cf. (1.3.14) of [4, p. 11]),
(7% ¢°)so

W(q) = 239 Joo 2.2

D= G 22)
First proof of (1.7). Let L and R denote the left-hand side and the right-
hand side of (1.7), respectively. In view of Gauf’ identity (2.2) and (2.1),

we have

R = Zt2 n)q" _i( Z (_1)(d1)/2>qn.

n=0 d|8n+5
d<+/8n+5

On the other hand,

e}

L = Z(_l)k i gF+3)/ 2+ 2+ m

k=0 m=0
oo oo
_ ¢(FHD @+ 142m 4 1) =5)/ } : } : )@d=D/2gn,
k=0 m=0 n=0 d|8n+5
d<+/8n+5
Therefore (1.7) is valid. |

Second proof of (1.7). Recall the standard basic hypergeometric notation

oo rsae] = 30 s (g ) T

=0

(with (a1;q)e- - - (ar; q)¢ often abbreviated as (ay, ..., a,;q)¢). We start with
the transformation formula (cf. [6, Eq. (3.10.4)])

¢ a, \/Eq7 _\/aq7 b7 xr,—=x,Y, Y,
N Va, —va, aq/b, aq/x, —aq/x, aq/y, —aQ/y,
3 2n+3:|

—q " q" aq
—(lanrl, aqn+1a q, — bl‘ y2

(@@, 7Y P 5 ", y?, —aq/b, —aq® /b
(@) PP ), 2/0/2 ., a*q* V%, —aq, —aq
where n is a nonnegative integer. In this identity, set a = ¢, v = y = /g,

2;q2,q2} :

and let n — oco. In this way, we obtain

Q7ba \/aa_\/a . CI_4
105 q2/b, ¢?? —q32,0,00 4, b

_ (46 (q4;q2)oo4¢ { —qg/b —¢3/b.q }

(% ¢%)os” —¢*, =%, q'/b’ R
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By performing the limit as b — 0, the above transformation formula is
reduced to

GG/, o] (050 (04 6o [ G4 2 3]
393 [_q:a/z’qs/z,o,q,CI} (q3;q2)002 o T

—¢*,—q
If the left-hand side is written out explicitly, we see that it agrees with the

left-hand side in (1.7) up to a multiplicative factor of 1 — ¢. On the other
hand, the s¢s-series on the right-hand side can be evaluated by means of
the summation formula (cf. [6, Ex. 1.19(i); Appendix (I1.10)])

a,q/a (ab,bq/a; ¢*)
g, —b| = .
R S T

Thus, we arrive at

i (D)2 (1 —q) (6% 6% (0% 6P oo (—a*; 4%

1 — g2+ () (%)%

which is indeed equivalent to (1.7). |

k=0

3. PROOF OF THEOREM 1.2

Proof of (1.8). We construct a g-analogue of the WZ pair given by Guillera
[7, Identity 1].

Recall that a pair of bivariate functions (F(n, k), G(n, k)) is called a WZ
pair [10, Chapter 7] if

Fn+1,k) — F(n,k) = G(n,k + 1) — G(n, k).

It was shown (cf. [1]) that

o0

f%G(”,O) = lim 3 G(n, k) +§;F(O,kz). (3.1)

We make the following construction. Let

1_q2n

Fq(n, k) =4- _ .Bq(n’ k)
d
an A(1 4 g*n 1t — 2gin k)
k) = B g
Gq(na ) (1 _ q)(l + q2n)(1 + q2n+1) q(n’ )’
h
where (¢; qz)%(Q'QQ)S 2n2 1+ dnk
Bq(”: k) = (q2n+2;q2)%(q2’q2)%< 1,q>2nq .
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We can extend the definition of B,(n, k) from nonnegative integers n, k to
any real numbers n, k by defining
(a5 ¢)oc
a;q)y = ———.
4 (ag"; q)oo
Let a be a positive real number. It is straightforward to check that
(Fy(n+a,k),Gy(n +a,k)) is a WZ pair. Observing that B,(n, k) contains

the factor ¢*"*, we get
e}
lim Gy(n+a,k)=0.
k—oo —
Thus,
> Gyn+a,0)=> Fya,k). (3.2)
n=0 n=0
Setting @ = 1/2 and noting that
(@ sz = (@000 _ (4:0%)0(d® ¢*)n
o (7" ¢%) (4% ¢%)oc
and 2. 2 2. 2 2
(@ P)nsrs = (@00 (0%4%)0(¢54*)nia
’ (@ > ¢%) oo (4:4%)os
for any n € N, we infer that
1 2 1/2 2k . 42\6
Fq(_’k): . q2k+12' (qz’qz)oﬁo’
2 1—q¢ (1-=¢*1)? (%5
and
1 4 2n242n+1/2 1 n+2 _ 9odn+3
Gq(nJr_,O):q (1+gq ")
2 (1—q)
y (43 4*)3(a*" %5 ¢°)%
(=L @)2nt3(® 2 ¢%)3 (4% ¢%)%
After cancelling the common factors, we arrive at (1.8). |

Remark 3.1. Guillera [7] obtained the identity (1.6) via the WZ pair
F(n,k) =8nB(n,k), G(n,k)=(6n-+4k+1)B(n,k),

where
(2k) 12 (2n) 13

28n+4k(n + k)l2k|2nl4 )

B(n, k) =
Since
lirri F,(n,k)=F(n,k) and lirr% Gy(n, k) = G(n, k),
q— q—
the pair (F,(n,k),Gy(n,k)) is indeed a g-analogue of the pair (F'(n,k),
G(n,k)).
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Proof of (1.9). We start from the quadratic transformation formula (cf.
6, Eq. (3.8.13)))

(1- aq ) (a,d,aq/d;¢*), (b, c,aq/bc; q)n
1 —a)(q,aq/d,d;q), (aq?/b, aq?/c, beq; ¢%)n

~ (ag?,bq, cq, aq?/be; %) 5 b, ¢,aq/bc, 2l (33
= (q.a2/b,ag?/c, beq; @) ? | dg ag? fa D0 |

We set a = ¢* and b = ¢ = ¢. This yields

i 3””) (@ d.¢* /5 6*)n (4.4 G D
—~ (1-¢°)(q,¢%/d, d; ) (¢*, 8%, 4% ¢*)n
(NP P P ) 4,4, q
S @ E PP e g /d ] G
At this point, we observe that the limit d — 0 applied to the left-hand
side of (3.4) produces exactly the left-hand side of (1.9). Thus, it remains
to show the limit d — 0 applied to the right-hand side of (3.4) yields the

right-hand side of (1.9).

In order to see this, we take recourse to the transformation formula (cf.
[6, Eq. (3.3.1) or Appendix (II1.34)])

é A, B,C, _ (BCq/E,q/FE; @) 5 D/A,B,C @
| DB P T (Cq/E, Be/E:)"" | D, BOq/E™
 (¢/E,AB,C,Dq/E;q)x 5 [Cq/E, Bq/E,Aq/E. }
(Ca/E,Bq/E,D,E/q,Aq/E;q)s” | Da/E.*/E 07
Here we replace ¢ by ¢*> and set A= B =C =¢q, D =dq, and E = ¢*/d, to
obtain

3¢2|:dq q4/d’q Q:| (d/q,d/QQ) 2¢1 dq’q’q
— (d/q 7q7q’Q7d2/Q7 q2>oo ¢ |:d/q7d/q7d/q 2 2:|
(d/q,d/q,dq,q2/d,d/q;q2)m3 2 d2/q,d 45,49 -

From here it is evident that

hm 3¢2 ldg q4(/]da q,q :| =1 (35)

Indeed, the first term on the right-hand side of (3.5) converges trivially to 1,
while in the second term everywhere the substitution d = 0 is fine — and
thus produces a well-defined finite value —, except for the factor (¢%/d, ¢*) oo

in the denominator. However, as d — 0 (to be precise, we take d = ¢*/D
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with D — —o0), this term becomes unbounded, whence the whole term

tends to 0. Thus, performing this limit, we get

(L= ™) (q )0 (4,96 Dn_ni(7)
o 1—q FDn (6,6, 6% ¢*)n
_ <q4aq2aq27q2;q2)oo _ (1 - Q)S (q27q27q27q2;q2>oo
(4, ¢% ¢, 6% ¢%)o (1-4¢%)(20.4,4,4 %)
as desired. ]

4. ALTERNATIVE PROOFS OF THE IDENTITIES OF GUO AND LIU

In this last section, we provide alternative proofs of (1.4) and (1.5), show-
ing that they can be obtained as special/limiting cases of a quadratic sum-

mation formula due to Gasper and Rahman [5].

Proof of (1.4). We start with the quadratic summation formula (cf. [6, E-
q. (3.8.12)])

i Loag®  (aba/bg (4 ].0%/df:a) 4
1—a (¢%aq?*/b,abq;¢*)x (aq/d,aq/f,df [a; q)
(aq, f/a;b, f/@:0)s  (d,a’q/bd,a’q/df, f¢*/d, df?q/a’; ¢*)x
(a/f,fa/a,aq/d,df /a;q)s  (ag?/b,abq, fq/ab,bf /a,aq?/bf;G%) s
bf/a ab
X 302 ]{q2/fd/ d;;qq//a%q q

_ (ag,f/a;9)  (ag?/bd, abg/d,bdf /a,dfq/ab; ¢*)s

 (ag/d,df[a;q)s  (ag?/b,abg,bf [a, fq/ab; ¢?)u
Now replace f by a?¢*¥*1/d, with N a positive integer. The effect is that,
because of the factor (a?q/df; ¢*)s, this kills off the second term on the left-
hand side. In other words, now this is indeed a genuine summation formula.

k=0

+

Now replace ¢ by ¢% and choose @ = b = ¢. Then the above identity reduces

to
1= (d "™ d g™ g e (99, 4:4°)n o
—~ 1-—g¢ (¢* ¢* g% ¢ (¢3/d, dg=*N=1, g*Nt3; ¢2)y,
(@ d ) (¢/diqt/d, ¢ T ) (4.1)

(3/d, ¢*N 3 ¢%) (g4, g%, q*NH/d, N H /d; g*) o
Finally, we set d = ¢ and let N — oco. Upon little simplification, we arrive
at (1.4). ]
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Proof of (1.5). We proceed in a similar manner. In (4.1), we set d = ¢=*

with IV a positive integer. This yields the identity

1— g™ (g7, ¢V g Vg (9,94 ¢*)n P
c~ 1—gq (a*, a*, q* a*) (@43, q N1 "3 g2y,
_ (@)@ )y
(a* a3 (a3 %)
Letting N — oo, we then obtain (1.5). |
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