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Abstract. We refine Lagrange’s four-square theorem in new ways by imposing

some restrictions involving powers of two (including 1). For example, we show

that each n = 1, 2, 3, . . . can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N =
{0, 1, 2, . . . }) with |x + y − z| ∈ {4k : k ∈ N} (or |2x − y| ∈ {4k : k ∈ N}, or

x + y − z ∈ {±8k : k ∈ N} ∪ {0} ⊆ {t3 : t ∈ Z}), and that we can write any

positive integer as x2 +y2 + z2 +w2 (x, y, z, w ∈ Z) with x+y+ 2z (or x+ 2y+ 2z)
a power of four. We also prove that any n ∈ N can be written as x2 +y2 +z2 +2w2

(x, y, z, w ∈ Z) with x + y + z + w a square (or a cube). In addition, we pose some
open conjectures for further research; for example, we conjecture that any integer

n > 1 can be written as a2 + b2 + 3c + 5d with a, b, c, d ∈ N.

1. Introduction

The celebrated four-square theorem (cf. [N, pp. 5-7]) proved by J. L. Lagrange
in 1770 states that any n ∈ N = {0, 1, 2, . . . } can be written as x2 + y2 + z2 +w2

with x, y, z, w ∈ N. Recently, the author [S17b] found that this can be refined
in various ways by requiring additionally that P (x, y, z, w) is a square, where
P (x, y, z, w) is a suitable polynomial with integer coefficients. (For example, we
may take P (x, y, z, w) = x2y2 + y2z2 + z2x2.) Here is a challenging conjecture
posed by the author.

1-3-5 Conjecture ([S17b, Conjecture 4.3(i)]). Any n ∈ N can be written as
x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that x+ 3y + 5z is a square.

In this paper we aim to refine Lagrange’s four-square theorem in a new direc-
tion by imposing restrictions involving power of two (including 20 = 1). [S17b,
Theorem 1.1] asserts that for any a ∈ {1, 4} and m ∈ {4, 5, 6} we can write each
n ∈ N as axm+y2+z2+w2 with x, y, z, w ∈ N. Actually the proof in [S17b] works
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for a stronger result which requires additionally that x ∈ {2k : k ∈ N} ∪ {0}.
Similarly, by modifying the proof of [S17b, Theorem 1.2(i)] slightly we get that for
any a ∈ {1, 2} each n ∈ N can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ N
and a(x− y) ∈ {4k : k ∈ N} ∪ {0}.

Now we state our first theorem.

Theorem 1.1. (i) Any n ∈ Z+ = {1, 2, 3, . . . } can be written as x2 +y2 +z2 +8k

with x, y, z ∈ N and k ∈ {0, 1, 2}. Also, for each r ∈ {0, 1} and integer n > r, we
can write n2 as x2 + y2 + z2 + 42k+r with k, x, y, z ∈ N.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such
that x− y = 2bord2(n)/2c, where ord2(n) is the 2-adic order of n.

(iii) Each n ∈ N not of the form 26k+3×7 (k ∈ N) can be written as x2+y2+z2+
w2 with x, y, z, w ∈ N and x−y ∈ {8k : k ∈ N}∪{0}. Consequently, we can write
any n ∈ N as x2 +y2 +z2 +w2 with x, y, z, w ∈ Z and x+y ∈ {8k : k ∈ N}∪{0}.

(iv) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such
that x+ y + z + w = 2b(ord2(n)+1)/2c.

Remark 1.1. For integers y and z of the same parity, clearly

y2 + z2 = 2

(
y + z

2

)2

+ 2

(
y − z

2

)2

.

So, the first assertion in Theorem 1.1(i) implies that any n ∈ N can be written
as x2 + 2y2 + 2z2 + 8k with x, y, z ∈ N and k ∈ {0, 1, 2}. If a ∈ Z+, 4 - a, and
22 = x2 + y2 + z2 + w2 for some x, y, z, w ∈ N with ax ∈ {4k : k ∈ N}, then
x ∈ {1, 2} and hence a ∈ {1, 2}. As {8k : k ∈ N} ∪ {0} ⊆ {t3 : t ∈ N}, Theorem
1.1(iii) implies a conjecture stated in [S17b, Remark 1.2]. Theorem 1.1(iv) with
ord2(n) = 0 was first realized by Euler in a letter to Goldbach dated June 9, 1750
(cf. Question 37278 in MathOverFlow). See [S, A281494] for the number of ways
to represent n ∈ Z+ as x2+y2+z2+w2 with x, y, z, w ∈ Z and |x| 6 |y| 6 |z| 6 |w|
such that x+ y + z + w = 2b(ord2(n)+1)/2c. For example,

14 = 02 + 12 + (−2)2 + 32 with 0 + 1 + (−2) + 3 = 2 = 2b(ord2(14)+1)/2c

and

107 = (−1)2+(−3)2+(−4)2+92 with (−1)+(−3)+(−4)+9 = 1 = 2b(ord2(107)+1)/2c.

It was proved in [SS] that any n ∈ N can be written as x2 + y2 + z2 + w2

(x, y, z, w ∈ Z) with x+ y + z + w a square.

The author (cf. [S17b, Conjecture 4.1]) conjectured that for each ε ∈ {±1} any
n ∈ N can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with 2x+ εy a square.
Y.-C. Sun and the author [SS] confirmed this for ε = 1, but the case ε = −1
remains unsolved. The author (cf. [S17b, Conjecture 4.1]) also conjectured that
any n ∈ N can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 3y a
square. Our next theorem provides an advance in this direction.
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Theorem 1.2. (i) Any n ∈ Z+ can be written as x2+y2+z2+w2 with x, y, z, w ∈
N and |2x− y| ∈ {4k : k ∈ N}.

(ii) Let a ∈ {1, 2}. Then any n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N and 2x− y ∈ {±a8k : k ∈ N} ∪ {0} ⊆ {at3 : t ∈ Z}.

(iii) If any positive integer n ≡ 9 (mod 20) can be written as 5x2 + 5y2 + z2

with x, y, z ∈ Z and 2 - z, then any n ∈ Z+ can be written as x2 + y2 + z2 +
w2 (x, y, z, w ∈ Z) with x+ 3y ∈ {4k : k ∈ N}.

Remark 1.2. The author [S15, Remark 1.8] conjectured that for each n ∈ N we
can write 20n+ 9 as 5x2 + 5y2 + z2 with x, y, z ∈ Z and 2 - z.

The author (cf. [S17b, Conjecture 4.3(iii)-(iv)]) conjectured that each n ∈ N
can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with x+ y − z (or x− y − z)
a square. In contrast, we have the following result.

Theorem 1.3. (i) Any n ∈ Z+ can be written as x2+y2+z2+w2 with x, y, z, w ∈
N and |x+ y − z| ∈ {4k : k ∈ N}.

(ii) Let a ∈ {1, 2}. Then any n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N and x+ y − z ∈ {±a8k : k ∈ N} ∪ {0} ⊆ {at3 : t ∈ Z}.

Remark 1.3. We conjecture that each n ∈ Z+ can be written as x2 + y2 + z2 +w2

with x, y, z, w ∈ N, x ≡ y (mod 2) and |x + y − z| ∈ {4k : k ∈ N} (cf. [S,
A299825]) but we are unable to prove this which is stronger than Theorem 1.3(i).
In contrast with Theorem 1.3(ii), we conjecture that any n ∈ N can be written as
x2 + y2 + z2 +w2 with x+ y − z an integer cube, where x, y, z, w ∈ N, x > y 6 z
and x ≡ y (mod 2) (cf. [S, A282091]).

The author [S17b] conjectured that any n ∈ N can be written as x2+y2+z2+w2

with x, y, z, w ∈ N such that P (x, y, z) is a square, where P (x, y, z) may be any
of the polynomials

x+ y − 2z, 2x+ y − z, 2x− y − z, x+ 2y − 2z, 2x− y − 2z.

Here we give the following result.

Theorem 1.4. (i) Let c ∈ {1, 2}. Then each n ∈ Z+ can be written as x2 + y2 +
z2 + w2 with x, y, z, w ∈ Z and x+ y + 2z ∈ {c4k : k ∈ N}.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z
and x + 2y + 2z ∈ {4k : k ∈ N}. Also, for each n ∈ Z+ we can write n2 =
x2 + y2 + z2 + w2 with x, y, z, w ∈ Z and x+ 2y + 2z ∈ {8k : k ∈ N}.

(iii) If n ∈ Z+ does not belong to
⋃
k∈N{24k, 24k+3}, then we can write n as

x2 + y2 + z2 + w2 with x, y, z, w ∈ Z and x + 2y + 2z ∈ {3 × 4k : k ∈ N}.
Consequently, any integer n > 1 can be written as x2+y2+z2+w2 with x, y, z, w ∈
Z and x+ 2y + 2z ∈ {3× 2k : k ∈ N}.

Remark 1.4. Y.-C. Sun and the author [SS, Theorem 1.2(ii)] showed that for each
d = 1, 2, 3 and m = 2, 3, we can write any n ∈ N as x2+y2+z2+w2 (x, y, z, w ∈ Z)
with x+ 2y + 2z ∈ {dtm : t ∈ N}.
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In contrast with the 1-3-5 Conjecture, we have the following curious conjecture
motivated by Theorem 1.4.

Conjecture 1.1. (i) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N such that x+ 2(y − z) is a power of four (including 40 = 1). Also,
for each n ∈ Z+ we can write n2 as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
x+ 2(y − z) ∈ {8k : k ∈ N}.

(ii) Let c ∈ {1, 2, 4}. Then each n ∈ N can be written as x2 + y2 + z2 +w2 with
x, y, z, w ∈ N and y 6 z such that c(2x+y−z) ∈ {8k : k ∈ N}∪{0} ⊆ {t3 : t ∈ N}.

Remark 1.5. (i) We have verified the first assertion in part (i) for all n = 1, . . . , 2×
107, and Qing-Hu Hou extended the verification for n up to 109. See [S, A279612
and A279616] for related data. For example,

111 = 92 + 12 + 52 + 22 with 9 + 2× 1− 2× 5 = 40.

(ii) We have verified part (ii) of Conjecture 1.1 for all n = 0, . . . , 2× 106. See
[S, A284343] for related data. For example,

2976 = 202 + 162 + 482 + 42 with 16 < 48 and 2× 20 + 16− 48 = 8.

In 1917 Ramanujan [R] listed 55 possible quadruples (a, b, c, d) of positive inte-
gers with a 6 b 6 c 6 d such that any n ∈ N can be written as ax2+by2+cz2+dw2

with x, y, z, w ∈ Z, and 54 of them were later confirmed by Dickson [D27] with
the remaining one wrong (see also [W]).

Theorem 1.5. (i) Any n ∈ Z+ can be written as x2+y2+z2+2w2 with x, y, z, w ∈
N and x− y = 1. Also, any n ∈ Z+ can be written as x2 + 2y2 + 2z2 + 2w2 with
x, y, z, w ∈ Z and x+ y + z = 1.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with
x+y+2z = 1. Also, any n ∈ Z+ can be written as x2+4y2+z2+2w2 (x, y, z, w ∈
Z) with x+ 2y + 2z = 1, and any n ∈ Z+ can be written as x2 + 2y2 + 2z2 + 2w2

(x, y, z, w ∈ Z) with x+ y + 3z = 1.
(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with

y+z+2w = 1. Also, any n ∈ Z+ can be written as x2+y2+4z2+2w2 (x, y, z, w ∈
Z) with y+ 2z + 2w = 1, and any n ∈ Z+ can be written as x2 + 2y2 + 2z2 + 2w2

(x, y, z, w ∈ Z) with x+ y + z + 2w = 1.
(iv) Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with

y + z + w = 1.
(v) Any n ∈ Z+ can be written as x2 + y2 + 2z2 + 5w2 with x, y, z, w ∈ Z and

y + w = 1. For each δ = 1, 2, any positive integer n 6≡ 2 (mod 3) can be written
as x2 + y2 + 2z2 + (6/δ)w2 with y + δw = 1.

(vi) Any n ∈ Z+ can be written as x2 + y2 + z2 + 3w2 (x, y, z, w ∈ Z) with
x+ y + 2z = 2.

(vii) Any integer n > 4 can be written as x2 + y2 + z2 + 2w2 with x, y, z, w ∈ Z
such that x+ y + z = t2 for some t = 1, 2.
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(viii) Any integer n > 7 can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z)
with x+ y + 2z = 2t2 for some t = 1, 2.

Remark 1.6. We can prove several other results similar to the first assertion in
Theorem 1.5(v). As a supplement to the second assertion in Theorem 1.5(v),
we conjecture that any positive integer n ≡ 2 (mod 3) also can be written as
x2 + y2 + 2z2 + 6w2 with x, y, z, w ∈ Z and y + w = 1, and that 11 is the only
positive integer which cannot be written as x2 +y2 +2z2 +3w2 with x, y, z, w ∈ Z
and y + 2w = 1.

Theorem 1.6. Let m ∈ {2, 3}.
(i) Any n ∈ N can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with

x+ y + z + w an m-th power.
(ii) Any n ∈ N can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with

x+ 2y + 2z an m-th power.

Remark 1.7. Our proof of Theorem 1.6 depends heavily on a new identity similar
to Euler’s four-square identity. We even conjecture that any n ∈ N can be written
as x2 + y2 + z2 + 2w2 (x, y, z ∈ N and w ∈ Z) with x+ y − z + w ∈ {0, 1}.

We will prove Theorems 1.1-1.4 and 1.5-1.6 in Sections 2 and 3 respectively,
and pose more related conjectures in Sec. 4.

2. Proofs of Theorems 1.1-1.4

It is known that the set

E(a, b, c) := {n ∈ N : n 6= ax2 + by2 + cz2 for all x, y, z ∈ Z} (2.1)

is infinite for any a, b, c ∈ Z+.

Lemma 2.1 (The Gauss-Legendre Theorem). We have

E(1, 1, 1) = E0 := {4k(8l + 7) : k, l ∈ N}. (2.2)

Remark 2.1. This is a well-known result on sums of three squares, see, e.g., [N,
p. 23] or [MW, p. 42]).

Lemma 2.2. Let m,n ∈ N with 16 | m and 16 - n. Then {n − 1, n −m} 6⊆ E0,
where E0 is the set defined in (2.2).

Proof. Clearly one of n− 1 or n−m is odd. If n− 1 ≡ 7 (mod 8), then n−m ≡
n ≡ 8 (mod 16). If n −m ≡ 7 (mod 8), then n − 1 ≡ n −m − 1 ≡ 6 (mod 8).
Thus {n− 1, n−m} 6⊆ E0 as desired. �

Remark 2.2. It follows from Lemmas 2.1 and 2.2 that any n ∈ Z+ can be written
as x2 + y2 + z2 + w2 with x a power of two and y, z, w ∈ N. A stronger result
given in [S17b, Theorem 1.2(v)] states that any positive integer can be written as
4k(1 + 4x2 + y2) + z2 with k, x, y, z ∈ N.
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Proof of Theorem 1.1. (i) (a) If n− 1 6∈ E(1, 1, 1), then n = 80 + x2 + y2 + z2 for
some x, y, z ∈ N.

Below we assume that n − 1 ∈ E(1, 1, 1). Then n − 1 = 4k(8l + 7) for some
k, l ∈ N.

If k > 0, then n− 8 ≡ n ≡ 1 (mod 4) and hence n− 8 = x2 + y2 + z2 for some
x, y, z ∈ N.

Now we consider the case k = 0. In this case n = 8l + 8. If l is odd, then by
Lemma 2.1 we can write n− 8 = 23l as x2 + y2 + z2 with x, y, z ∈ N. Clearly,

8 = 02+02+02+8, 3×8 = 42+02+02+8, 5×8 = 42+42+02+8, 7×8 = 42+42+42+8.

If l is even and at least 8, then n− 64 = 8(l+ 1)− 64 = 23(l− 7) 6∈ E(1, 1, 1) and
hence n = 82 + x2 + y2 + z2 for some x, y, z ∈ N. This proves the first assertion
in Theorem 1.1(i).

(b) Let n = 4km with k ∈ N, m ∈ Z+ and 4 - m. If m = 1, then n2 =
02 + 02 + 02 + 42k. If m = 1 and n > 1, then

n2 = (22k−1)2 + (22k−1)2 + (22k−1)2 + 42(k−1)+1.

Now let m > 1. If m < 4, then m2 − 16δ 6∈ E0 with δ = 0. If m > 4, then by
Lemma 2.2, for some δ ∈ {0, 1} we have m2−16δ 6∈ E0. So m2−16δ = x2+y2+z2

for some x, y, z ∈ N and hence

n2 = 16km2 = (4kx)2 + (4ky)2 + (4kz)2 + 42(k+δ).

This proves the second assertion in Theorem 1.1(i) for r = 0.
Finally, we handle the case r = 1. If 2 - m, then m2 − 4 6∈ E0. If 2 | m

and m < 8, then (m/2)2 − 16δ 6∈ E0 with δ = 0. If 2 | m and m > 8, then
(m/2)2 − 16δ 6∈ E0 for some δ ∈ {0, 1} (by Lemma 2.2). Anyway, for some
δ ∈ {0, 1} we can write m2 − 4× 16δ as x2 + y2 + z2 with x, y, z ∈ N, and thus

n2 = 16km2 = (4kx)2 + (4ky)2 + (4kz)2 + 42(k+δ)+1

as desired.
(ii) Write n = 2am with a ∈ N, m ∈ Z+ and 2 - m. Let n0 = n/4ba/2c = 2a0m,

where a0 is 0 or 1 according as a is even or odd. As 4 - n0, we have 2n0 − 1 6≡ 7
(mod 8). By Lemma 2.1, 2n0 − 1 = u2 + v2 + (2y + 1)2 for some u, v, y ∈ N
with u ≡ v (mod 2). Let z = (u + v)/2 and w = |u − v|/2. Then 2n0 − 2 =
4y2 + 4y+ (z +w)2 + (z −w)2 and hence n0 = x2 + y2 + z2 +w2 with x = y+ 1.
It follows that

n =
(

2ba/2cx
)2

+
(

2ba/2cy
)2

+
(

2ba/2cz
)2

+
(

2ba/2cw
)2

with
2ba/2cx− 2ba/2cy = 2ba/2c.
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(iii) Obviously, for any k ∈ N we have

26k+3 × 7 = (8k × 6)2 + (8k × 4)2 + (8k × 2)2 + 02 with 8k × 6 + 8k × 2 = 8k+1.

So it suffices to prove the first assertion in Theorem 1.1(iii) by induction.
For each n ∈ {0, 1, . . . , 63} \ {56}, we can verify via a computer that n can be

written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and x− y ∈ {8k : k ∈ N} ∪ {0}.
Now let n > 64 be an integer not of the form 26k+3 × 7 = 64k × 56 (k ∈ N),

and assume that any m ∈ {0, 1, . . . , n− 1} not of the form 26k+3 × 7 (k ∈ N) can
be written as x2 +y2 +z2 +w2 with x, y, z, w ∈ N and x−y ∈ {8k : k ∈ N}∪{0}.

If 64 | n, then by the induction hypothesis we can write n/64 as x2+y2+z2+w2

with x, y, z, w ∈ N and x− y ∈ {8k : k ∈ N} ∪ {0}, and hence

n = (8x)2 + (8y)2 + (8z)2 + (8w)2 with 8x− 8y = 8(x− y) ∈ {8k : k ∈ N} ∪ {0}.

Below we suppose that 64 - n.
Case 1. n 6∈ 4k(16l + 14) for any k, l ∈ N.
In this case, we have 2n 6∈ E(1, 1, 1) by (2.2), and hence 2n = (2y)2 + z2 + w2

for some y, z, w ∈ N with z ≡ w (mod 2). Thus

n = y2 + y2 +

(
z + w

2

)2

+

(
z − w

2

)2

with y − y = 0.

Case 2. n = 16l + 14 for some l ∈ N.
In this case, 2n − 1 ≡ 3 (mod 8) and hence by (2.2) we can write 2n − 1 as

(2y + 1)2 + z2 + w2 with y, z, w ∈ N and z ≡ w (mod 2). It follows that

n = (y + 1)2 + y2 +

(
z + w

2

)2

+

(
z − w

2

)2

with (y + 1)− y = 1.

Case 3. n = 4k(16l + 14) for some k ∈ {1, 2} and l ∈ N.
In this case, 2n−64 = 4k+1(8l+3k). In light of (2.2), 8l+3k = x2 +y2 +z2 for

some integers x > y > z > 0. If k = 1, then 8l + 3k = (2n− 64)/16 > 64/16 = 4.
If k = 2, then 8l + 3k > 3k = 6. So, x > 2 and hence 2k+1x = 2v + 8 for some
v ∈ N. Therefore

2n−64 = (2k+1x)2+(2k+1y)2+(2k+1z)2 = (2v+8)2+2(2ky+2kz)2+2(2ky−2kz)2

and hence

n = (v + 8)2 + v2 + (2k(y + z))2 + (2k(y − z))2 with (v + 8)− v = 81.

The induction proof of Theorem 1.1(iii) is now complete.
(iv) We distinguish two cases.
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Case 1. 4 - n.
Let

δn = 1− ord2(n) =

{
1 if 2 - n,
0 if 2‖n.

Then

4δnn− 1 ≡
{

3 (mod 8) if 2 - n,
1 (mod 4) if 2‖n.

By Lemma 2.1, there are u, v, w ∈ Z such that

4δnn− 1 =
(
2δnu− 1

)2
+
(
2δnv − 1

)2
+
(
2δnw − 1

)2
.

If 2‖n, then δn = 0 and u + v + w ≡ n ≡ 0 (mod 2). In the case 2 - n, since
(2u − 1)2 = (2(1 − u) − 1)2, without loss of generality we may also assume that
u+ v + w ≡ 0 (mod 2). Set

x =
u+ v − w

2
, y =

u− v + w

2
, z =

−u+ v + w

2
.

Then u = x+ y, v = x+ z and w = y + z. Therefore

4δnn− 1 =
(
2δn(x+ y)− 1

)2
+
(
2δn(x+ z)− 1

)2
+
(
2δn(y + z)− 1

)2
=
(
2δn(x+ y + z)− 2

)2
+
(
2δnx

)2
+
(
2δny

)2
+
(
2δnz

)2 − 1

and hence

n =
(
(x+ y + z)− 21−δn

)2
+ x2 + y2 + z2 = x2 + y2 + z2 +

(
21−δn − x− y − z

)2
with x+ y + z + (21−δn − x− y − z) = 2b(ord2(n)+1)/2c.

Case 2. 4 | n.
Write n = 4kn0 with k, n0 ∈ Z+ and 4 - n0. By the above, there are

x0, y0, z0, w0 ∈ Z such that

n0 = x20 + y20 + z20 + w2
0 with x0 + y0 + z0 + w0 = 2b(ord2(n0)+1)/2c.

It follows that

n =
(
2kx0

)2
+
(
2ky0

)2
+
(
2kz0

)2
+
(
2kw0

)2
with

2kx0 + 2ky0 + 2kz0 + 2kw0 = 2k+b(ord2(n0)+1)/2c = 2b(ord2(n)+1)/2c.

Combining the above, we have proved Theorem 1.1. �
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Lemma 2.3. (i) (Dickson [D39, pp. 112-113]) We have

E(1, 5, 5) = {n ∈ N : n ≡ 2, 3 (mod 5)} ∪ E0. (2.3)

(ii) ([S17a, Lemma 2.1]) Let u and v be integers with u2 +v2 a positive multiple
of 5. Then u2 + v2 = x2 + y2 for some x, y ∈ Z with 5 - xy.

Lemma 2.4. Let n > 4 be an integer not divisible by 64.
(i) We have {n, n− 4} 6⊆ E0.
(ii) If 16 - n, then {n, n− 1} 6⊆ E0. If 16 | n, then {n, n− 1, n− 64} 6⊆ E0.

Proof. (i) If n = 4k(8l + 7) for some k ∈ N and l ∈ N, then k < 3 as 64 - n, and
hence n− 4 6∈ E0 since

n− 4 =


8l + 7− 4 = 8l + 3 if k = 0,

4(8l + 7)− 4 = 4(8l + 6) if k = 1,

42(8l + 7)− 4 = 4(8(4l + 3) + 3) if k = 2.

(ii) If n = 8l+ 7 for some l ∈ N, then n− 1 = 8l+ 6 6∈ E0. If n = 4(8l+ 7) for
some l ∈ N, then n − 1 = 32l + 27 = 8(4l + 3) + 3 6∈ E0. So {n, n − 1} 6⊆ E0 if
16 - n.

Now we consider the case 16 | n. As 64 - n, if n 6∈ E0, then n = 42(8l + 7) for
some l ∈ N, and hence n− 64 = 42(8l + 3) 6∈ E0.

The proof of Lemma 2.4 is now complete. �

Proof of Theorem 1.2. (i) For n = 1, . . . , 15 we can easily verify the desired result.
Now fix an integer n > 16 and assume that each m = 1, . . . , n − 1 can be

written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with |2x− y| ∈ {4k : k ∈ N}.
Let’s first consider the case 16 | n. By the the induction hypothesis, there are

x, y, z, w ∈ N for which n/16 = x2 + y2 + z2 + w2 with |2x − y| ∈ {4k : k ∈ N},
and hence |2(4x)− 4y| = 4|2x− y| ∈ {4k : k ∈ N}.

Now we suppose that 16 - n. Then {5n− 1, 5n− 16} 6⊆ E0 by Lemma 2.2. Let
δ = 0 if 5n − 1 6∈ E0, and δ = 1 otherwise. In view of Lemma 2.1, we can write
5n − 16δ as x2 + y2 + z2 with x, y, z ∈ Z. Since a square is congruent to one of
0, 1,−1 modulo 5. one of x2, y2, z2 must be congruent to −1 modulo 5. Without
loss of generality, we may assume that x2+1 ≡ y2+z2 ≡ 0 (mod 5). If y2+z2 6= 0,
then by Lemma 2.3(ii) we can write y2 +z2 = y21 +z21 with y1, z1 ∈ Z and 5 - y1z1.
Without loss of generality, we simply assume that x ≡ −2×4δ (mod 5) (otherwise
we use −x instead of x) and that either y = z = 0 or y ≡ 2z ≡ −2× 4δ (mod 5).

Clearly, r = (x+ 2×4δ)/5, s = (2x−4δ)/5, u = (2y+ z)/5 and v = (2z− y)/5
are all integers. Observe that

r2 + s2 + u2 + v2 =
(4δ)2 + x2

5
+
y2 + z2

5
= n with 2r − s = 4δ.
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If x > −2, then x > 2 since x ≡ (−1)δ−12 (mod 5), and hence r, s ∈ N. When
x 6 −2, clearly s < 0, and

r > 0 ⇐⇒ (δ = 1 and x = −3).

If r 6 0 and s 6 0, then

|2|r| − |s|| = |2(−r)− (−s)| = |2r − s| = 4δ.

Now it remains to consider the case δ = 1 and x = −3. Note that

y2 + z2

5
= u2 + v2 = n− r2 − s2 = n− 12 − (−2)2 > 0

and hence y ≡ 2z ≡ −2 × 4δ (mod 5). When y 6= −3, in the spirit of the above
arguments, all the four numbers

r̄ =
y + 2× 4δ

5
, s̄ =

2y − 4δ

5
, ū =

2x+ z

5
, v̄ =

2z − x
5

are integral, and

r̄2 + s̄2 + ū2 + v̄2 =
(4δ)2 + y2

5
+
x2 + z2

5
= n

with |2|r̄| − |s̄|| = |2r̄ − s̄| = 4δ. If y = −3, then

5n− 16 = x2 + y2 + z2 = (−3)2 + (−3)2 + z2 ≡ z2 + 2 6≡ 0, 1 (mod 4),

thus 5n− 1 6≡ 0, 3 (mod 4) and hence 5n− 1 6∈ E0 which contradicts δ = 1. This
concludes our induction proof of Theorem 1.2(i).

(ii) For every n = 0, 1, . . . , 63, we can verify the desired result directly.
Now fix an integer n > 64 and assume that the desired result holds for all

smaller values of n.
If 64 | n, then by the induction hypothesis we can write n/64 as x2+y2+z2+w2

with x, y, z, w ∈ N and 2x− y ∈ {±a8k : k ∈ N} ∪ {0}, and hence

n = (8x)2 + (8y)2 + (8z)2 + (8w)2 with 2(8x)− (8y) ∈ {±a8k : k ∈ N} ∪ {0}.

Below we suppose that 64 - n.
By Lemma 2.4, 5n− (aδ)2 6∈ E0 for some δ ∈ {0, 1, 8} satisfying

δ = 8 =⇒ (a = 1 and 16 | n). (2.4)

In view of (2.2), 5n− (aδ)2 = x2 + y2 + z2 for some x, y, z ∈ Z. Since any square
is congruent to one of 0,±1 modulo 5, one of x2, y2, z2, say x2, is congruent to
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−(aδ)2 modulo 5. Without loss of generality, we simply suppose that x ≡ −2aδ
(mod 5). As y2 ≡ (2z)2 (mod 5), we may also suppose that y ≡ 2z (mod 5).
Thus all the numbers

r =
x+ 2aδ

5
, s =

2x− aδ
5

, u =
2y + z

5
, v =

y − 2z

5

are integral. Note that

n =
(aδ)2 + x2

5
+
y2 + z2

5
= r2 + s2 + u2 + v2

with
2r − s = aδ ∈ {a8k : k ∈ N} ∪ {0}.

If x > aδ/2, then r > 0 and s > 0. If x 6 −2aδ, then r 6 0 and s 6 −aδ 6 0.
Now we handle the remaining case −2aδ < x < aδ/2. Clearly, r > 0 > s,

aδ = 2r − s > 2, hence δ = 8, and a = 1 and 16 | n by (2.4). As 2r − s = 8, we
must have

(r, s) ∈ {(1,−6), (2,−4), (3,−2)}.

Note that 2× 2− 4 = 0 and 2× 2− 3 = 1. If (r, s) = (1,−6), then

n = 12 + (−6)2 + u2 + v2 6≡ 0 (mod 4),

which contradicts 16 | n. This ends our proof of Theorem 1.2(ii).
(iii) Suppose that any positive integer n ≡ 9 (mod 20) can be written as 5x2 +

5y2 + z2 with x, y, z ∈ Z and 2 - z. Below we prove by induction that any n ∈ Z+

can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ Z and x+ 3y ∈ {4k : k ∈ N}.
It is easy to verify that each n = 1, . . . , 15 can be written as x2 + y2 + z2 +w2

with x, y, z, w ∈ Z and x+ 3y ∈ {4k : k ∈ N}.
Now let n ∈ Z+ with n > 16, and assume that each m = 1, . . . , n − 1 can be

written as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z and x + 3y ∈ {4k : k ∈ N}.
If 16 | n, then by the induction hypothesis there are x, y, z, w ∈ Z such that
n/16 = x2 + y2 + z2 + w2 and x + 3y ∈ {4k : k ∈ N}, and hence n = (4x)2 +
(4y)2 + (4z)2 + (4w)2 with 4x+ 3(4y) = 4(x+ 3y) ∈ {4k : k ∈ N}.

Below we suppose that 16 - n.
Case 1. 2 - n.
In this case, 10n−1 ≡ 9 (mod 20) and hence 10n−1 = 5u2 +5v2 +x2 for some

u, v, x ∈ Z with 2 - x. As u2 + v2 is even, both y = (u + v)/2 and z = (u − v)/2
are integers. Note that 10n− 1 = x2 + 10y2 + 10z2.

Case 2. n = 2m for some m ∈ Z+.
Note that 8 - m since 16 - n. For m = 9, 10, 11, 12 we can easily verify the

desired result. Assume that m > 13. Then 5m − 64 > 5 × 13 − 64 > 0. If m is
odd, then either 5m − 4 or 5m − 64 is not congruent to 7 mod 8. If 2‖m, then
5m − 4 ≡ 5m − 64 ≡ 2 (mod 4). If 4‖m and (5m − 64)/4 = 5m/4 − 16 ≡ 7
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(mod 8), then (5m − 4)/4 = 5m/4 − 1 ≡ 6 (mod 8). So, for some δ ∈ {2, 4}
we have 5m − (δ2/2)2 6∈ E0, and hence by (2.3) there are u, v, w ∈ Z such that
5m− δ4/4 = 5u2 + 5v2 + w2. Clearly,

10n−δ4 = 4

(
5m− δ4

4

)
= 10(2u2+2v2)+(2w)2 = (2w)2+10(u+v)2+10(u−v)2.

In view of the above, for some δ ∈ {1, 2, 4} we have 10n−δ4 = x2 +10y2 +10z2

for some x, y, z ∈ Z. As x ≡ ±3δ2 (mod 10), we may simply assume that x =
10w + 3δ2 for some w ∈ Z. Thus

10n− δ4 = (10w + 3δ2)2 + 10y2 + 10z2

and hence

n = 10w2 + 6δ2w + δ4 + y2 + z2 = (3w + δ2)2 + (−w)2 + y2 + z2

with (3w+ δ2) + 3(−w) = δ2 ∈ {4k : k ∈ N}. This concludes the induction proof
of Theorem 1.1(iii). �

Lemma 2.5. We have

E(1, 3, 6) = {3q + 2 : q ∈ N} ∪ {4k(16l + 14) : k, l ∈ N} (2.5)

and

E(2, 3, 6) = {3q + 1 : q ∈ N} ∪ E0. (2.6)

Remark 2.3. (2.5) and (2.6) are known results, see, e.g., L. Dickson [D39, pp. 112-
113].

Proof of Theorem 1.3. (i) We can easily verify the desired result for n = 1, . . . , 15.
Now let n > 16 and assume that each m = 1, 2, . . . , n − 1 can be written as

x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with |x+ y − z| ∈ {4k : k ∈ N}.
We first suppose that 16 | n. By the induction hypothesis, there are x, y, z, w, k ∈

N for which n/16 = x2 + y2 + z2 + w2 with |x + y − z| = 4k, and hence
n = (4x)2 + (4y)2 + (4z)2 + (4w)2 with |4x+ 4y − 4z| = 4k+1.

Now we suppose that 16 - n. If 16 < n < 86 then we can verify the desired
result via a computer. Thus we simply let n > 86 and hence 3n > 258 > 162. Let
δ = 0 if 3n − 1 6∈ E0. In the case 3n − 1 ∈ E0, we let δ = 1 if n − 6 is not an
odd square, and δ = 2 otherwise. By Lemmas 2.2 and 2.5, if 3n − 1 ∈ E0 then
3n − 16, 3n − 162 6∈ E(2, 3, 6). As 3n > 16δ and 3n − 16δ 6∈ E(2, 3, 6), there are
x, y ∈ N and z ∈ Z such that

3n− 16δ = 3x2 + 6y2 + 2(3z − 4δ)2 = 3(x2 + 2y2 + 2(3z2 − 2× 4δz)) + 2× 16δ
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and hence

n = x2 + 2y2 + 6z2 − 4δ+1z + 16δ = x2 + (y + z)2 + (z − y)2 + (4δ − 2z)2

with (y + z) + (z − y) + (4δ − 2z) = 4δ.
When z > 22δ−1, we have 2z > 4δ, hence

(y + z) + |z − y| − (2z − 4δ) = 4δ if y 6 z,

and
||z − y|+ (2z − 4δ)− (y + z)| = 4δ if y > z.

When y > z and z < 22δ−1,

|y + z|+ (4δ − 2z)− (y − z) = 4δ if y + z > 0,

and
|(y − z) + |y + z| − (4δ − 2z)| = 4δ if y + z < 0.

Below we assume 0 6 y < z < 22δ−1. Clearly δ > 0. If δ = 1, then we must
have y = 0 and z = 1, hence

n = x2 + (y + z)2 + (z − y)2 + (4δ − 2z)2 = x2 + 12 + 12 + (4− 2)2 = x2 + 6.

If 2 | x, then 3(x2 + 6)− 1 ≡ 3× 6− 1 ≡ 1 (mod 4) and hence 3(x2 + 6)− 1 6∈ E0.
Thus δ 6= 1 by the definition of δ. So δ = 2 and 0 6 y < z < 8. As n− 6 = x20 for
a positive odd integer, we have

n = x2 + (y + z)2 + (z − y)2 + (16− 2z)2 ≡ 7 (mod 8),

hence 2 - x, 2 - y ± z and 2 - z.
If z = 1, then y = 0 and

n = x2 + 12 + 12 + 142 = x2 + 132 + 52 + 22

with 13 + 5− 2 = 42. If z is 3 or 5, then

n = x2 + (y + z)2 + (z − y)2 + (16− 2z)2

with |y + z + (z − y)− (16− 2z)| = |4(z − 4)| = 4.
Now we handle the remaining case z = 7. Note that y ∈ {0, 2, 4, 6}. If y = 2,

then
n = x2 + (2 + 7)2 + (7− 2)2 + (16− 14)2 = x2 + 62 + 52 + 72

with 6 + 5− 7 = 4. If y = 4, then

n = x2 + (4 + 7)2 + (7− 4)2 + (16− 14)2 = x2 + 92 + 22 + 72
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with 9 + 2− 7 = 4. If y = 6, then

n = x2 + (6 + 7)2 + (7− 6)2 + (16− 14)2 = x2 + 112 + 72 + 22

with 11 + 7− 2 = 42.
In the case y = 0 and z = 7, we have

x20 + 6 = n = x2 + (0 + 7)2 + (7− 0)2 + (16− 14)2 = x2 + 102

and hence
x0 − x

2
· x0 + x

2
=

102− 6

4
= 24.

As x0 and x are positive and odd, (x0 − x)/2 6≡ (x0 + x)/2 (mod 2), hence either

x0 − x
2

= 1,
x0 + x

2
= 24, and thus n = x20 + 6 = 252 + 6,

or
x0 − x

2
= 3,

x0 + x

2
= 8, and thus n = x20 + 6 = 112 + 6.

Note that
112 + 6 = 12 + 52 + 102 + 12 with |1 + 5− 10| = 4

and
252 + 6 = 12 + 52 + 222 + 112 with |1 + 5− 22| = 42.

In view of the above, we have completed the induction proof of Theorem 1.3(i).

(ii) Via a computer we can easily verify the desired result for every n =
0, 1, . . . , 63.

Now fix an integer n > 64 and assume that the desired result holds for all
smaller values of n.

If 64 | n, then by the induction hypothesis we can write n/64 as x2+y2+z2+w2

with x, y, z, w ∈ N and x+ y − z ∈ {±a8k : k ∈ N} ∪ {0}, and hence

n = (8x)2 + (8y)2 + (8z)2 + (8w)2 with 8x+ 8y − 8z ∈ {±a8k : k ∈ N} ∪ {0}.

Below we suppose that 64 - n.
By Lemma 2.4, 3n− (aδ)2 6∈ E0 for some δ ∈ {0, 1, 8} satisfying (2.4). In view

of (2.6), for some x, y, z ∈ Z we have 3n − (aδ)2 = 3x2 + 6y2 + 2(3z − aδ)2 and
hence

n = x2 + (y + z)2 + (z − y)2 + (2z − aδ)2.

When z > aδ/2, obviously y + z > 0, 2z − aδ > 0,

(y + z) + (z − y)− (2z − aδ) = aδ ∈ {±a8k : k ∈ N} ∪ {0} if y 6 z,
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and

(y − z) + (2z − aδ)− (y + z) = −aδ ∈ {±a8k : k ∈ N} ∪ {0} if y > z.

If z < aδ/2 and y > |z|, then {aδ − 2z, y + z, y − z} ⊆ N and

(aδ − 2z) + (y + z)− (y − z) = aδ ∈ {±a8k : k ∈ N} ∪ {0}.

If z < aδ/2 and z 6 −y, then {aδ − 2z, y − z,−y − z} ⊆ N and

(y − z) + (−y − z)− (aδ − 2z) = −aδ ∈ {±a8k : k ∈ N} ∪ {0}.

Now we consider the remaining case y < z < aδ/2. Since aδ > 2, we have
δ = 8, and hence a = 1 and 16 | n by (2.4). In the case y < z < 8/2 = 4, the
ordered triple (y + z, z − y, 8− 2z) is among

(1, 1, 6), (2, 2, 4), (3, 3, 2), (3, 1, 4), (4, 2, 2), (5, 1, 2).

Note that 2 + 2− 4 = 0 = 3 + 1− 4. If

(y + z, z − y, 8− 2z) ∈ {(1, 1, 6), (3, 3, 2), (5, 1, 2)},

then

n = x2 + (y + z)2 + (z − y)2 + (8− 2z)2 ≡ x2 + 2 6≡ 0 (mod 4)

which contradicts 16 | n. This concludes the proof of Theorem 1.3(ii). �

Lemma 2.6. Suppose that n ∈ Z+ is the sum of three squares. Then n =
a2 + b2 + c2 for some a, b, c ∈ Z with a+ b ≡ 1 (mod 3).

Proof. Write n = x2 + y2 + z2 with x, y, z ∈ Z. If x ≡ y ≡ z ≡ 0 (mod 3),
then 9 | n and hence by [S16, Lemma 2.2(ii)] we can write n as x̄2 + ȳ2 + z̄2

with x̄, ȳ, z̄ ∈ Z and 3 - x̄ȳz̄. So, without loss of generality we may assume that
3 - x. If x + y ≡ 0 (mod 3), then −x + y 6≡ 0 (mod 3). Thus, we may simply
suppose that x+ y 6≡ 0 (mod 3) and hence x+ y is congruent to 1 or −1 modulo
3. If x + y ≡ −1 (mod 3), then n = (−x)2 + (−y)2 + z2 with (−x) + (−y) ≡ 1
(mod 3). Therefore, there are a, b, c ∈ Z such that n = a2 + b2 + c2 and a+ b ≡ 1
(mod 3). �

Proof of Theorem 1.4. (i) We prove the desired result by induction. For n =
1, 2, . . . , 42 we can verify the result directly via a computer.

Now let n > 43 and assume that any m = 1, . . . , n − 1 can be written as
x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x+ y + 2z = c4k for some k ∈ N.

If 16 | n, then by the induction hypothesis there are x, y, z, w ∈ Z and k ∈ N
such that n/16 = x2 + y2 + z2 + w2 and x + y + 2z = c4k, hence n = (4x)2 +
(4y)2 + (4z)2 + (4w)2 with 4x+ 4y + 2(4z) = c4k+1.
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Now suppose that 16 - n.

Clearly, 3n−2 6≡ 14 (mod 16). If 4 - 3n−2, then 3n−2 6∈ E(1, 3, 6) by (2.4). If
4 | 3n−2, then 4 - 3n−32. If 3n−32 ≡ 14 (mod 16), then 3n−2 ≡ 12 (mod 16)
and hence 3n− 2 6∈ E(1, 3, 6). Thus, for some δ ∈ {0, 1}, we can write

3n− 2× 16δ = 3x2 + 6y2 + (3z − 4δ)2 = 3x2 + 6y2 + 9z2 − 6× 4δz + 16δ

with x, y, z ∈ Z. It follows that

n = x2 + 2y2 + 3z2 − 2× 4δz + 16δ = x2 + (y + z)2 + (z − y)2 + (4δ − z)2

with (y + z) + (z − y) + 2(4δ − z) = 2 × 4δ. This proves the desired result with
c = 2.

Below we show the desired result for c = 1.
Case 1. 4 - n.
In this case, 6n− 1 6≡ 7 (mod 8) and hence 6n− 1 6∈ E(2, 3, 6) by (2.6). So, for

some x, y, z ∈ Z we have

6n− 1 = 6x2 + 3(2y + 1)2 + 2(3z + 1)2

and hence

n = x2 + 2y2 + 2y + 3z2 + 1 = x2 + (y + z + 1)2 + (z − y)2 + (−z)2

with (y + z + 1) + (z − y) + 2(−z) = 1 = 40.

Case 2. 4‖n.
In this case, 3n− 8 ≡ 4 (mod 8) and hence 3n− 8 6∈ E(1, 3, 6) by (2.5). Thus,

for some x, y, z ∈ Z we have 3n− 8 = 3x2 + 6y2 + (3z − 2)2 and hence

n = x2 + 2y2 + 3z2 − 4z + 4 = x2 + (y + z)2 + (z − y)2 + (2− z)2

with (y + z) + (z − y) + 2(2− z) = 4.

Case 3. 8‖n.
Write n = 8q with q odd. Note that q > 6 and 3n > 128 since n > 43. By

Lemma 2.2, for some δ ∈ {0, 1} we have 3q − 16δ 6∈ E0 and hence

3n− 8× 16δ = 8(3q − 16δ) 6∈ E(1, 3, 6)

by (2.5). Thus, for some x, y, z ∈ Z we have

3n− 8× 16δ = 3x2 + 6y2 + (3z − 2× 4δ)2

and hence

n = x2 + 2y2 + 3z2 − 4δ+1z + 4× 16δ = x2 + (y + z)2 + (z − y)2 + (2× 4δ − z)2
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with (y + z) + (z − y) + 2(2× 4δ − z) = 4δ+1.
The induction proof of Theorem 1.4(i) is now completed.

(ii) Let m ∈ {2, 3}. For n = 1, 2, . . . , 4m−1 we can easily verify that nm−1 can
be written as x2+y2+z2+w2 with x, y, z, w ∈ Z and x+2y+2z ∈ {2km : k ∈ N}.

Now let n > 4m and assume that for each n0 = 1, 2, . . . , n − 1 we can write
nm−10 as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x+ 2y + 2z a power of 2m.

If 4m | nm−1, then by the induction hypothesis there are x, y, z, w ∈ Z and
k ∈ N for which nm−1/4m = x2 + y2 + z2 +w2 with x+ 2y+ 2z = 2km, and hence
nm−1 = (2mx)2+(2my)2+(2mz)2+(2mw)2 with 2mx+2(2my)+2(2mz) = 2(k+1)m.

Now we suppose that 4m - nm−1. By Lemmas 2.1-2.2, if 16 - nm−1, then for
some δ ∈ {0, 1} we can write 9nm−1 − 4δm as a2 + b2 + c2 with a, b, c ∈ Z. When
16 | nm−1, we must have m = 3 and 4‖n, thus by taking δ = 1 we find that
9nm−1 − 4δm = 42(9(n/4)2 − 4) can be written as a2 + b2 + c2 with a, b, c ∈ Z.
Clearly, we cannot have 3 - abc. Without loss of generality, we assume that c = 3w
with w ∈ Z. As a2 + b2 ≡ −16δ ≡ 2 (mod 3), we must have 3 - ab. We may
simply suppose that a = 3u + 2δm+1 and b = 3v − 2δm+1 with u, v ∈ Z. (Note
that if x ≡ 1 ≡ −2 (mod 3) then −x ≡ 2 (mod 3).) Since

12× 2δmu− 12× 2δmv + 8(2δm)2

≡(3u+ 2× 2δm)2 + (3v − 2× 2δm)2 = a2 + b2 ≡ −(2δm)2 (mod 9),

we must have u ≡ v (mod 3). Set

y =
2u+ v

3
and z =

u+ 2v

3
.

Then

9nm−1 − 4δm =a2 + b2 + c2 = (3u+ 2δm+1)2 + (3v − 2δm+1)2 + 9w2

=(3(2y − z) + 2δm+1)2 + (3(2z − y)− 2δm+1)2 + 9w2

=9(2y − z)2 + 9(2z − y)2 + 3× 2δm+2((2y − z)− (2z − y))

+ 8× 4δm + 9w2

and hence

nm−1 =(2y − z)2 + (2z − y)2 + 2δm+2(y − z) + w2 + 4δm

=(2y − 2z + 2δm)2 + (−y)2 + z2 + w2

with (2y − 2z + 2δm) + 2(−y) + 2z = 2δm. This proves Theorem 1.4(ii).
(iii) For any k ∈ N, we obviously have

22k+1 = (2k)2 + (2k)2 + 02 + 02 with 2k + 2× 2k + 2× 0 = 3× 2k,
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and

22k+2 = (−2k)2 + (2k)2 + (2k)2 + (2k)2 with (−2k) + 2× 2k + 2× 2k = 3× 2k.

So, it suffices to prove the first assertion in Theorem 1.4(iii).
For n ∈ {1, . . . , 15} with n 6= 1, 8, we can easily verify that n can be written

as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x + 2y + 2z ∈ {3 × 4k : k ∈ N}. For
example, 4 = (−1)2 + 12 + 12 + 12 with (−1) + 2× 1 + 2× 1 = 3.

Now let n > 16 with n 6∈ S =
⋃
k∈N{24k, 24k+3}, and assume that each m =

1, 2, . . . , n − 1 with m 6∈ S can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z)
with x+ 2y + 2z ∈ {3× 4k : k ∈ N}.

If 16 | n, then by the induction hypothesis there are x, y, z, w ∈ Z and k ∈ N
for which n/16 = x2 + y2 + z2 + w2 with x + 2y + 2z = 3 × 4k, and hence
n = (4x)2 + (4y)2 + (4z)2 + (4w)2 with 4x+ 2(4y) + 2(4z) = 3× 4k+1.

Now we suppose that 16 - n. By Lemmas 2.1-2.2, for some δ ∈ {0, 1} we can
write n − 16δ as the sum of three squares. Combining this with Lemma 2.6, we
see that n − 16δ = a2 + b2 + c2 for some a, b, c ∈ Z with a + b ≡ 1 (mod 3). Let
u = a− 22δ+1 and v = b− 22δ+1. Then u+ v ≡ a− 2 + (b− 2) ≡ 0 (mod 3), and

y =
2u− v

3
and z =

2v − u
3

are both integers. Observe that

n−16δ = (u+2×4δ)2+(v+2×4δ)2+c2 = (2y+z+2×4δ)2+(y+2z+2×4δ)2+c2

and hence
n = (2y + 2z + 3× 4δ)2 + (−y)2 + (−z)2 + c2

with (2y + 2z + 3× 4δ) + 2(−y) + 2(−z) = 3× 4δ.

So far we have completed the proof of Theorem 1.4. �

3. Proofs of Theorems 1.5 and 1.6

Let us first recall some known results on ternary quadratic forms.

Lemma 3.1. We have

E(1, 2, 4) ={4k(16l + 14) : k, l ∈ N}, (3.1)

E(1, 6, 9) ={3q + 2 : q ∈ N} ∪ {9k(9l + 3) : k, l ∈ N}. (3.2)

E(2, 3, 12) ={16q + 6 : q ∈ N} ∪ {9k(3l + 1) : k, l ∈ N}, (3.3)

E(1, 5, 10) =
⋃
k,l∈N
{25k(5l + 2), 25k(5l + 3)}, (3.4)

E(2, 5, 10) ={8q + 3 : q ∈ N} ∪
⋃
k,l∈N
{25k(5l + 1), 25k(5l + 4)}.

(3.5)

Remark 3.1. (3.1)-(3.5) can be found in L. E. Dickson [D39, pp. 112-113].
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Lemma 3.2. Let n ∈ Z+ and δ ∈ {0, 1}. Then 6n+ 1 = x2 + 3y2 + 6z2 for some
x, y, z ∈ Z with x ≡ δ (mod 2).

Remark 3.2. This appeared in Sun [S17a, Remark 3.1].

We also need the following result in [S15].

Lemma 3.3. (i) Any n ∈ N with n ≡ 4 (mod 12) can be written as x2+3y2+3z2

with x, y, z ∈ Z and 2 - x.
(ii) For n ∈ N with n ≡ 4 (mod 8), we have

|{(x, y) ∈ Z2 : x2+3y2 = n and 2 - xy}| = 2

3
|{(x, y) ∈ Z2 : x2+3y2 = n}|. (3.6)

Remark 3.3. For parts (i) and (ii) one may consult Theorem 1.7(iii) and Lemma
3.2 of Sun [S15].

Lemma 3.4. Let n ∈ Z+ with n ≡ 1, 2, 4 (mod 7) and n 6≡ 2 (mod 3). Then
n = x2 + 7y2 + 14z2 for some x, y, z ∈ Z.

Proof. In light of [BIS], the genus G (of discriminant −392) containing the class of
the form x2+7y2+14z2 contains only one other class, namely the class containing
the form 2x2 + 7y2 + 7z2. By Jones [J31a, p. 99] and [J31b, p. 123], a positive
integer is represented by a form in G if and only if it does not belong to the set{

72k(7m+ r) : k,m ∈ N and r ∈ {3, 5, 6}
}
.

As n 6≡ 3, 5, 6 (mod 7), it is represented by a form in G, i.e., n is represented by
x2 + 7y2 + 14z2 or 2x2 + 7y2 + 7z2 or both.

Suppose that n = 2x2 + 7y2 + 7z2 for some x, y, z ∈ Z. If y2, z2 6≡ x2 (mod 3),
then y2 ≡ z2 (mod 3) and hence 2x2 + 7y2 + 7z2 ≡ 2x2 + 2y2 ≡ 2 (mod 3). As
n 6≡ 2 (mod 3), x2 is congruent to y2 or z2 modulo 3. Without loss of generality
we may simply assume that x ≡ z (mod 3). (If x ≡ −z (mod 3) then we may
replace z by −z.) Thus both u = (2x + 7z)/3 and v = (x − z)/3 are integers.
Note that u2 + 7y2 + 14v2 = 2x2 + 7y2 + 7z2 = n.

In view of the above, we immediately obtain the desired result. �

Remark 3.4. I. Kaplansky [K] reported that 2, 74 and 506 are the only positive
integers n 6 105 with n ≡ 1, 2, 4 (mod 7) which cannot be represented by x2 +
7y2 + 14z2 with x, y, z ∈ Z. We guess that any positive integer n ≡ 1 (mod 7)
can be written as x2 + 7y2 + 14z2 with x, y, z ∈ Z.

Proof of Theorem 1.5. (i) By (3.1), for each n ∈ Z+ we can write 2n − 1 =
x2 + 2z2 + 4w2 with x, z, w ∈ N. As x is odd, we may write x = 2y + 1 with
y ∈ N. Thus 2n − 1 = (2y + 1)2 + 2z2 + 4w2 and hence n = x2 + y2 + z2 + 2w2

with x = y + 1.
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By the above, we can write any n ∈ Z+ as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z)
with x + y = 1. Clearly, z is congruent to x or y modulo 2. Without loss of
generality, we may assume that y ≡ z (mod 2). Then

n = x2 + 2

(
y + z

2

)2

+ 2

(
y − z

2

)2

+ 2w2 with x+
y + z

2
+
y − z

2
= 1.

(ii) Let n ∈ Z+. By (3.3), 6n− 1 6∈ E(2, 3, 12). So 6n− 1 = 2u2 + 3v2 + 12w2

for some u, v, w ∈ Z. As 2 - v, we may write v = 2y + 1 with y ∈ Z. Since 3 - u,
we may write u or −u as 3z + 1 with z ∈ Z. Thus

6n− 1 = 2(3z + 1)2 + 3(2y + 1)2 + 12w2

and hence

n = (y + z + 1)2 + (z − y)2 + (−z)2 + 2w2

with (y + z + 1) + (z − y) + 2(−z) = 1.
By the above, n = x2+y2+z2+2w2 for some x, y, z, w ∈ Z with x+y+2z = 1.

As x+ y is odd, x or y is even. Thus n = u2 + (2v)2 + z2 + 2w2 for some u, v ∈ Z
with u + 2v + 2z = 1. Clearly, x or y is congruent to z modulo 2. Without any
loss of generality, we may assume that y ≡ z (mod 2). Observe that

n = x2 + 2

(
z − y

2

)2

+ 2

(
y + z

2

)2

+ 2w2

with

x+
z − y

2
+ 3

y + z

2
= x+ y + 2z = 1.

(iii) As 4n− 1 6∈ E(1, 2, 4) by (3.1), we have 4n− 1 = u2 + 2v2 + 4x2 for some
u, v, x ∈ Z. Since u or −u is congruent to 1 modulo 4, without loss of generality
we may assume that u = 4y + 1 with y ∈ Z. As u2 6≡ −1 (mod 4), we have
v = 2z+ 1 for some z ∈ Z. Thus 4n− 1 = 4x2 + (4y+ 1)2 + 2(2z+ 1)2 and hence

n = x2 + 4y2 + 2y + 2z2 + 2z + 1 = x2 + (y + z + 1)2 + (y − z)2 + 2(−y)2

with (y + z + 1) + (y − z) + 2(−y) = 1.
By the above, there are x, y, z, w ∈ Z with n = x2 + y2 + z2 + 2w2 and

y + z + 2w = 1. As y + z is odd, one of y and z is odd and another is even. If
z = 2t with t ∈ Z, then n = x2 + y2 + 4t2 + 2w2 with y + 2t+ 2w = 1. Clearly x
is congruent to y or z modulo 2; if x ≡ y (mod 2) then

n = 2

(
x+ y

2

)2

+ 2

(
y − x

2

)2

+ z2 + 2w2
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with
x+ y

2
+
y − x

2
+ z + 2w = y + z + 2w = 1.

This proves Theorem 1.5(iii).
(iv) We first suppose that n 6≡ 1 (mod 8). Then 5n−2 6≡ 3 (mod 8) and hence

5n− 2 6∈ E(2, 5, 10) by (3.5). So 5n− 2 = 2v2 + 5x2 + 10z2 for some v, x, z ∈ Z.
As v2 ≡ −1 ≡ 22 (mod 5), v or −v is congruent to −2 modulo 5. Without any
loss of generality, we may assume that v = 5y − 2 with y ∈ Z. Thus

5n = 2 + 2(5y − 2)2 + 5x2 + 10z2

and hence

n = x2 + 10y2 − 8y + 2 + 2z2 = x2 + (y + z)2 + (y − z)2 + 2(1− 2y)2

with (y + z) + (y − z) + (1− 2y) = 1.
Now we handle the case n ≡ 1 (mod 8). As 10n − 4 6∈ E(1, 5, 10) by (3.4),

there are u, v, x ∈ Z with 10n − 4 = u2 + 5v2 + 10x2. If u and v are both even,
then 10x2 ≡ 10n− 4 ≡ 2 (mod 4) and hence 2 - x, thus(u

2

)2
+
(v

2

)2
≡
(u

2

)2
+ 5

(v
2

)2
=

10(n− x2)− 4

4
≡ −1 (mod 4)

which is impossible. Thus 2 - uv and we can write v = 2z + 1 with z ∈ Z. Since
u2 ≡ 1 (mod 5), without loss of generality we may assume that u = 10y + 1 for
some y ∈ Z. Thus 10n = 4 + (10y + 1)2 + 5(2z + 1)2 + 10x2 and hence

n = x2 + 10y2 + 2y + 2z2 + 2z + 1 = x2 + (y + z + 1)2 + (y − z)2 + 2(−2y)2

with (y + z + 1) + (y − z) + (−2y) = 1.
(v) Let n ∈ Z+. By Lemma 3.2, we can write 6n − 5 = u2 + 3v2 + 6x2 with

u, v, x ∈ Z and 2 - u. As u or −u is congruent to −1 modulo 6, we may simply
assume that u = 6w − 1 for some w ∈ Z. Since v is even, v = 2z for some z ∈ Z.
Thus

6n− 5 = (6w − 1)2 + 3(2z)2 + 6x2 = 36w2 − 12w + 1 + 12z2 + 6x2

and hence

n = 6w2 − 2w + 1 + 2z2 + x2 = x2 + (1− w)2 + 2z2 + 5w2

with (1− w) + w = 1.
Suppose that n ∈ Z+ and n 6≡ 2 (mod 3). Let δ be 1 or 2. By Lemma 3.4, we

have 7n − 6/δ = v2 + 7x2 + 14z2 for some v, x, z ∈ Z. Since v2 ≡ δ2 (mod 7),
without loss of generality we may assume that v = 7w − δ for some w ∈ Z. Thus

n =
7x2 + 14z2 + (7w − δ)2 + 6/δ

7
= x2 + 2z2 + 7w2 − 2δw +

1

7

(
δ2 +

6

δ

)
=x2 + (1− δw)2 + 2z2 +

6

δ
w2
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with (1− δw) + δw = 1.
(vi) As 3n− 2 6∈ E(1, 6, 9) by (3.2), there are u, v, w ∈ Z such that

3n− 2 = (3u+ 2)2 + 6(v + 1)2 + 9w2

and hence

n = 3u2 + 4u+ 4 + 2v2 + 4v + 3w2 = (u+ v + 2)2 + (u− v)2 + (−u)2 + 3w2

with (u+ v + 2) + (u− v) + 2(−u) = 2.
(vii) Note that 5 = 12 + (−1)2 + 12 + 2× 12 with 1 + (−1) + 1 = 12.
Below we let n ∈ N with n > 6. Choose c ∈ {1, 4} such that 6n − 2c2 ≡ 0

(mod 4). Note that 6n−2c2 ≡ c2 ≡ 1 (mod 3) and hence 6n−2c2 ≡ 4 (mod 12).
By Lemma 3.3(i), there are r, s, t ∈ Z with r odd such that 6n−2c2 = r2+3s2+3t2.
As s 6≡ t (mod 2), without loss of generality we simply assume that 2 - s and
t = 2w with w ∈ Z. Since r2 + 3s2 ≡ 1 + 3 = 4 (mod 8), by Lemma 3.3(ii) we
can write r2 + 3s2 = u2 + 3v2 with u, v ∈ Z and u ≡ v ≡ c (mod 2). Clearly
v = 2y + c for some y ∈ Z. As u or −u is congruent to c modulo 3, we may write
u or −u as 6z + c with z ∈ Z. Thus

6n−2c2 = (6z+ c)2 + 3(2y+ c)2 + 3(2w)2 = 12y2 + 12c(y+ z) + 36z2 + 12w2 + 4c2

and hence

n = 2y2 + 2z2 + 2c(y+z) + c2 + 4z2 + 2w2 = (y+z+ c)2 + (z−y)2 + (−2z)2 + 2w2

with (y + z + c) + (z − y) + (−2z) = c ∈ {t2 : t = 1, 2}.
(viii) For n = 8, 9, 10 we can easily verify that n can be written as x2 + y2 +

z2 + 2w2 (x, y, z, w ∈ Z) with x+ y + 2z ∈ {2t2 : t = 1, 2}.
Now assume that n > 11. As 6n − 22 6≡ 6n − 82 (mod 16), by (3.3) we

have 6n − c2 6∈ E(2, 3, 12) for some c ∈ {2t2 : t = 1, 2}. Then we can write
6n− c2 = 2(3z + c)2 + 3(2y + c)2 + 12w2 with y, z, w ∈ Z. It follows that

n = (y + z + c)2 + (z − y)2 + (−z)2 + 2w2

with (y + z + c) + (z − y) + 2(−z) = c ∈ {2t2 : t = 1, 2}.
Combining the above, we have completed the proof of Theorem 1.5. �

Lemma 3.5. We have the new identity

(a2 + ab+ b2)(av2 + b(s2 + t2 + u2))

=a(b(s+ t− u) + (a− b)v)2 + b(bs+ au+ av)2

+ b(at+ bu− av)2 + b(as− bt− av)2.

(3.7)

In particular,
7(s2 + t2 + u2 + 2v2) = x2 + y2 + z2 + 2w2, (3.8)

where

x = s+ 2u+ 2v, y = −2t− u+ 2v, z = 2s− t− 2v, w = s+ t− u+ v. (3.9)

Proof. By expanding and simplifying the right-hand side of (3.7), we see that (3.7)
does hold. Putting a = 2 and b = 1 in (3.7), we immediately obtain (3.8). �
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Lemma 3.6. Let m ∈ {2, 3}. For any integer n > 2× 72m−1, there are integers
x, y, z and w ∈ {0, 7m} such that

7n = x2 + y2 + z2 + 2w2 with x+ 3y ≡ 0 (mod 7). (3.10)

Proof. Note that 7n > 2× 72m = 2× 49m. If 7n ∈ E(1, 1, 1), then 7n = 4k(8l+ 7)
for some k, l ∈ N, and hence 7n− 2× 49m 6∈ E(1, 1, 1). So, for some w ∈ {0, 7m}
we can write 7n− 2w2 as x2 + y2 + z2 with x, y, z ∈ Z. Note that x2 + y2 + z2 ≡ 0
(mod 7).

Since x2+y2 ≡ 6z2 (mod 7), we have x2 ≡ (2z)2 and y2 ≡ (3z)2, or x2 ≡ (3z)2

and y2 ≡ (2z)2. Without any loss of generality, we may assume that x ≡ 2z
(mod 7) and y ≡ −3z (mod 7), hence x + 3y ≡ 2z − 9z ≡ 0 (mod 7). This
concludes our proof. �

Proof of Theorem 1.6. For n = 0, 1, . . . , 2 × 72m−1 − 1 we can verify the desired
results via a computer.

Below we fix an integer n > 2× 72m−1.
(i) By Lemma 3.6, there are x, y, z ∈ Z and w ∈ {0, 7m} satisfying (3.10). Note

that x+ 3y ≡ w ≡ 0 (mod 7) and

z2 = 7n− x2 − y2 − 2w2 ≡− x2 − y2

≡6x2 + 27y2 = (2x− 3y)2 + 2(x+ 3y)2

≡(2x− 3y)2 (mod 7).

Without loss of generality, we may assume that z ≡ 2x− 3y (mod 7). Define
s = x+2z+2w

7 ,

t = 2w−2y−z
7 ,

u = 2x−y−2w
7 ,

v = x+y−z+w
7 .

(3.11)

It is easy to see that (3.9) holds. Thus, by Lemma 3.5 we have (3.8) and hence

n =
7n

7
=
x2 + y2 + z2 + 2w2

7
= s2 + t2 + u2 + 2v2.

As x ≡ −3y (mod 7) and z ≡ 2x− 3y (mod 7), we see that s, t, u, v ∈ Z and that
s+ t− u+ v = w is an m-th power.

(ii) Choose x ∈ {0, 7m} such that 7n−x2 is odd. By Dickson [D39, pp. 112-113],

E(1, 1, 2) = {4k(16l + 14) : k, l ∈ N}.
So 7n−x2 = y2+z2+2w2 for some y, z, w ∈ Z. As y2+z2 ≡ 5w2 (mod 7), we have
y2 ≡ (2w)2 (mod 7) and z2 ≡ w2 (mod 7), or y2 ≡ w2 (mod 7) and z2 ≡ (2w)2

(mod 7). Without any loss of generality, we may assume that y ≡ −2w (mod 7)
and z ≡ −w (mod 7). Now it is easy to see that the numbers s, t, u, v given by
(3.11) are all integral. Note that n = s2 + t2 + u2 + 2v2 by Lemma 3.5. Clearly,
s+ 2u+ 2v = x is an m-th power.

The proof of Theorem 1.6 is now complete. �
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4. Some open conjectures

In this section, we pose 16 open conjectures on sums of squares for further
research.

Conjecture 4.1. (i) Any integer n > 1 can be written as the sum of two squares,
a power of three and a power of five; in other words, we have

{a2 + b2 + 3c + 5d : a, b, c, d ∈ N} = {2, 3, 4, . . . }.

(ii) Each integer n > 1 can be written as the sum of two squares and two central
binomial coefficients; in other words, we have{

a2 + b2 +

(
2c

c

)
+

(
2d

d

)
: a, b, c, d ∈ N

}
= {2, 3, 4, . . . }.

(iii) Any integer n > 5 can be written as a2 + b2 + 2c+ 5×2d with a, b, c, d ∈ N.

Remark 4.1. See [S, A303656, A303540 and A303637] for related data, and note

that
(
2k
k

)
∼ 4k/

√
kπ as k → +∞. We have verified parts (i)-(iii) for n up to

2 × 1010, 1010 and 5 × 109 respectively. The author would like to offer 3500 US
dollars as the prize for the first proof of part (i) of Conjecture 4.1. In contrast
with Conjecture 4.1(iii), R. Crocker [C] showed in 2008 that there are infinitely
many positive integers not representable as the sum of two squares and at most
two powers of 2 (see also [PT] for a simple proof). We also conjecture that any
integer n > 1 can be written as the sum of two triangular numbers and two powers
of 5 (cf. [S, A303389]).

We also have the following conjecture on restricted sums of three squares.

Conjecture 4.2. (i) Any n ∈ Z+ with ord2(n) odd can be written as x2 + y2 +
z2 (x, y, z ∈ Z) with x+ 3y + 5z a square (or twice a square).

(ii) Any n ∈ N not of the form 4k(8l+7) (k, l ∈ N) can be written as x2+y2+z2

with x, y, z ∈ Z such that x+ 2y + 3z is a square or twice a square.
(iii) Let n ∈ N. Then 8n+ 1 can be written as x2 + y2 + z2 with x, y ∈ Z and

z ∈ Z+ such that x + 3y is a square. Also, we can write 8n + 6 as x2 + y2 + z2

with x ∈ Z, y, z ∈ N and 2 - z such that x+ 2y is a square.
(iv) We can write any positive odd integer as x2 + 2y2 + 3z2 with x, y, z ∈ Z

such that x+ y + z is a square or twice a square.

Remark 4.2. See [S, A283269, A283273 and A283299] for related data. It is known
that any positive odd integer can be written as x2 + 2y2 + 3z2 with x, y, z ∈ Z
(cf. [D39, pp. 112-113]).

As 2(x2 + y2 + z2 +w2) = (x+ y)2 + (x− y)2 + (z+w)2 + (z−w)2, Lagrange’s
four-square theorem is equivalent to the fact that each positive odd integer can
be written as the sum of four squares. Our following conjecture provides some
refinements of Lagrange’s four-square theorem involving primes.
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Conjecture 4.3. (i) Any positive odd integer can be written as x2 +y2 + z2 +w2

with x, y, z, w ∈ Z such that p = x2 + 3y2 + 5z2 + 7w2 and p− 2 are twin prime.

(ii) Any integer n > 1 not divisible by 4 can be written as x2 + y2 + z2 + w2

(x, y, z, w ∈ N) such that p = x+ 2y + 5z, p− 2, p+ 4 and p+ 10 are all prime.

(iii) Any positive odd integer can be written as x2+y2+z2+4w2 with x, y, z, w ∈
N such that 2x + 2y + 2z + 1 is prime.

(iv) Any odd integer n > 1 can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N)
such that 2x+y + 2z+w + 1 is prime.

Remark 4.3. See [S, A290935, A291635, A291150 and A291191] for related data.
For example, 39 = 12 + 32 + 52 + 22 with 12 + 3 · 32 + 5 · 52 + 7 · 22 = 181 and
181− 2 = 179 twin prime, 143 = 12 + 52 + 92 + 4 · 32 with 21 + 25 + 29 + 1 = 547
prime, and

2× 6998538 + 1 = 1222 + 2202 + 2082 + 37272

with 2122+220 + 2208+3727 + 1 = 2342 + 23935 + 1 a prime of 1185 decimal digits.
Clearly, part (i) of Conjecture 4.3 unifies Lagrange’s four-square theorem and the
twin prime conjecture.

The following Conjectures 4.4-4.6 are mainly motivated by Theorems 1.2-1.4.

Conjecture 4.4. (i) Any n ∈ Z+ can be written as x2 +y2 +z2 +w2 (x, y, z, w ∈
N) with P (x, y, z) ∈ {2k : k ∈ N}, whenever P (x, y, z) is among the polynomials

2x− y, 2x− 3y, x+ (y − z)/3, 2x+ (y − z)/3, 2x− 2y − z,
4x− 2y − z, 4x− 3y − z, 4x− 4y − 3z, x+ y − z, x+ y − 2z, x+ 2y − z,

x+ 3y − z, x+ 3y − 2z, x+ 3y − 3z, x+ 3y − 4z, x+ 3y − 5z,

x+ 4y − z, x+ 4y − 2z, x+ 4y − 3z, x+ 4y − 4z, x+ 5y − z, x+ 5y − 2z,

x+ 5y − 4z, x+ 5y − 5z, x+ 6y − 3z, x+ 7y − 4z, x+ 7y − 7z, x+ 8y − z,
x+ 9y − 2z, 2x+ 3y − z, 2x+ 3y − 3z, 2x+ 3y − 4z, 2x+ 5y − z,

2x+ 5y − 3z, 2x+ 5y − 4z, 2x+ 5y − 5z, 2x+ 7y − z, 2x+ 7y − 3z,

2x+ 7y − 7z, 2x+ 9y − 3z, 2x+ 11y − 5z, 3x+ 4y − 3z, 7x+ 8y − 7z.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with
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Q(x, y, z, w) ∈ {2k : k ∈ N}, whenever Q(x, y, z, w) is among the polynomials

x+ y + 2z − 2w, x+ y + 2z − 3w, x+ y + 2z − 4w, x+ 2y + 2z − 3w,

x+ 2y + 3z − 4w, x+ 2y + 4z − 3w, x+ 2y + 6z − 7w, x+ 3y + 4z − 4w,

x+ 4y + 6z − 5w, 2x+ 3y + 5z − 4w, 2x+ y − z − w, 2x+ y − 2z − w,
2x+ y − 3z − w, 2x+ 2y − 3z − 2w, 3x+ y − 3z − 2w, 3x+ y − 4z − 2w,

3x+ 2y − 2z − w, 3x+ 2y − 3z − w, 3x+ 2y − 3z − 2w, 3x+ y − 2z − w,
3x+ 2y − 6z − w, 4x+ y − 2z − w, 4x+ 2y − 2z − w, 4x+ 3y − 2z − w,

4x+ 3y − 3z − w, 4x+ 3y − 4z − 3w, 4x+ 3y − 5z − w, 4x+ 3y − 5z − 2w,

5x+ 2y − 2z − w, 5x+ 2y − 3z − 2w, 5x+ 2y − 4z − 3w, 5x+ 4y − 5z − w,
7x+ y − 6z − 2w, 8x+ 3y − 3z − 2w, 8x+ 3y − 10z − w, 9x+ y − 4z − w.

Conjecture 4.5. (i) Each n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N and P (x, y, z, w) ∈ {4k : k ∈ N} ∪ {0}, whenever P (x, y, z, w) is
among the linear polynomials

2x− y, x+ y − z, x− y − z, x+ y − 2z, 2x+ y − z, 2x− y − z,
2x− 2y − z, 2x+ y − 3z, 2x+ 2y − 2z, 2x+ 2y − 4z, 3x− 2y − z,
x+ 3y − 3z, 2x+ 3y − 3z, 4x+ 2y − 2z, 8x+ 2y − 2z,

2(x− y) + z − w, 4(x− y) + 2(z − w).

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
|Q(x, y, z, w)| ∈ {4k : k ∈ N}, whenever Q(x, y, z, w) is among the polynomials

x+ y − 3z, x+ 2y − 3z, x+ 2y − 4z, x+ 2y − 5z, x+ 3y − 3z,

x+ 3y − 5z, x+ 4y − 2z, x+ 5y − 2z, x+ 5y − 7z, 2x+ 3y − 4z,

2x+ 4y − 6z, 2x+ 4y − 10z, 2x+ 5y − 4z, 4x+ 6y − 6z,

4x+ 6y − 14z, x+ 4y − 2z − w, x+ 8y − 3z − w,
2x+ 3y − 3z − w, x+ y + 2z − 2w, x+ 2y + 3z − 4w.

(iii) Each n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
R(x, y, z, w) ∈ {±8k : k ∈ N} ∪ {0}, whenever R(x, y, z, w) is among the linear
polynomials

x+ 2y − 2z, x+ 3y − 3z, 2x+ 3y − 3z, 4x+ 6y − 6z, 4x+ 8y − 8z,

4x+ 2y − 10z, 4x+ 12y − 12z, 8x+ 12y − 12z, 8x+ 4y − 20z, 2x+ y − z − w,
8x+ 4y − 4z − 4w, 2x+ 8y − 4z − 2w, 4x+ y − 2z − w, 4x+ 16y − 8z − 4w.
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Conjecture 4.6. (i) Let a ∈ Z+ and let b, c, d ∈ N with a > b > c > d and 4 -
gcd(a, b, c, d). Then any n ∈ Z+ can be written as x2+y2+z2+w2 (x, y, z, w ∈ Z)
with ax + by + cz + dw ∈ {8k : k ∈ N}, if and only if (a, b, c, d) is among the
quadruples

(7, 3, 2, 1), (7, 5, 2, 1), (8, 4, 2, 1), (8, 4, 3, 2), (8, 5, 4, 2), (8, 6, 2, 1),

(8, 6, 3, 2), (8, 6, 5, 1), (8, 6, 5, 2), (9, 8, 7, 4), (10, 4, 3, 1), (12, 4, 3, 1).

(ii) Let a ∈ Z+ and let b, c, d ∈ N with a > b > c > d and 2 - gcd(a, b, c, d).
Then any n ∈ Z+ can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with
ax + by + cz + dw ∈ {2 × 8k : k ∈ N}, if and only if (a, b, c, d) is among the
quadruples

(7, 3, 2, 1), (7, 5, 2, 1), (8, 4, 2, 1), (8, 4, 3, 2), (8, 5, 4, 2), (8, 6, 2, 1),

(8, 6, 3, 2), (8, 6, 5, 2), (9, 5, 4, 2), (14, 3, 2, 1), (14, 5, 2, 1), (14, 7, 3, 2).

Conjecture 4.7. (i) (24-Conjecture) Any n ∈ N can be written as x2+y2+z2+w2

with x, y, z, w ∈ N such that both x and x+ 24y are squares.
(ii) Each n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such

that both x and 49x + 48(y − z) are squares. Also, any n ∈ N can be written as
x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that both x and 121x + 48(y − z) are
squares.

(iii) Every n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such
that both x and −7x− 8y + 8z + 16w are squares.

(iv) Each n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
x ≡ y (mod 2) such that both x and x2 + 62xy + y2 are squares.

Remark 4.4. See [S, A281976, A281977, A281980, A282013, A282014, A282226
and A282463] for related data. We verified the 24-Conjecture for all n = 1, . . . , 107,
and Qing-Hu Hou extended the verification for n up to 1010. The author would
like to offer 2400 US dollars as the prize for the first solution of the 24-Conjecture.
We verified parts (ii) and (iii) of Conjecture 4.7 for n up to 107 and 106 respec-
tively, and later Qing-Hu Hou extended the verification of parts (ii) and (iii) of
Conjecture 4.7 for n up to 109 and 108 respectively. Note that any n ∈ N is the
sum of a fourth power and three squares as proved by the author [S17b].

Conjecture 4.8. (i) Any n ∈ Z+ can be written as x4 + y2 + z2 + w2 with
x, y, z ∈ N and w ∈ Z+ such that 9y2−8yz+8z2 is a square. Also, any n ∈ N can
be written as 4x4 +y2 +z2 +w2 with x, y, z, w ∈ N such that 79y2−220yz+205z2

is a square.
(ii) Each n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z ∈ Z and

w ∈ Z+ such that both 2x+ y and 2x+ z are squares.
(iii) Any n ∈ N can be written as x2 + y2 + z2 +w2 with x,w ∈ N and y, z ∈ Z

such that both x+ 2y and z + 2w are squares. Also, any n ∈ N can be written as
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x2 + y2 + z2 + w2 with x, y, z ∈ Z and w ∈ N such that both x + 3y and z + 3w
are squares.

Remark 4.5. See [S, A282933, A282972, A283170, A283196, A283204 and A283205]
for related data. The author [S17b] proved that any n ∈ N can be written as
x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such that x + 2y is a square, and that any
n ∈ N can be written as 4x4 + y2 + z2 + w2 with x, y, z, w ∈ Z.

Conjecture 4.9. (i) Any n ∈ N can be written as x2+y2+z2+w2 with x, y, z, w ∈
N such that x or y is a square, and x− y is also a square.

(ii) Any positive integer can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ N
such that x + 3y + 5z is a positive square, and one of 2x, y, z (or 3x, y, z) is a
square.

(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z ∈ N and
w ∈ Z+ such that (3x)2 + (4y)2 + (12z)2 is a square, and also one of z, 2z, 3z is
a square. Also, each n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z ∈ N
and w ∈ Z+ such that (12x)2 + (15y)2 + (20z)2 is a square, and also one of x, y, z
is a square, and any n ∈ N can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ N
such that (12x)2 +(21y)2 +(28z)2 is a square, and also one of x, 2y, z is a square,

Remark 4.6. See [S, A281975, A300708, A300139, A300666, A300667, A300712,
A300751, A300752, A300791, A300844, A300908] for related data or similar con-
jectures.

Conjecture 4.10. Any n ∈ N \ {71, 85} can be written as x2 + y2 + z2 +w2 with
x, y, z, w ∈ Z such that 9x2 + 16y2 + 24z2 + 48w2 is a square.

Remark 4.7. We have verified this for n up to 2×105. See [S, A281659] for related
data and other similar conjectures.

Conjecture 4.11. (i) Let a, b ∈ Z+ with gcd(a, b) squarefree. Then, each n ∈ N
can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that ax3 + b(y − z)3
is a square, if and only if (a, b) is among the ordered pairs

(1, 1), (1, 9), (2, 18), (8, 1), (9, 5), (9, 8),

(9, 40), (16, 2), (18, 16), (25, 16), (72, 1).

(ii) Let a, b ∈ Z+ with a 6 b and gcd(a, b) squarefree. Then, each n ∈ N can be
written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with ax3 + by3 a square, if and only
if (a, b) is among the ordered pairs

(1, 2), (1, 8), (2, 16), (4, 23), (4, 31),

(5, 9), (8, 9), (8, 225), (9, 47), (25, 88), (50, 54).

Remark 4.8. See [S, A282863 and A283617] for related data or similar conjectures.
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Conjecture 4.12. (i) Any n ∈ Z+ can be written as x2+y2+z2+3w2 (x, y, z, w ∈
Z) with P (x, y, z, w) = 1, whenever P (x, y, z, w) is among the polynomials

y + z + w, 2y + z + w, 2y + z + 3w, 2x+ 2y + z + w,

2x+ 2y + z + 3w, 4x+ 2y + z + dw (d = 1, 3, 5).

(ii) Any n ∈ Z+ can be written as x2 + y2 + 2z2 + 3w2 (x, y, z, w ∈ Z) with
P (x, y, z, w) = 1, whenever P (x, y, z, w) is among the polynomials

x+ 2y+w, y+ z+w, y+ 2z+w, y+ 2z+ 3w, x+ 2y+ 2z+w, x+ 2y+ 2z+ 3w.

(iii) Any n ∈ Z+ can be written as x2 + y2 + 3z2 + 4w2 (x, y, z, w ∈ Z) with
y + z + 2w = 1. Also, any n ∈ Z+ can be written as x2 + y2 + 2z2 + 5w2

(x, y, z, w ∈ Z) with y + 2z + w = 1.

Conjecture 4.13. (i) Any n ∈ Z+ can be written as x2+y2+z2+2w2 (x, y, z, w ∈
Z) with P1(x, y, z, w) = 1, whenever P1(x, y, z, w) is among the polynomials

x+ 2y + 3z, x+ 2y + 5z, x+ 3y + 4z, y + 3z + 2w, y + 3z + 4w, 2y + z + w,

x+ y + 2z + 2w, x+ 2y + 2z + 2w, x+ 2y + 3z + dw (d = 1, 2, 4),

x+ 2y + 5z + 2w, x+ 2y + 5z + 6w, x+ 3y + 4z + 2w, x+ 3y + 4z + 4w.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with
P2(x, y, z, w) = 2, whenever P2(x, y, z, w) is among the polynomials

x+ y + 2z + 2w, x+ y + 2z + 6w, x+ 2y + 3z + 2w,

x+ 2y + 3z + 6w, x+ 2y + 4z + 4w, x+ 2y + 5z + 2w, 3x+ 3y + 2z + 2w.

(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 (x, y, z, w ∈ Z) with
P3(x, y, z, w) = 3, whenever P3(x, y, z, w) is among the polynomials

x+ 2y + 3z + 2w, x+ 2y + 3z + 4w, x+ 2y + 3z + 6w.

Conjecture 4.14. Any n ∈ Z+ can be written as x2 + y2 + z2 + 2w2 with
x, y, z, w ∈ N and x + 2y ∈ {4k : k ∈ N}. Also, we may replace x + 2y by
y − z + 3w (or y + 2z − w).

Remark 4.9. It is easy to show that any n ∈ Z+ can be written as x2+y2+z2+2w2

with x, y, z, w ∈ Z and x+ 2y = 1.

Now we pose a conjecture similar to the 1-3-5 conjecture of Sun [S17b, Con-
jecture 4.3(i)].
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Conjecture 4.15 (1-2-3 Conjecture). (i) Any n ∈ N can be written as x2 + y2 +
z2 + 2w2 with x, y, z, w ∈ N such that x+ 2y + 3z is a square.

(ii) For each n ∈ Z+ we can write n2 as x2 + y2 + z2 + w2 with x, y, z, w ∈ N
such that x+ 2y + 3z ∈ {4k : k ∈ N}.

Remark 4.10. See [S, A275344 and A299924] for related data. Each of the numbers

0, 1, 3, 5, 7, 14, 15, 16, 25, 30, 84, 169, 225

has a unique representation x2 + y2 + z2 + 2w2 (x, y, z, w ∈ N) with x+ 2y + 3z
a square. For example,

33 =12 + 02 + 02 + 2× 42 with 1 + 2× 0 + 3× 0 = 12,

84 =42 + 62 + 02 + 2× 42 with 4 + 2× 6 + 3× 0 = 42,

169 =102 + 62 + 12 + 2× 42 with 10 + 2× 6 + 3× 1 = 52,

225 =102 + 62 + 92 + 2× 22 with 10 + 2× 6 + 3× 9 = 72.

Also, for each n ∈ {1, 2, 3, 7, 11, 13, 14, 17, 49, 61} there is a unique way to write
n2 as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and x+ 2y + 3z ∈ {4k : k ∈ N}. For
example,

112 =22 + 12 + 42 + 102 with 2 + 2× 1 + 4× 3 = 42,

492 =222 + 32 + 122 + 422 with 22 + 2× 3 + 3× 12 = 43.

We conjecture that if a, b, c are positive integers with gcd(a, b, c) squarefree and
any positive square can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
ax+ by + cz ∈ {4k : k ∈ N} then we must have {a, b, c} = {1, 2, 3}.

Conjecture 4.16. Let δ ∈ {0, 1}.
(i) For any integer n > δ, we can write n2 as x2+y2+z2+w2 with x, y, z, w ∈ N

and {x, 4x− 3y} ⊆ {22k+δ : k ∈ N}.
(ii) For any n ∈ Z+ we can write 2n2 = x2 + y2 + z2 + w2 with x, y, z, w ∈ N

such that x+ 3y + 5z + 15w ∈ {22k+δ : k ∈ N}.

Remark 4.11. We have verified part (i) for n up to 107. See [S, A300219, A299537,
A299794, A300360, A300396, A301891] for related data or similar conjectures.

Acknowledgment. The author would like to thank the referee for his helpful
comments on Lemma 3.4 and its proof.
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