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SOME UNIVERSAL QUADRATIC SUMS OVER THE INTEGERS
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(Communicated by Xingxing Yu)

Abstract. Let a, b, c, d, e, f ∈ N with a ≥ c ≥ e > 0, b ≤ a and b ≡ a (mod 2),

d ≤ c and d ≡ c (mod 2), f ≤ e and f ≡ e (mod 2). If any nonnegative integer

can be written as x(ax + b)/2 + y(cy + d)/2 + z(ez + f)/2 with x, y, z ∈ Z,
then the ordered tuple (a, b, c, d, e, f) is said to be universal over Z. Recently,

Z.-W. Sun found all candidates for such universal tuples over Z. In this paper,

we use the theory of ternary quadratic forms to show that 44 concrete tuples
(a, b, c, d, e, f) in Sun’s list of candidates are indeed universal over Z. For

example, we prove the universality of (16, 4, 2, 0, 1, 1) over Z which is related

to the form x2 + y2 + 32z2.

1. Introduction

Those p3(x) = x(x + 1)/2 with x ∈ Z are called triangular numbers. In 1796
Gauss proved Fermat’s assertion that each n ∈ N = {0, 1, 2, . . .} can be expressed
as the sum of three triangular numbers.

For polynomials f1(x), f2(x), f3(x) with fi(Z) = {fi(x) : x ∈ Z} ⊆ N for
i = 1, 2, 3, if any n ∈ N can be written as f1(x)+f2(y)+f3(z) with x, y, z ∈ Z then we
call the sum f1(x)+f2(y)+f3(z) universal over Z. For example, p3(x)+p3(y)+p3(z)
is universal over Z by Gauss’ result.

In 1862 Liouville (cf. [1, p. 82]) determined all universal sums ap3(x) + bp3(y) +
cp3(z) over Z with a, b, c ∈ Z+ = {1, 2, 3, . . .}. Z.-W. Sun [19, 20] studied universal
sums of the form api(x) + bpj(y) + cpk(z) with a, b, c ∈ N and i, j, k ∈ {3, 4, . . .},
where pm(x) denotes the generalized polygonal number

(m− 2)

(
x

2

)
+ x =

x((m− 2)x− (m− 4))

2
;

see also [8, 16, 7, 15, 13] for subsequent work on some of Sun’s conjectures posed in
[19, 20]. In 2017 Sun [22] investigated universal sums x(ax+1)+y(by+1)+z(cz+1)
over Z with a, b, c ∈ Z+, and universal sums x(ax+ b) + y(ay + c) + z(az + d) over
Z with a, b, c, d ∈ N and a ≥ b ≥ c ≥ d. Quite recently, Sun [24] considered more
general questions and investigated for what tuples (a, b, c, d, e, f) with a ≥ c ≥ e ≥ 1,
b ≡ a (mod 2) and 0 ≤ b ≤ a, d ≡ c (mod 2) and 0 ≤ d ≤ c, f ≡ e (mod 2) and

Received by the editors August, 2019.
2010 Mathematics Subject Classification. Primary: 11E25; Secondary: 11D85, 11E20.
Key words and phrases. Universal sums, quadratic polynomials, ternary quadratic forms.
The initial version of this paper was posted to arXiv (with the code arXiv:1707.06223) in July

2017. The second author is supported by the National Natural Science Foundation of China (grant

11571162) and the NSFC-RFBR Cooperation and Exchange Program (grant 11811530072).
∗ Corresponding author: Zhi-Wei Sun.

c©2019 American Institute of Mathematical Sciences

69

http://dx.doi.org/10.3934/era.2019010


70 HAI-LIANG WU AND ZHI-WEI SUN

0 ≤ f ≤ e, the sum
x(ax+ b)

2
+
y(cy + d)

2
+
z(ez + f)

2
is universal over Z. Such (ordered) tuples (a, b, c, d, e, f) are said to be universal
over Z. He showed such tuples with b < a, d < c, f < e, and b ≥ d if a = c, and
d ≥ f if c = e, must be in his list of 12082 candidates (cf. [23, A286944] and [25]),
and conjectured that all such candidates are indeed universal over Z. Note that

{p3(x) : x ∈ Z} =

{
x(4x+ 2)

2
= x(2x+ 1) : x ∈ Z

}
.

Sun [24] proved that some candidates (a, b, c, d, e, f) are universal over Z, e.g.,
(5, 1, 3, 1, 1, 1) (equivalent to (5, 1, 4, 2, 3, 1)) is universal over Z. Sun even con-
jectured that any n ∈ N can be written as x(x+ 1)/2 + y(3y + 1)/2 + z(5z + 1)/2
with x, y, z ∈ N.

In this paper, via the theory of ternary quadratic forms, we establish the univer-
sality (over Z) of 44 concrete tuples (a, b, c, d, e, f) on Sun’s list of candidates.

Theorem 1.1. The tuples

(5, 1, 2, 2, 1, 1), (6, 0, 3, 3, 3, 1), (6, 2, 5, 5, 1, 1), (6, 6, 3, 3, 3, 1),

(8, 2, 3, 1, 1, 1), (8, 6, 3, 1, 1, 1), (8, 8, 3, 1, 1, 1)

are universal over Z.

Remark 1. Sun [20] conjectured that any n ∈ N can be written as p3(x)+2p3(y)+
p7(z) with x, y, z ∈ N, and J. Ju, B.-K. Oh and B. Seo [13] proved that p3(x) +
2p3(y) + p7(z) (or the tuple (5, 3, 2, 2, 1, 1)) is universal over Z.

Theorem 1.2. The tuples

(6, 0, 5, 1, 3, 1), (6, 0, 5, 3, 3, 1), (7, 1, 1, 1, 1, 1), (7, 1, 2, 0, 1, 1),

(7, 1, 2, 2, 1, 1), (7, 1, 3, 1, 1, 1), (7, 3, 1, 1, 1, 1), (7, 3, 2, 0, 1, 1),

(7, 3, 2, 2, 1, 1), (7, 3, 3, 1, 1, 1), (7, 5, 1, 1, 1, 1), (7, 5, 3, 1, 1, 1),

(15, 3, 3, 1, 1, 1), (15, 5, 1, 1, 1, 1), (15, 5, 3, 1, 2, 0), (15, 5, 3, 1, 2, 2),

(15, 9, 3, 1, 1, 1), (21, 7, 3, 1, 2, 2)

are universal over Z.

Remark 2. Our proof of Theorem 1.2 involves the theory of genera of ternary
quadratic forms. Sun [20] conjectured that any n ∈ N can be written as p3(x) +
y2 + p9(z) (or p3(x) + 2p3(y) + p9(z)) with x, y, z ∈ N; along this line Ju, Oh and
Seo [13] proved that p3(x) +y2 +p9(z) and p3(x) + 2p3(y) +p9(z) are universal over
Z, i.e., the tuples (7, 5, 2, 0, 1, 1) and (7, 5, 2, 2, 1, 1) are universal over Z.

Theorem 1.3. (i) The tuples (5, 5, 3, 1, 3, 1), (5, 5, 3, 3, 3, 1), (6, 4, 5, 5, 1, 1) and
(7, 7, 3, 1, 1, 1) are universal over Z.

(ii) All the five tuples

(6, 2, 5, 1, 1, 1), (6, 2, 5, 5, 1, 1), (6, 4, 5, 1, 1, 1), (15, 5, 6, 2, 1, 1), (15, 5, 6, 4, 1, 1)

are universal over Z.

Remark 3. Our proof of Theorem 1.3(i) employs the Minkowski-Siegel formula
(cf. [14, pp. 173-174]). Sun [20] conjectured that any n ∈ N can be written as
p3(x) + p7(y) + 2p5(z) (or p3(x) + p7(y) + p8(z)) with x, y, z ∈ N; along this line
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Ju, Oh and Seo [13] proved that p3(x) + p7(y) + 2p5(z) and p3(x) + p7(y) + p8(z)
are universal over Z, i.e., the tuples (6, 2, 5, 3, 1, 1) and (6, 4, 5, 3, 1, 1) are universal
over Z.

Similarly to [24, Theorem 1.4], we observe that

(1) {p3(x) + p5(y) : x, y ∈ Z} = {p5(x) + 3p5(y) : x, y ∈ Z}.
In fact,

n ∈ {p3(x) + p5(y) : x, y ∈ Z}
⇐⇒ 24n+ 4 ∈ {3(2x+ 1)2 + (6y − 1)2 : x, y ∈ Z}
⇐⇒ 24n+ 4 ∈ {3u2 + v2 : u, v ∈ Z & 2 - uv}

and

n ∈ {3p5(x) + p5(y) : x, y ∈ Z}
⇐⇒ 24n+ 4 ∈ {3(6x− 1)2 + (6y − 1)2 : x, y ∈ Z}
⇐⇒ 24n+ 4 ∈ {3u2 + v2 : u, v ∈ Z, 2 - uv & 3 - u}.

If u and v are odd integers with 3 | u and 3 - v, then

3u2 + v2 = 3

(
u± v

2

)2

+

(
3u∓ v

2

)2

with (u±v)/2 not divisible by 3. Therefore (1) holds. In view of (1.1) and Theorems
1.1-1.3, we have the following consequence.

Corollary 1. The tuples

(9, 3, 7, 1, 3, 1), (9, 3, 7, 3, 3, 1), (9, 3, 7, 5, 3, 1),

(9, 3, 7, 7, 3, 1), (9, 3, 8, 2, 3, 1), (9, 3, 8, 6, 3, 1),

(9, 3, 8, 8, 3, 1), (15, 3, 9, 3, 3, 1), (15, 9, 9, 3, 3, 1)

are universal over Z.

Theorem 1.4. The tuple (16, 4, 2, 0, 1, 1) is universal over Z. In other words, any
n ∈ N can be written as p3(x) + y2 + 2z(4z + 1) with x, y, z ∈ Z.

Remark 4. This result is closely related to the form x2 + y2 + 32z2. Sun [24]
even conjectured that any n ∈ N can be written as p3(x) + y2 + 2z(4z − 1) with
x, y, z ∈ N.

We will show Theorems 1.1-1.4 in Sections 2-5 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. (i) For any n ∈ N, we can write 12n + 5 as x2 + y2 + (6z)2 with
x, y, z ∈ Z.

(ii) Let n ∈ Z+ and δ ∈ {0, 1}. Then we can write 6n+ 1 as x2 + 3y2 + 6z2 with
x, y, z ∈ Z and x ≡ δ (mod 2).

Remark 5. Lemma 2.1 is a known result due to the second author, see [20, Theorem
1.7(iii) and Lemma 3.3] and [22, Remark 3.1].

The following lemma (cf. [11, pp. 12-14]) occurred in a 1993 letter of J.S. Hsia
to I. Kaplansky.
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Lemma 2.2. For each n ∈ N, we can write 6n+5 as x2+y2+10z2 with x, y, z ∈ Z.

For a, b, c ∈ Z+, we define

E(a, b, c) = {n ∈ N : n 6= ax2 + by2 + cz2 for any x, y, z ∈ Z}.

L.E. Dickson [4, pp. 112-113] listed 102 diagonal quadratic forms ax2 + by2 + cz2

for which the structure of E(a, b, c) is known explicitly. For example, the Gauss-
Legendre theorem asserts that E(1, 1, 1) = {4k(8l + 7) : k, l ∈ N}.

In 1996 W. Jagy [9] showed the following result (cf. [11, pp. 25-26]).

Lemma 2.3. We have

E(1, 4, 9) = {2} ∪
⋃

k,l∈N
{4k(8l + 7), 8l + 3, 9l + 3}.

Proof of Theorem 1.1. (i) We want to prove the universality of (5, r, 2, 2, 1, 1) over
Z for r ∈ {1, 3}. Let n ∈ N. Clearly,

n = p3(x) + y(y + 1) +
z(5z + r)

2

⇐⇒ 40n+ r2 + 15 = 5(2x+ 1)2 + 10(2y + 1)2 + (10z + r)2.

Since

E(1, 5, 10) = {25lm : l,m ∈ N and m ≡ 2, 3 (mod 5)}
by Dickson [4, pp. 112-113], we have 40n+r2+15 ∈ {u2+5v2+10w2 : u, v, w ∈ N}.
Thus we can write

40n+ r2 + 15 = (2kx0)2 + 5(2ky0)2 + 10(2kz0)2 = 4k(x20 + 5y20 + 10z20)

with k ∈ N, x0, y0, z0 ∈ Z, and x0, y0, z0 not all even. In the case k = 0, if 2 | z0
then x20 + 5y20 ≡ r2 + 15 ≡ 0 (mod 8) and hence x0 ≡ y0 ≡ 0 (mod 2) which
contradicts that x0, y0, z0 are not all even, thus 2 - z0 and also 2 - x0y0 since
x20 + 5y20 ≡ r2 + 15− 10z20 ≡ 6 (mod 8).

It is easy to verify the following new identity:

(2) 42(x2 + 5y2 + 10z2) = (x± 5y − 10z)2 + 5(x∓ 3y − 2z)2 + 10(x± y + 2z)2.

If x, y, z are odd integers, then (x + εy)/2 + z is odd for some ε ∈ {±1}, hence by
(2) we have

4(x2 + 5y2 + 10z2) = x̃2 + 5ỹ2 + 10z̃2

with

x̃ =
x+ εy

2
+ 2εy − 5z, ỹ =

x+ εy

2
− 2εy − z, z̃ =

x+ εy

2
+ z

all odd. Thus, if 2 - x0y0z0 then

(3) 40n+ r2 + 15 = 4k(x20 + 5y20 + 10z20) ∈ {x2 + 5y2 + 10z2 : x,y, z are odd}.

If x0 6≡ y0 (mod 2), then x20 + 5y20 + 10z20 ≡ 1 (mod 2) and k ≥ 2 since 40n+ r2 +
15 ≡ 0 (mod 8), hence by (2) we have

42(x20 + 5y20 + 10z20) = x̄20 + 5ȳ20 + 10z̄20

with x̄0 = x0 − 5y0 − 10z0, ȳ0 = x0 + 3y0 − 2z0 and z̄0 = x0 − y0 + 2z0 all odd, and
therefore (3) holds.

Now we suppose that k > 0, 2 | x0y0z0 and x0 ≡ y0 (mod 2). By (2),

4(x20 + 5y20 + 10z20) = x21 + 5y21 + 10z21
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with

x1 =
x0 − y0

2
− 2y0 − 5z0, y1 =

x0 − y0
2

+ 2y0 − z0, z1 =
x0 − y0

2
+ z0

If x0 and y0 are odd, then we may assume x0 6≡ y0 − 2z0 (mod 4) without loss
of generality (otherwise we replace x0 by −x0), and hence x1, y1, z1 are all odd.
If x0, y0, (x0 − y0)/2 are all even, then z0 is odd and so are x1, y1, z1. If x0 and
y0 are even with x0 6≡ y0 (mod 4), then z0 is odd and we may assume z0 ≡
(y0 − x0)/2 (mod 4) without loss of generality (otherwise we replace z0 by −z0),
hence z1 ≡ 0 (mod 4), y1 = z1+2(y0−z0) ≡ 0 (mod 2) and (x1−y1)/4 ≡ −y0−z0 ≡
1 (mod 2), therefore by (2) we have

x21 + 5y21 + 10z21 = x22 + 5y22 + 10z22

with

x2 =
x1 − 5y1 − 10z1

4
, y2 =

x1 + 3y1 − 2z1
4

, z2 =
x1 − y1 + 2z1

4
all odd. So we still have (3).

By the above, there always exist odd integers x, y, z such that 40n + r2 + 15 =
x2+5y2+10z2. Write y = 2u+1 and z = 2v+1 with u, v ∈ Z. As x2 ≡ r2 (mod 5),
either x or −x has the form 10w + r with w ∈ Z. Therefore

40n+ r2 + 15 = (10w + r)2 + 5(2u+ 1)2 + 10(2v + 1)2

and hence n = p3(u) + v(v + 1) + w(5w + r)/2. This proves the universality of
(5, r, 2, 2, 1, 1) over Z.

(ii) Let n ∈ N and r ∈ {1, 3}. It is easy to see that

n = p3(x) +
y(3y + 1)

2
+ z(4z + r)

⇐⇒ 48n+ 3r2 + 8 = 6(2x+ 1)2 + 2(6y + 1)2 + 3(8z + r)2.

Since

E(2, 3, 6) = {3q + 1 : q ∈ N} ∪ {4k(8l + 7) : k, l ∈ N}
by Dickson [4, pp. 112-113], we see that 48n + 3r2 + 8 = 2x2 + 3y2 + 6z2 for
some x, y, z ∈ Z. Clearly, y2 + 2z2 6= 0, and hence by [20, Lemma 2.1] we have
y2 + 2z2 = y20 + 2z20 for some y0, z0 ∈ Z not all divisible by 3. Thus, without any
loss of generality, we simply assume that 3 - y or 3 - z. Note that 3 - x, 2 - y, and
x ≡ z (mod 2) since 2(x2 + z2) ≡ 2x2 + 6z2 ≡ 3r2 + 8 − 3y2 ≡ 0 (mod 4). If 3 | y
and 3 - z, then z or −z is congruent to x + y modulo 3. If 3 - y and 3 | z, then y
or −y is congruent to x + z modulo 3. If 3 - yz, then ε1y ≡ ε2z ≡ x (mod 3) for
some ε1, ε2 ∈ {±1}. So, without loss of generality, we may assume that x+ y+ z ≡
0 (mod 3) (otherwise we may change signs of x, y, z suitably). Note that

48n+ 3r2 + 8 = 2x2 + 3y2 + 6z2 = 2a2 + 3b2 + 6c2,

where a = y + z, b = (2x − y + 2z)/3 and c = (x + y − 2z)/3 are integers. If
x ≡ z ≡ 1 (mod 2), then x, y, z are all odd. If x ≡ z ≡ 0 (mod 2), then a, b, c are
all odd.

By the above, 48n+ 3r2 + 8 = 2a2 + 3b2 + 6c2 for some odd integers a, b, c. Since
3b2 ≡ 3r2 + 8 − 2a2 − 6c2 ≡ 3r2 (mod 16), we can write b or −b as 8w + r with
w ∈ Z. Clearly, a or −a has the form 6u + 1 with u ∈ Z, and c = 2v + 1 for some
v ∈ Z. Therefore

48n+ 3r2 + 8 = 2(6u+ 1)2 + 3(8w + r)2 + 6(2v + 1)2
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and hence n = u(3u + 1)/2 + p3(v) + w(4w + r). This proves the universality of
(8, 2r, 3, 1, 1, 1) over Z.

(iii) Let n ∈ N. By Lemma 2.1(ii), we can write 6n+7 in the form x2 +3y2 +6z2

with x, y, z ∈ Z and x ≡ n + 1 (mod 2). Clearly, y ≡ n (mod 2). Since 6z2 ≡
6n+ 7− (n+ 1)2 − 3n2 ≡ 6 (mod 4), we have 2 - z. Hence

24n+ 28 = 4(6n+ 7) = 4(x2 + 3y2 + 6z2) = (x− 3y)2 + 3(x+ y)2 + 24z2

with x− 2y, x+ 2y and z all odd. Note that x− 3y or 3y − x has the form 6w + 1
with w ∈ Z. Write x+ y = 2u+ 1 and z = 2v + 1 with u, v ∈ Z. Then

24n+ 28 = (6w + 1)2 + 3(2u+ 1)2 + 24(2v + 1)2

and hence n = w(3w + 1)/2 + p3(u) + 8p3(v). This proves the universality of
(8, 8, 3, 1, 1, 1).

(iv) Let n ∈ N. By Lemma 2.2, we can write 6n + 5 as x2 + y2 + 10z2 with
x, y, z ∈ Z. Clearly, x 6≡ y (mod 2). Since x2 + y2 + z2 ≡ 2 (mod 3), exactly
one of x, y, z is divisible by 3. Without loss of generality, we may assume that
x + y + z ≡ 0 (mod 3) (otherwise we adjust signs of x, y, z suitably to meet our
purpose). Observe that

4(x2 + y2 + 10z2) = 2(x− y)2 + 3

(
x+ y + 10z

3

)2

+ 15

(
x+ y − 2z

3

)2

.

So, 4(6n+5) = 2a2 +3b2 +15c2 for some odd integers a, b, c. As 3 - a, we may write
a or −a as 6w+ 1 with w ∈ Z. Write b = 2u+ 1 and c = 2v+ 1 with u, v ∈ Z. Then

24n+ 20 = 2(6w + 1)2 + 3(2u+ 1)2 + 15(2v + 1)2

and so n = p3(u)+5p3(v)+w(3w+1). This proves the universality of (6, 2, 5, 5, 1, 1)
over Z.

(v) Let n ∈ N. By Lemma 2.1(i), we can write 12n+5 in the form x2 +y2 +(6z)2

with x, y, z ∈ Z. It follows that 24n + 10 = (x + y)2 + (x − y)2 + 72z2. As
(x + y)2 + (x − y)2 ≡ 10 ≡ 2 (mod 4), both x + y and x − y are odd. Since
(x+ y)2 + (x− y)2 ≡ 10 ≡ 1 (mod 3), exactly one of x+ y and x− y is divisible by
3. So (x+ y)2 + (x− y)2 = (6u+ 1)2 + (6v + 3)2 for some u, v ∈ Z. Therefore

24n+ 10 = (6u+ 1)2 + (6v + 3)2 + 72z2,

i.e., n = u(3u+ 1)/2 + 3p3(v) + 3z2. This proves the universality of (6, 0, 3, 3, 3, 1)
over Z.

By Lemma 2.3, we can write 12n+14 in the form x2 +4y2 +9z2 with x, y, z ∈ Z.
Since x2 + z2 ≡ 14 (mod 4), we have 2 - xz. Observe that

24n+ 28 = 2(x2 + 4y2 + 9z2) = (x− 2y)2 + (x+ 2y)2 + 18z2

with x± 2y and z all odd. Clearly, exactly one of x− 2y and x+ 2y is divisible by
3. So, for some u, v, w ∈ Z we have

24n+ 28 = (6u+ 1)2 + 9(2v + 1)2 + 18(2w + 1)2

and hence n = u(3u + 1)/2 + 3p3(v) + 6p3(w). This proves the universality of
(6, 6, 3, 3, 3, 1) over Z.

The proof of Theorem 1.1 is now complete. �
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3. Proof of Theorem 1.2

The following lemma is one of the most important theorems about integral rep-
resentations of quadratic forms (cf. [2, p. 129]).

Lemma 3.1. Let f be a nonsingular integral quadratic form and let m be a nonzero
integer which is represented by f over the real field R and the ring Zp of p-adic
integers for each prime p. Then m is represented by some form f∗ over Z where f∗

is in the genus of f .

Lemma 3.2. (i) [20, Lemma 3.2] If x2 + 3y2 ≡ 4 (mod 8) with x, y ∈ Z, then
x2 + 3y2 = u2 + 3v2 for some odd integers u and v.

(ii) [20, Lemma 3.6] If w = x2+7y2 > 0 with x, y ∈ Z and 8 | w, then w = u2+7v2

for some odd integers u and v.
(iii) [24, Lemma 5.1] If w = 3x2 + 5y2 > 0 with x, y ∈ Z and 8 | w, then

w = 3u2 + 5v2 for some odd integers u and v.

Proof of Theorem 1.2. (i) Let n ∈ N. Clearly,

n = p3(x)+p3(y)+5z(3z+1)/2 ⇐⇒ 24n+11 = 3(2x+1)2+3(2y+1)2+5(6z+1)2.

There are two classes in the genus of 3x2 + 3y2 + 5z2, and the one not containing
3x2 + 3y2 + 5z2 has the representative

3x2 + 2y2 + 8z2 − 2yz =3x2 + 3
(y

2
+ z
)2

+ 5
(y

2
− z
)2

=3x2 + 3

(
y − 3z

2

)2

+ 5

(
y + z

2

)2

If 24n+ 11 = 3x2 + 2y2 + 8z2 − 2yz with y odd and z even, then 3x2 ≡ 11− 2y2 ≡
9 (mod 4) which is impossible. Thus, if 24n+11 ∈ {3x2+2y2+8z2−2yz : x, y, z ∈ Z}
then 24n + 11 ∈ {3x2 + 3y2 + 5z2 : x, y, z ∈ Z}. With the help of Lemma 3.1,
there are x, y, z ∈ Z such that 24n + 11 = 3x2 + 3y2 + 5z2. As 5z2 6≡ 11 (mod 4),
x and y cannot be both even. Without loss of generality, we assume that 2 - x.
Then 3y2 + 5z2 ≡ 11 − 3x2 ≡ 0 (mod 8) and 3y2 + 5z2 6= 0. By Lemma 3.2(iii),
3y2 + 5z2 = 3y20 + 5z20 for some odd integers y0 and z0. Write x = 2u + 1 and
y0 = 2v + 1 with u, v ∈ Z. As 2 - z0 and 3 - z0, z0 or −z0 has the form 6w + 1
with w ∈ Z. Thus 24n + 11 = 3(2u + 1)2 + 3(2v + 1)2 + 5(6w + 1)2 and hence
n = p3(u) + p3(v) + 5w(3w + 1)/2. This proves the universality of (15, 5, 1, 1, 1, 1)
over Z.

(ii) Let n ∈ N and r ∈ {1, 3}. Obviously,

n = p3(x) +
y(3y + 1)

2
+ 3

z(5z + r)

2

⇐⇒ 120n+ 9r2 + 20 = 15(2x+ 1)2 + 5(6y + 1)2 + 9(10z + r)2.

There are two classes in the genus of x2 + 15y2 + 5z2, and the one not containing
x2 + 15y2 + 5z2 has the representative

4x2 + 4y2 + 5z2 + 2xy =
(x

2
+ 2y

)2
+ 15

(x
2

)2
+ 5z2

=
(

2x+
y

2

)2
+ 15

(y
2

)2
+ 5z2.

If 120n + 9r2 + 20 = 4x2 + 4y2 + 5z2 + 2xy with x, y, z ∈ Z, then 2xy ≡ 9r2 −
5z2 ≡ 0 (mod 4) and hence x or y is even. Thus, with the help of Lemma 3.1,
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we can always write 120n + 9r2 + 20 = x2 + 15y2 + 5z2 with x, y, z ∈ Z. Since
x2 +5z2 ≡ 20 ≡ 2 (mod 3), x = 3x0 for some x0 ∈ Z. As 15y2 6≡ 9r2 (mod 4), x and
z cannot be both even. If 2 - x, then 5(3y2 + z2) ≡ 9r2 + 20− x2 ≡ 4 (mod 8) and
hence by Lemma 3.2(i) we can write 3y2+z2 as 3y20 +z20 with y0 and z0 both odd. If
2 - z, then x2+15y2 6= 0 and x2+15y2 = 3(3x20+5y2) ≡ 9r2+20−5z2 ≡ 0 (mod 8),
hence by Lemma 3.2(iii) we can write 3x20 + 5y2 as 3x21 + 5y21 with x1 and y1 both
odd.

By the above, there are odd integers x, y, z such that 120n + 9r2 + 20 = 9x2 +
15y2 + 5z2. Write y = 2u+ 1 with u ∈ Z. As 3 - z, we can write z or −z as 6v + 1
with v ∈ Z. Since x2 ≡ r2 (mod 5), we can write x or −x as 10w + r with w ∈ Z.
Thus

120n+ 9r2 + 20 = 15(2u+ 1)2 + 5(6v + 1)2 + 9(10z + r)2

and hence n = p3(x) + y(3y+ 1)/2 + 3z(5z + r)/2 with x, y, z ∈ Z. This proves the
universality of (15, 3r, 3, 1, 1, 1) over Z.

(iii) Let n ∈ N and r ∈ {1, 3}. Obviously,

n = 3x2 +
y(3y + 1)

2
+
z(5z + r)

2

⇐⇒ 120n+ 3r2 + 5 = 360x2 + 5(6y + s)2 + 3(10z + r)2.

If 60n+ (3r2 + 5)/2 = 4x2 + 4y2 + 5z2 + 2xy with x, y, z ∈ Z, then x or y must be
even. Thus, as in part (ii), 60n+ (3r2 + 5)/2 = x2 + 5y2 + 15z2 for some x, y, z ∈ Z.
Note that x2 + y2 ≡ z2 (mod 4). If y is odd, then 2 | x, 2 - z and we may assume
y 6≡ z (mod 4) (otherwise it suffices to change the sign of z), hence

y2 + 3z2 =

(
y − 3z

2

)2

+ 3

(
y + z

2

)2

with y1 = (y − 3z)/2 and z1 = (y + z)/2 both even. So, without loss of generality,
we may simply assume that 2 | y and x ≡ z (mod 2). Observe that

120n+ 3r2 + 5 = 2(x2 + 5y2 + 15z2) = 3a2 + 5b2 + 10y2.

with a = (x+ 5z)/2 and b = (x−3z)/2 both integral. Since 3a2 + 5b2 ≡ 5s2 + 3t2−
10y2 ≡ 0 (mod 8) and 3a2 + 5b2 > 0, by Lemma 3.2(iii) we can write 3a2 + 5b2 =
3c2 + 5d2 with c and d both odd. Thus

120n+ 3r2 + 5 = 3c2 + 5d2 + 40
(y

2

)2
.

As (y/2)2 ≡ 5(1− d2) ≡ d2− 1 (mod 3), we must have 3 - d and 3 | y. Write y = 6u
with u ∈ Z. Clearly, d or −d has the form 6v+1 with v ∈ Z. Since c2 ≡ r2 (mod 5),
we may write c or −c as 10w + r with w ∈ Z. Therefore

120n+ 3r2 + 5 = 3(10w + r)2 + 5(6v + 1)2 + 40(3u)2

and hence n = 3u2 + v(3v + 1)/2 + w(5w + r)/2. This proves the universality of
(6, 0, 5, r, 3, 1) over Z.

(iv) Let n ∈ N and δ ∈ {0, 1}. Clearly,

n = x(x+ δ) +
y(3y + 1)

2
+ 5

z(3z + 1)

2

⇐⇒ 24n+ 6(δ + 1) = 6(2x+ δ)2 + (6y + 1)2 + 5(6z + 1)2.
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There are two classes in the genus of x2 + 5y2 + 6z2, and the one not containing
x2 +5y2 +6z2 has the representative 3x2 +3y2 +4z2−2yz+2zx. If 24n+6(δ+1) =
3x2 + 3y2 + 4z2− 2yz+ 2zx, then u = (x+ y)/2 and v = (x− y)/2 are integers, and

24n+ 6(δ + 1) = 6u2 + 6v2 + 4z2 + 4vz = 6u2 + 5v2 + (v + 2z)2.

Thus, by Lemma 3.1, 24n+6(δ+1) = x2+5y2+6z2 for some x, y, z ∈ Z. Since x2 ≡
−5y2 ≡ y2 (mod 3), we may assume that x ≡ y (mod 3) without loss of generality.
If z 6≡ δ (mod 2), then x2 + 5y2 ≡ 6(δ+ 1)−6z2 ≡ 6(δ+ 1)−6(1− δ) ≡ 4δ (mod 8),
hence both x and y are even and (x− y)/2 ≡ δ (mod 2), and thus

x2 + 5y2 + 6z2 =

(
z − 5(x− y)

6

)2

+ 5

(
x− y

6
+ z

)2

+ 6

(
x− y

6
+ y

)2

with (x− y)/6 + y ≡ (x− y)/2 ≡ δ (mod 2).
By the above, 24n+6(δ+1) = x2 +5y2 +6z2 for some x, y, z ∈ Z with x, y, z ∈ Z

with z ≡ δ (mod 2). Since x2+5y2 is a positive multiple of 3, by [20, Lemma 2.1] we
can write x2 + 5y2 = x20 + 5y20 with x0y0 ∈ Z and 3 - x0y0. So, there are x, y, z ∈ Z
with x ≡ y 6≡ 0 (mod 3) and z ≡ δ (mod 2) such that 24n+6(δ+1) = x2+5y2+6z2.
Write z = 2w + δ with w ∈ Z. Since x2 + 5y2 ≡ 6 (mod 8), both x and y are odd.
Thus x or −x has the form 6u + 1 with u ∈ Z, and y or −y has the form 6v + 1
with v ∈ Z. Therefore

24n+ 6(δ + 1) = (6u+ 1)2 + 5(6v + 1)2 + 6(2w + δ)2

and hence n = w(w+ δ) + u(3u+ 1)/2 + 5v(3v+ 1)/2. This proves the universality
of (15, 5, 3, 1, 2, 2δ) over Z.

(v) Let n ∈ N. Apparently,

n = x(x+ 1) +
y(3y + 1)

2
+ 7

z(3z + 1)

2

⇐⇒ 24n+ 14 = 6(2x+ 1)2 + (6y + 1)2 + 7(6z + 1)2.

There are two classes in the genus of x2 + 6y2 + 7z2, and the one not containing
x2 + 6y2 + 7z2 has the representative

2x2 + 5y2 + 5z2 − 4yz = 2x2 + 10u2 + 10v2 − 4(u+ v)(u− v) = 2x2 + 6u2 + 14v2

with u = (y + z)/2 and v = (y − z)/2. If 24n + 14 = 2x2 + 6u2 + 14v2 for some
x, u, v ∈ Z with x 6≡ v (mod 2), then 14 ≡ 2 + 6u2 (mod 8) which is impossible. If
24n+ 14 = 2x2 + 6u2 + 14v2 with x, u, v ∈ Z and x ≡ v (mod 2), then

24n+ 14 = 6u2 +

(
x− 7v

2

)2

+ 7

(
x+ v

2

)2

.

By the above and Lemma 3.1, there are x, y, z ∈ Z such that 24n + 14 = 6x2 +
y2 + 7z2. If 2 | x, then y2 + 7z2 ≡ 6 − 6x2 ≡ 6 (mod 8) which is impossible. So
x = 2u + 1 for some u ∈ Z. Note that y2 + 7z2 ≡ 6 − 6x2 ≡ 0 (mod 8) and
y2 + 7z2 6= 0. Applying Lemma 3.2(ii) we can write y2 + 7z2 as y20 + 7z20 with y0
and z0 both odd. Note that y20 + z20 ≡ y20 + 7z20 ≡ 14 ≡ 2 (mod 3). So y0 or −y0 can
be written as 6v + 1 with v ∈ Z, and z0 or −z0 has the form 6w + 1 with w ∈ Z.
Thus

24n+ 14 = 6x2 + y20 + 7z20 = 6(2u+ 1)2 + (6v + 1)2 + 7(6w + 1)2

and hence n = u(u+ 1) + v(3v + 1)/2 + 7z(3z + 1)/2. This proves the universality
of (21, 7, 3, 1, 2, 2).
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(vi) Let r ∈ {1, 3, 5} and n ∈ N. Clearly,

n = p3(x)+p3(y)+
z(7z + r)

2
⇐⇒ 56n+14+r2 = 7(2x+1)2+7(2y+1)2+(14z+r)2.

There are two classes in the genus of x2 + 7y2 + 7z2, and the one not containing
x2 + 7y2 + 7z2 has the representative

2x2 + 4y2 + 7z2 + 2xy =
(x

2
+ 2y

)2
+ 7

(x
2

)2
+ 7z2.

=

(
x− 3y

2

)2

+ 7

(
x+ y

2

)2

+ 7z2

If 56n+14+r2 = 2x2 +4y2 +7z2 +2xy with x odd and y even, then 15 ≡ 14+r2 ≡
2x2 + 7z2 ≡ 9 (mod 4) which is impossible. Thus, if 56n+ 14 + r2 ∈ {2x2 + 4y2 +
7z2+2xy : x, y, z ∈ Z} then 56n+14+r2 ∈ {x2+7y2+7z2 : x, y, z ∈ Z}. With the
help of Lemma 3.1, there are x, y, z ∈ Z such that 56n+ 14 + r2 = x2 + 7y2 + 7z2.
As x2 6≡ 14 + r2 ≡ 15 (mod 4), y and z cannot be both even. Without loss of
generality, we assume that 2 - z. Then x2 + 7y2 ≡ 14 + r2 − 7z2 ≡ 0 (mod 8) and
x2 + 7y2 6= 0. By Lemma 3.2(ii), x2 + 7y2 = x20 + 7y20 for some odd integers x0 and
y0. Now 56n+ 14 + r2 = x20 + 7y20 + 7z2. Clearly, x0 or −x0 has the form 14w + r
with w ∈ Z. Write y0 = 2u+ 1 and z = 2v + 1 with u, v ∈ Z. Then

56n+ 14 + r2 = (14w + r)2 + 7(2u+ 1)2 + 7(2v + 1)2

and hence n = p3(u) + p3(v) + w(7w + r)/2. This proves the universality of
(7, r, 1, 1, 1, 1) over Z.

(vii) Let n ∈ N and t ∈ {1, 3, 5}. Clearly,

n = p3(x) +
y(3y + 1)

2
+
z(7z + t)

2

⇐⇒ 168n+ 28 + 3t2 = 21(2x+ 1)2 + 7(6y + 1)2 + 3(14z + t)2.

There are two classes in the genus of 3x2+21y2+7z2, and the one not containing
3x2 + 21y2 + 7z2 has the representative

6x2 + 12y2 + 7z2 + 6xy =3
(x

2
+ 2y

)2
+ 21

(x
2

)2
+ 7z2.

=3

(
x− 3y

2

)2

+ 21

(
x+ y

2

)2

+ 7z2

If 168n + 28 + 3t2 = 6x2 + 12y2 + 7z2 + 6xy with x odd and y even, then 31 ≡
28 + 3t2 ≡ 6x2 + 7z2 ≡ 13 (mod 4) which is impossible. Thus, if 168n+ 28 + 3t2 ∈
{6x2 + 12y2 + 7z2 + 6xy : x, y, z ∈ Z} then 168n + 28 + 3t2 ∈ {3x2 + 21y2 +
7z2 : x, y, z ∈ Z}. With the help of Lemma 3.1, there are x, y, z ∈ Z such that
168n+28+3t2 = 3x2+21y2+7z2. As 21y2 6≡ 28+3t2 ≡ 31 (mod 4), x and z cannot
be both even. If 2 - x, then 21y2 + 7z2 ≡ 28 + 3t2 − 3x2 ≡ 4 (mod 8) and hence by
Lemma 3.2(i) we can write 3y2 + z2 as 3y20 + z20 with y0, z0 odd integers. Note that
x2 + 7y2 6= 0 since 7 - t. If 2 - z, then 3(x2 + 7y2) ≡ 28 + 3t2− 7z2 ≡ 0 (mod 8) and
hence by Lemma 3.2(ii) x2 + 7y2 = x20 + 7y20 for some odd integers x0 and y0.

By the above, there are odd integers x, y, z such that 168n + 28 + 3t2 = 3x2 +
7y2 + 21z2. Write z = 2u + 1 with u ∈ Z. As y2 ≡ 1 (mod 3), y or −y has the
form 6v + 1 with v ∈ Z. Since x2 ≡ t2 (mod 7), x or −x has the form 14w+ t with
w ∈ Z. Thus

168n+ 28 + 3t2 = 3(14w + t)2 + 7(6v + 1)2 + 21(2u+ 1)2
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and hence n = p3(u) + v(3v + 1)/2 + w(7w + t)/2. This proves the universality of
(7, t, 3, 1, 1, 1) over Z.

(viii) Let δ ∈ {0, 1} and r ∈ {1, 3, 5}. Clearly,

n = p3(x) + y(y + δ) +
z(7z + r)

2

⇐⇒ 56n+ 14δ + r2 + 7 = 7(2x+ 1)2 + 14(2y + δ)2 + (14z + r)2.

There are two classes in the genus of x2 + 7y2 + 14z2, the one not containing
x2 + 7y2 + 14z2 has the representative

2x2 + 7y2 + 7z2 = 2x2 + 14

(
y + z

2

)2

+ 14

(
y − z

2

)2

.

If 56n+14δ+r2 +7 = 2x2 +14y2 +14z2 with x, y, z ∈ Z and y, z 6≡ x (mod 2), then
2x2 ≡ 14δ+ r2 + 7 ≡ 2δ (mod 4), hence x2 ≡ δ (mod 4) and also y ≡ z ≡ δ (mod 2)
since

−2(y2 + z2) ≡ 14(y2 + z2) ≡ 14δ + r2 + 7− 2δ ≡ −4δ (mod 8),

this contradicts with y, z 6≡ x (mod 2). If 56n + 14δ + r2 + 7 = 2x2 + 14y2 + 14z2

with x, y, z ∈ Z and x ≡ y (mod 2), then

56n+ 14δ + r2 + 7 =

(
x− 7y

2

)2

+ 7

(
x+ y

2

)2

+ 14z2.

In view of Lemma 3.1 and the above, there are x, y, z ∈ Z such that 56n+ 14δ+
r2 + 7 = x2 + 7y2 + 14z2. If z 6≡ δ (mod 2), then

x2 + 7y2 ≡ 14δ + r2 + 7− 14z2 ≡ 14δ − 14(1− δ) ≡ 2 (mod 4)

which is impossible. Thus z ≡ δ (mod 2) and x2 + 7y2 ≡ r2 + 7 ≡ 0 (mod 8). Note
that x2 + 7y2 6= 0 since 7 - r. Applying Lemma 3.2(ii) we can write x2 + 7y2 as
x20 + 7y20 with x0 and y0 both odd. Since x20 ≡ r2 (mod 7), either x0 or −x0 has the
form 14w + r with w ∈ Z. Write y0 = 2u+ 1 and z = 2v + δ with u, v ∈ Z. Then

56n+ 14δ + r2 + 7 ≡ (14w + r)2 + 7(2u+ 1)2 + 14(2v + δ)2

and hence n = p3(u) + v(v + δ) + w(7w + r)/2. This proves the universality of
(7, r, 2, 2δ, 1, 1) over Z.

The proof of Theorem 1.2 is now complete. �

4. Proof of Theorem 1.3

For a positive definite integral ternary quadratic form f(x, y, z) and an integer
n, as usual we define

r(n, f) := |{(x, y, z) ∈ Z3 : f(x, y, z) = n}|

and

r(n, gen(f)) :=

( ∑
f∗∈gen(f)

1

|Aut(f∗)|

)−1 ∑
f∗∈gen(f)

r(n, f∗)

|Aut(f∗)|
,

where the summation is over a set of representatives of the classes in gen(f), and
Aut(f∗) is the group of integral isometries of f∗.
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Lemma 4.1. Let f be a positive definite ternary quadratic form with determinant
d(f). Let m ∈ {1, 2} and suppose that m is represented by the genus of f . Then,
for each prime p - 2md(f), we have

(4)
r(mp2, gen(f))

r(m, gen(f))
= p+ 1−

(
−md(f)

p

)
,

where ( ·p ) denotes the Legendre symbol.

Proof. By the Minkowski-Siegel formula [14, pp. 173-174], for any n ∈ Z+ we have

r(n, gen(f)) = 2π

√
n

d(f)

∏
q

αq(n, f),

where q runs over all primes and αq is the local density. As p - 2md(f), by [26] we
have

αp(mp2, f) = 1 +
1

p
− 1

p2
+

(
−md(f)

p

)
1

p2
,

αp(m, f) = 1 +

(
−md(f)

p

)
1

p
.

Thus
r(mp2, gen(f))

r(m, gen(f))
= p

αp(mp2, f)

αp(m, f)
= p+ 1−

(
−md(f)

p

)
.

This concludes the proof. �

Lemma 4.2. Let w = u2 + 15v2 > 0 with u, v ∈ Z and 8 | w. Then w = x2 + 15y2

for some odd integers x and y.

Proof. Let k be the 2-adic order of gcd(u, v), and write u = 2ku0 and v = 2kv0
with u0, v0 ∈ Z not all even. If k = 0, then both u0 and v0 are odd since w is even.
Below we assume k > 0.

We observe the identity

42(x2 + 15y2) = (x− 15y)2 + 15(x+ y)2.

If u0 6≡ v0 (mod 2), then k ≥ 2 (since 8 | w) and 42(u20 + 15v20) = s2 + 15t2 with
s = u0− 15v0 and t = u0 + v0 both odd. For j ∈ N, if 4j(u20 + 15v20) = u2j + 15v2j for
some odd integers uj and vj , then we may assume uj ≡ vj (mod 4) without loss of
generality (otherwise we may replace vj by −vj), and hence

4j+1(u20 + 15v20) = 4(u2j + 15v2j ) = u2j+1 + 15v2j+1

with uj+1 = (uj − 15vj)/2 and vj+1 = (uj + vj)/2 both odd. Thus, for some odd
integers uk and vk, we have

w = 4k(u20 + 15v20) = u2k + 15v2k.

This concludes the proof. �

Proof of Theorem 1.3(i). (a) We first prove that (7, 7, 3, 1, 1, 1) is universal over Z.
Let n ∈ N. Clearly,

n = p3(x) + 7p3(y) +
z(3z + 1)

2

⇐⇒ 24n+ 25 = 3(2x+ 1)2 + 21(2y + 1)2 + (6z + 1)2.
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There are two classes in the genus of x2 + 3y2 + 21z2 and the one not containing
x2 + 3y2 + 21z2 has the representative

(5)

x2 + 6y2 + 12z2 − 6yz =x2 + 3
(y

2
− 2z

)2
+ 21

(y
2

)2
=x2 + 3

(
y + 3z

2

)2

+ 21

(
y − z

2

)2

.

If 24n + 25 = x2 + 6y2 + 12z2 − 6yz with x, y, z ∈ Z, then the equality modulo 4
yields y(y − z) ≡ 0 (mod 2). Thus, by (5) and Lemma 3.1, we have

(6) 24n+ 25 ∈ {x2 + 3y2 + 21z2 : x, y, z ∈ Z}.

Now we claim that 24n+25 = x2+3y2+21z2 for some x, y, z ∈ Z with y2+7z2 >
0. This holds by (6) if 24n + 25 is not a square. Suppose that 24n + 25 = m2

with m ∈ Z+. Let p be any prime divisor of m. Clearly, p ≥ 5. Note that
r(72, x2 + 3y2 + 21z2) > 2 since 72 = (±5)2 + 3× (±1)2 + 21× (±1)2. If p 6= 7 and
r(p2, x2 +6y2 +12z2−6yz) > 2, then p2 = x2 +6y2 +12z2−6yz for some x, y, z ∈ Z
with 2 | y(y − z) and y2 + z2 > 0, hence by (5) we have p2 = x2 + 3u2 + 21v2 for
some x, u, v ∈ Z with u2 + 7v2 > 0, and thus r(p2, x2 + 3y2 + 21z2) > 2. By Lemma
4.1, if p 6= 7 then

r(p2, gen(x2 + 3y2 + 21z2))

r(1, gen(x2 + 3y2 + 21z2))
= p+ 1−

(
−7

p

)
and hence

r(p2, x2 + 3y2 + 21z2) + r(p2, x2 + 6y2 + 12z2 − 6yz) = 4

(
p+ 1−

(
−7

p

))
> 4.

So we still have r(p2, x2 + 3y2 + 21z2) > 2 if r(p2, x2 + 6y2 + 12z2 − 6yz) ≤ 2. As
r(m2, x2 + 3y2 + 21z2) ≥ r(p2, x2 + 3y2 + 21z2) > 2, we can write 24n + 25 = m2

as x2 + 3y2 + 21z2 with x, y, z ∈ Z and y2 + 7z2 > 0. This proves the claim.
By the claim, there are x, y, z ∈ Z such that 24n + 25 = x2 + 3y2 + 21z2 and

y2 + 7z2 > 0. As 3y2 6≡ 25 ≡ 1 (mod 4), either x or z is odd. If 2 - x, then
3(y2+7z2) ≡ 25−x2 ≡ 0 (mod 8) and hence by Lemma 3.2(ii) we can write y2+7z2

as y20 +7z20 with y0 and z0 both odd. If 2 - z, then x2 +3y2 ≡ 25−21z2 ≡ 4 (mod 8)
and hence by Lemma 3.2(i) we can write x2 + 3y2 as x21 + 3y21 with x1 and y1 both
odd. Thus 24n+ 25 = a2 + 3b2 + 21c2 for some odd integers a, b, c. As 3 - a, either
a or −a has the form 6w + 1 with w ∈ Z. Write b = 2u + 1 and c = 2v + 1 with
u, v ∈ Z. Then

24n+ 25 = (6w + 1)2 + 3(2u+ 1)2 + 21(2v + 1)2

and hence n = p3(u) + 7p3(v) + w(3w + 1)/2. This proves the universality of
(7, 7, 3, 1, 1, 1) over Z.

(b) Let n ∈ N and r ∈ {1, 3}. Clearly,

n = 5p3(x) +
y(3y + 1)

2
+
z(3z + r)

2

⇐⇒ 24n+ r2 + 16 = 15(2x+ 1)2 + (6y + 1)2 + (6z + r)2.
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There are two classes in the genus of x2 + y2 + 15z2, and the one not containing
x2 + y2 + 15z2 has the representative

(7)
x2 + 4y2 + 4z2 − 2yz =x2 +

(y
2
− 2z

)2
+ 15

(y
2

)2
=x2 +

(
2y − z

2

)2
+ 15

(z
2

)2
.

If 24n+ r2 + 16 = x2 + 4y2 + 4z2− 2yz with x, y, z ∈ Z, then 2 - x and 2 | yz. Thus,
in view of (7) and Lemma 3.1, we have

(8) 24n+ r2 + 16 ∈ {x2 + y2 + 15z2 : x, y, z ∈ Z}.

We claim that 24n + r2 + 16 = x2 + y2 + 15z2 for some x, y, z ∈ Z with (x2 +
15z2)(y2 + 15z2) > 0. This holds by (8) if 24n + r2 + 16 is not a square. Now
suppose that 24n + r2 + 16 = m2 with m ∈ Z+. Let p be any prime divisor of m.
Clearly, p ≥ 5. Note that r(52, x2 + y2 + 15z2) > 4 since

52 = (±5)2 + 02 + 15× 02 = 02 + (±5)2 + 15× 02 = (±3)2 + (±4)2 + 15× 02.

If r(p2, x2 +4y2 +4z2−2yz) > 2, then p2 = x2 +4y2 +4z2−2yz for some x, y, z ∈ Z
with 2 | yz and y2 + z2 > 0, hence by (7) p2 = x2 + u2 + 15v2 for some x, u, v ∈ Z
with (x2 + 15v2)(u2 + 15v2) > 0, and thus r(p2, x2 + y2 + 15z2) > 4. When p > 5,
by Lemma 4.1 we have

r(p2, gen(x2 + y2 + 15z2))

r(1, gen(x2 + y2 + 15z2))
= p+ 1−

(
−15

p

)
and hence

r(p2, x2 + y2 + 15z2) + 2r(p2, x2 + 4y2 + 4z2 − 2yz) = 8

(
p+ 1−

(
−15

p

))
> 50.

Thus we still have r(p2, x2 + y2 + 15z2) > 4 if r(p2, x2 + 4y2 + 4z2 − 2yz) ≤ 2. As
r(m2, x2 + y2 + 15z2) ≥ r(p2, x2 + y2 + 15z2) > 4, we can write 24n + r2 + 16 as
x2 + y2 + 15z2 with (x2 + 15z2)(y2 + 15z2) > 0. This proves the claim.

By the claim, there are x, y, z ∈ Z such that 24n + r2 + 16 = x2 + y2 + 15z2

and (x2 + 15z2)(y2 + 15z2) > 0. Since 15z2 6≡ r2 ≡ 1 (mod 4), either x or y is
odd. Without any loss of generality, we assume that 2 - x. Since y2 + 15z2 > 0 and
y2 + 15z2 ≡ r2−x2 ≡ 0 (mod 8), by Lemma 4.2 we can write y2 + 15z2 = y20 + 15z20
with y0 and z0 both odd. Now, 24n + r2 + 16 = x2 + y20 + 15z20 . Since x2 + y20 ≡
r2 + 1 (mod 3), one of x2 and y20 is congruent to r2 modulo 3 and the other one is
congruent to 1 modulo 3. Thus x2 + y20 = (6u+ r)2 + (6v + 1)2 for some u, v ∈ Z.
Write z0 = 2w + 1 with v ∈ Z. Then

24n+ r2 + 16 = (6u+ r)2 + (6v + 1)2 + 15(2w + 1)2

and hence n = u(3u+ r)/2 + v(3v + 1)/2 + 5p3(w). This proves the universality of
(5, 5, 3, r, 3, 1) over Z.

(c) Let n ∈ N. Apparently,

n = p3(x) + 5p3(y) + z(3z + 2)

⇐⇒ 24n+ 26 = 3(2x+ 1)2 + 15(2y + 1)2 + 2(6z + 2)2.

There are two classes in the genus of 2x2+3y2+15z2, and the one not containing
2x2 + 3y2 + 15z2 has the representative

(9) g(x, y, z) = 2x2 + 5y2 + 11z2 + 2yz+ 2x(y− z) = 2 (x+ v)
2

+ 3(u−2v)2 + 15u2
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with u = (y+ z)/2 and v = (y− z)/2. If 24n+ 26 = g(x, y, z) with x, y, z ∈ Z, then
y ≡ z (mod 2), and hence by (9) we have 24n + 26 = 2a2 + 3b2 + 15c2 for some
a, b, c ∈ Z. So, in view of Lemma 3.1, we always have

(10) 24n+ 26 ∈ {2x2 + 3y2 + 15z2 : x, y, z ∈ Z}.
We claim that 24n+26 = 2x2 +3y2 +15z2 for some x, y, z ∈ Z with y2 +5z2 > 0.

This holds by (10) if 12n + 13 is not a square. Now suppose that 12n + 13 = m2

with m ∈ Z+. Let p be any prime divisor of m. Clearly, p ≥ 5. Note that
r(2× 52, 2x2 + 3y2 + 15z2) > 2 since

2× 52 = 2× (±5)2 + 3× 02 + 15× 02 = 2(±1)2 + 3(±4)2 + 30× 02.

If r(2p2, g(x, y, z)) > 2, then 2p2 = g(x, y, z) for some x, y, z ∈ Z with y2 + z2 > 0,
hence by (9) 2p2 = 2x2 + 3b2 + 15c2 for some x, b, c ∈ Z with b2 + c2 > 0, and thus
r(2p2, 2x2 + 3y2 + 15z2) > 2. When p > 5, by Lemma 4.1 we have

r(2p2, gen(2x2 + 3y2 + 15z2))

r(2, gen(2x2 + 3y2 + 15z2))
= p+ 1−

(
−5

p

)
and hence

r(2p2, 2x2 + 3y2 + 15z2) + 2r(2p2, g(x, y, z)) = 6

(
p+ 1−

(
−5

p

))
> 40.

Thus we still have r(2p2, 2x2 + 3y2 + 15z2) > 2 if r(2p2, g(x, y, z)) ≤ 2. As
r(2m2, 2x2 + 3y2 + 15z2) ≥ r(2p2, 2x2 + 3y2 + 15z2) > 2, we can write 24n+ 26 as
2x2 + 3y2 + 15z2 with y2 + 5z2 > 0. This proves the claim.

By the claim, there are x, y, z ∈ Z such that 24n + 26 = 2x2 + 3(y2 + 5z2) and
y2 + 5z2 > 0. By [20, Lemma 2.1], y2 + 5z2 = y20 + 5z20 for some integers y0 and z0
not all divisible by 3. Without any loss of generality, we simply assume that 3 - y
or 3 - z. Note that 3 - x and y ≡ z (mod 2). If 3 - yz, then ε1y ≡ ε2z ≡ x (mod 3)
for some ε1, ε2 ∈ {±1}. If 3 | y and 3 - z then x + y + εz ≡ 0 (mod 3) for some
ε ∈ {±1}; similarly, if 3 - y and 3 | z then x+εy+z ≡ 0 (mod 3). So, without loss of
generality we may suppose that x+ y+ z ≡ 0 (mod 3) (otherwise we adjust signs of
x, y, z suitably to meet our purpose). If y ≡ z ≡ 0 (mod 2), then 2x2 ≡ 26 (mod 4),
hence 2 - x and y ≡ z (mod 4) since y2 + 5z2 ≡ 0 (mod 8), therefore

(11) 2x2 + 3y2 + 15z2 = 2

(
y − 5z

2

)2

+ 3

(
2x+ 5y + 5z

6

)2

+ 15

(
2x− y − z

6

)2

with (2x+ 5y + 5z)/6 and (2x− y − z)/6 both odd.
By the above, 24n + 26 = 2a2 + 3b2 + 15c2 for some a, b, c ∈ Z with 2 - bc. As

3 - a and 2a2 ≡ 26 − 3 − 15 ≡ 0 (mod 8), a or −a has the form 2(3w + 1) with
w ∈ Z. Write b = 2u+ 1 and c = 2v + 1 with u, v ∈ Z. Then

24n+ 26 = 2(2(3w + 1))2 + 3(2u+ 1)2 + 15(2v + 1)2

and so n = p3(u)+5p3(v)+w(3w+2). This proves the universality of (6, 4, 5, 5, 1, 1)
over Z. �

Proof of Theorem 1.3(ii). (a) Let n ∈ N and r ∈ {1, 2}. It is easy to see that

n = p3(x) + 5
y(3y + 1)

2
+ z(3z + r)

⇐⇒ 24n+ 2r2 + 8 = 3(2x+ 1)2 + 5(6y + 1)2 + 2(6z + r)2.

As mentioned in part (b) of the proof of Theorem 1.3(i), there are two classes
in the genus of x2 + y2 + 15z2, and the one not containing x2 + y2 + 15z2 has the
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representative x2 + 4y2 + 4z2 − 2yz. If 12n + r2 + 4 = x2 + 4y2 + 4z2 − 2yz with
x, y, z ∈ Z, then 2 | yz since r2 6≡ x2 − 2 (mod 4). Thus, in view of (7) and Lemma
3.1, 12n + r2 + 4 = x2 + y2 + 15z2 for some x, y, z ∈ Z. If x ≡ y (mod 2), then
z ≡ r (mod 2), x2+y2 ≡ r2−15z2 ≡ 2r2 (mod 4) and hence x ≡ y ≡ r ≡ z (mod 2).
So, x or y has the same parity with z. Without loss of generality we may assume
that y ≡ z (mod 2). Since y2 + 15z2 ≡ 0 (mod 4), we have x ≡ r (mod 2). If r = 2
and y2 + 15z2 = 0, then 12n+ r2 + 4 = 02 + x2 + 15× 02 with x ≡ 0 ≡ r (mod 2)
and x2 + 15 × 02 > 0. If r = 1, then 12n2 + r2 + 4 = 12n + 5 is congruent to 2
modulo 3 and hence not a square. Thus, without loss of generality we may assume
that y2 + 15z2 > 0.

Observe that

24n+ 2r2 + 8 = 2(x2 + y2 + 15z2) = 2x2 + 3u2 + 5v2

with u = (y + 5z)/2 and v = (y − 3z)/2 both odd. Since 3u2 + 5v2 ≡ 2r2 − 2x2 ≡
0 (mod 8) and 2(3u2+5v2) = y2+15z2 > 0, by Lemma 3.2(iii) we can write 3u2+5v2

as 3y20 +5z20 with y0 and z0 both odd. As 2(x2 +z20) ≡ 2x2 +5z20 ≡ 2r2 +8 (mod 3),
we have x2 + z20 ≡ r2 + 1 ≡ 2 (mod 3) and hence we may write x or −x as 6u+ r,
z0 or −z0 as 6v + 1, and y0 = 2w + 1, where u, v, w are integers. Therefore

24n+ 2r2 + 8 = 2x2 + 3y20 + 5z20 = 2(6u+ r)2 + 3(2w + 1)2 + 5(6v + 1)2

and hence n = u(3u+ r)/2 + 5v(3v + 1)/2 + p3(w). This proves the universality of
(15, 5, 6, 2r, 1, 1) over Z.

(b) Let n ∈ N, s ∈ {1, 3, 5} and t ∈ {1, 2} with (s, t) 6= (5, 2). Obviously,

n = p3(x) +
y(5y + s)

2
+ z(3z + t)

⇐⇒ 120n+ 3s2 + 10t2 + 15 = 15(2x+ 1)2 + 3(10y + s)2 + 10(6z + t)2.

There are two classes in the genus of 3x2+10y2+15z2, and the one not containing
3x2 + 10y2 + 15z2 has the representative

(12)

g(x, y, z) =7x2 + 7y2 + 12z2 + 6(x+ y)z + 4xy

=3

(
x+ y

2
+ 2z

)2

+ 10

(
x− y

2

)2

+ 15

(
x+ y

2

)2

.

If 120n + 3s2 + 10t2 + 15 = g(x, y, z) with x, y, z ∈ Z, then we obviously have
x ≡ y (mod 2). Thus, in view of (12) and Lemma 3.1, 120n + 3s2 + 10t2 + 15 =
3x2 + 10y2 + 15z2 for some x, y, z ∈ Z. If x = z = 0, then 120n+ 3s2 + 10t2 + 15 =
10y2, hence (s, t) = (5, 1) and y2 = 12n + 10 ≡ 2 (mod 4) which is impossible. So
x2 + 5z2 > 0, and hence by [20, Lemma 2.1] we can rewrite x2 + 5z2 as x20 + 5z20
with x0, z0 ∈ Z not all divisible by 3. Without loss of generality, we simply assume
that 3 - x or 3 - z. Note that 3 - y since 3 - t. If 3 - xz, then ε1x ≡ y ≡ ε2z for some
ε1, ε2 ∈ {±1}. If 3 | x and 3 - z, then x + y + εz ≡ 0 (mod 3) for some ε ∈ {±1}.
If 3 - x and 3 | z, then εx + y + z ≡ 0 (mod 3) for some ε ∈ {±1}. Without loss
of generality, we just assume that x+ y + z ≡ 0 (mod 3) (otherwise we may adjust
signs of x, y, z suitably). Note that x ≡ z (mod 2) and we have the identity

(13) 3x21 + 10y21 + 15z21 = 3x2 + 10y2 + 15z2,

where

x1 =
x+ 10y − 5z

6
, y1 =

x+ z

2
and z1 =

x− 2y − 5z

6
are all integral.



SOME UNIVERSAL QUADRATIC SUMS OVER THE INTEGERS 85

If x ≡ z ≡ 1 (mod 2), then 10y2 = 120n + 3s2 + 10t2 + 15 − 3x2 − 15z2 ≡
10t2 (mod 4) and hence y ≡ t (mod 2).

Now suppose that x ≡ z ≡ 0 (mod 2). Then 2y2 ≡ 10y2 ≡ 3s2 + 10t2 + 15 ≡
2(t2 + 1) (mod 4) and hence y 6≡ t (mod 2). Observe that

2t2 + 2 ≡ 120n+ 3s2 + 10t2 + 15 = 3x2 + 10y2 + 15z2 ≡ x2 + z2 + 2(t+ 1)2 (mod 8)

and hence

y1 =
x+ z

2
≡
(x

2

)2
+
(z

2

)2
=
x2 + z2

4
≡ t (mod 2).

Thus

z1 = x1 − 2y ≡ x1 ≡
x+ z

2
− 3z + 5y ≡ t+ y ≡ 1 (mod 2).

In view of the above, there are integers x, y, z ∈ Z with x ≡ z ≡ 1 (mod 2) and
y ≡ t (mod 2) such that 120n + 3s2 + 10t2 + 15 = 3x2 + 10y2 + 15z2. Clearly,
y or −y has the form 6v + t with v ∈ Z. Write z = 2w + 1 with w ∈ Z. Since
x2 ≡ s2 (mod 5), we can write x or −x as 10u+ s with w ∈ Z. Therefore

120n+ 3s2 + 10t2 + 15 = 3(10u+ s)2 + 10(6v + t)2 + 15(2w + 1)2

and hence n = p3(w) + u(5u + s)/2 + v(3v + t). This proves the universality of
(6, 2t, 5, s, 1, 1) over Z. �

5. Proof of Theorem 1.4

B. W. Jones and G. Pall [12] proved the following celebrated result.

Lemma 5.1. Let n ∈ N with 8n+ 1 not a square. Then

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1 & 4 | x}|
=|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1 & x ≡ 2 (mod 4)}| > 0.

A. G. Earnest [5, 6] showed the following useful result.

Lemma 5.2. Let c be a primitive spinor exceptional integer for the genus of a
positive ternary quadratic form f(x, y, z), and let S be a spinor genus containing
f . Let s be a fixed positive integer relatively prime to 2d(f) for which cs2 can be
primitively represented by S. If t ∈ Z+ is relatively prime to 2d(f), then ct2 can be
primitively represented by S if and only if(

−cd(f)

s

)
=

(
−cd(f)

t

)
.

Proof of Theorem 1.4. Fix n ∈ N . Clearly,

n = p3(x) + y2 + 2z(4z + 1) ⇐⇒ 8n+ 2 = (2x+ 1)2 + 8y2 + (8z + 1)2.

So, it suffices to show that 8n + 2 = x2 + y2 + 8z2 for some x, y, z ∈ Z with
x ≡ ±1 (mod 8).

Case 1. n is not twice a triangular number.
In this case, 4n + 1 is not a square. If 2 | n, then by Lemma 5.1 we can write

4n+ 1 as x2 + y2 + z2 with 2 - x, 2 | y and z ≡ 2 (mod 4). If 2 - n, then there are
x, y, z ∈ Z with 2 - x and y ≡ z ≡ 0 (mod 2) such that 4n + 1 = x2 + y2 + z2 and
hence y 6≡ z (mod 4) since y2 + z2 ≡ 5 − x2 ≡ 4 (mod 8). So we can always write
4n+ 1 = x2 + y2 + z2 with 2 - x, 2 | y and z ≡ 2n− 2 (mod 4), hence

8n+ 2 = 2(x2 + y2 + z2) = (x+ y)2 + (x− y)2 + 8
(z

2

)2
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with z/2 ≡ n− 1 (mod 2). Thus

(x+ y)2 + (x− y)2 ≡ 8n+ 2− 8(n− 1) = 10 6≡ 32 + 32 (mod 16)

and hence x+ εy ≡ ±1 (mod 8) for some ε ∈ {±1}.
Case 2. n = 2p3(m) with m ∈ N, and 2m + 1 has no prime factor of the form
4k + 3.

In this case, 2m+ 1 can be expressed as the sum of two squares. If 4 | m, then

8n+ 2 = 2(2m+ 1)2 = (2m+ 1)2 + (2m+ 1)2 + 8× 02

with 2m+ 1 ≡ 1 (mod 8). If 4 - m, then 2m+ 1 = u2 + (2v)2 for some odd integers
u and v, and hence

8n+ 2 =2(u2 + 4v2)2 = 2((u2 − 4v2)2 + (4uv)2)

=(u2 − 4v2 + 4uv)2 + (u2 − 4v2 − 4uv)2 + 8× 02

with u2 − 4v2 ± 4uv ≡ 1 (mod 8).

Case 3. n = 2p3(m) with m ∈ N, and 2m+ 1 has a prime factor p ≡ 3 (mod 4).
By Lagrange’s four-square theorem, we can write p = a2 + b2 + c2 + d2, where a

is an even number and b, c, d are odd numbers. Thus

p2 =(a2 + b2 − c2 − d2)2 + 4(a2 + b2)(c2 + d2)

=(a2 + b2 − c2 − d2)2 + (2ac+ 2bd)2 + (2ad− 2bc)2

and hence (2m + 1)2 = x2 + (2y)2 + (2z)2 for some odd integers x, y, z. Observe
that

8n+ 2 = 2(2m+ 1)2 = (x+ 2y)2 + (x− 2y)2 + 8z2

and (x+ 2y)2 + (x− 2y)2 ≡ 2− 8z2 ≡ 10 6≡ 32 + 32 (mod 16). So one of x+ 2y and
x− 2y is congruent to 1 or −1 modulo 8.

Now we give an alternative approach to Case 3. There are three classes in the
genus of x2 + y2 + 32z2 with the three representatives

f1(x, y, z) =x2 + y2 + 32z2,

f2(x, y, z) =2x2 + 2y2 + 9z2 + 2yz − 2zx,

f3(x, y, z) =x2 + 4y2 + 9z2 − 4yz.

The class of f1 and the class of f2 constitute a spinor genus while another spinor
genus in the genus only contains the class of f3. Since 2 is a primitive spinor
exceptional integer for this genus, by Lemma 5.2 we can write 2p2 as

f3(u, v, w) = u2 + 4v2 + 9w2 − 4vw = u2 + (2v − w)2 + 8w2

with u, v, w ∈ Z. Since 2 - uw, we see that 8n+ 2 = 2(2m+ 1)2 = a2 + b2 + 8c2 for
some odd integers a, b, c. As a2 + b2 ≡ 2 − 8c2 ≡ 10 6≡ 32 + 32 (mod 16), a or b is
congruent to 1 or −1 modulo 8. This concludes our discussion of Case 3.

In view of the above, we have completed the proof of Theorem 1.4. �

References

[1] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence,
RI, 2006. MR 2246314

[2] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978. MR 522835

[3] L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math., 49
(1927), 39–56. MR 1506600

http://dx.doi.org/10.1090/stml/034
http://www.ams.org/mathscinet-getitem?mr=2246314&return=pdf
http://www.ams.org/mathscinet-getitem?mr=522835&return=pdf
http://dx.doi.org/10.2307/2370770
http://www.ams.org/mathscinet-getitem?mr=1506600&return=pdf


SOME UNIVERSAL QUADRATIC SUMS OVER THE INTEGERS 87

[4] L. E. Dickson, Modern Elementary Theory of Numbers, Univ. of Chicago Press, Chicago,

1939. MR 0000387

[5] A. G. Earnest, Congruence conditions on integers represented by ternary quadratic forms,
Pacific J. Math., 90 (1980), 325–333. MR 600634

[6] A. G. Earnest, Representation of spinor exceptional integers by ternary quadratic forms,

Nagoya Math. J ., 93 (1984), 27–38. MR 738916
[7] F. Ge and Z.-W. Sun, On some universal sums of generalized polygonals, Colloq. Math., 145

(2016), 149–155. MR 3514268

[8] S. Guo, H. Pan and Z.-W. Sun, Mixed sums of squares and triangular numbers (II), Integers,
7 (2007), A56, 5pp (electronic). MR 2373118

[9] W. C. Jagy, Five regular or nearly-regular ternary quadratic forms, Acta Arith., 77 (1996),
361–367. MR 1414516

[10] W. C. Jagy, I. Kaplansky and A. Schiemann, There are 913 regular ternary forms, Mathe-

matika, 44 (1997), 332–341. MR 1600553
[11] W. C. Jagy, Integral Positive Ternary Quadratic Forms, Lecture Notes, 2014. Available from:

http://zakuski.math.utsa.edu/~kap/Jagy_Encyclopedia.pdf.

[12] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta
Math., 70 (1939), 165–191. MR 1555447

[13] J. Ju, B.-K. Oh and B. Seo, Ternary universal sums of generalized polygonal numbers, Int.

J. Number Theory, 15 (2019), 655–675. MR 3943886
[14] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math., Vol. 106, Cambridge,

1993. MR 1245266

[15] B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J. Korean Math. Soc.,
48 (2011), 837–847. MR 2840527

[16] B.-K. Oh and Z.-W. Sun, Mixed sums of squares and triangular numbers (III), J. Number
Theory, 129 (2009), 964–969. MR 2499416

[17] O. T. O’Meara, Introduction to Quadratic Forms, Springer, New York, 1963. MR 0152507

[18] S. Ramanujan, On the expression of a number in the form ax2 + by2 + cz2 + dw2, Proc.
Cambridge Philos. Soc., 19 (1917), 11–21.

[19] Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith., 127 (2007), 103–113.

MR 2289977
[20] Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math., 58 (2015), 1367–1396.

MR 3353977

[21] Z.-W. Sun, A result similar to Lagrange’s theorem, J. Number Theory, 162 (2016), 190–211.
MR 3448267

[22] Z.-W. Sun, On x(ax + 1) + y(by + 1) + z(cz + 1) and x(ax + b) + y(ay + c) + z(az + d), J.

Number Theory, 171 (2017), 275–283. MR 3556686
[23] Z.-W. Sun, Sequence A286944 in OEIS, 2017. Available from: http://oeis.org/A286944.

[24] Z.-W. Sun, Universal sums of three quadratic polynomials, Sci. China Math., 2018. Available

from: https://doi.org/10.1007/s11425-017-9354-4. See also arXiv:1502.03056.
[25] Z.-W. Sun, On universal sums x(ax + b)/2 + y(cy + d)/2 + z(ez + f)/2, Nanjing Univ. J.

Math. Biquarterly, 35 (2018), 85–199.
[26] T. Yang, An explicit formula for local densities of quadratic forms, J. Number Theory, 72

(1998), 309–356. MR 1651696

Hai-Liang Wu, Department of Mathematics, Nanjing University, Nanjing 210093, Chi-

na
E-mail address: whl.math@smail.nju.edu.cn

Zhi-Wei Sun, Department of Mathematics, Nanjing University, Nanjing 210093, China
E-mail address: zwsun@nju.edu.cn

http://www.ams.org/mathscinet-getitem?mr=0000387&return=pdf
http://dx.doi.org/10.2140/pjm.1980.90.325
http://www.ams.org/mathscinet-getitem?mr=600634&return=pdf
http://dx.doi.org/10.1017/S0027763000020717
http://www.ams.org/mathscinet-getitem?mr=738916&return=pdf
http://www.ams.org/mathscinet-getitem?mr=3514268&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2373118&return=pdf
http://dx.doi.org/10.4064/aa-77-4-361-367
http://www.ams.org/mathscinet-getitem?mr=1414516&return=pdf
http://dx.doi.org/10.1112/S002557930001264X
http://www.ams.org/mathscinet-getitem?mr=1600553&return=pdf
http://zakuski.math.utsa.edu/~kap/Jagy_Encyclopedia.pdf
http://dx.doi.org/10.1007/BF02547347
http://www.ams.org/mathscinet-getitem?mr=1555447&return=pdf
http://dx.doi.org/10.1142/S1793042119500350
http://www.ams.org/mathscinet-getitem?mr=3943886&return=pdf
http://dx.doi.org/10.1017/CBO9780511666155
http://www.ams.org/mathscinet-getitem?mr=1245266&return=pdf
http://dx.doi.org/10.4134/JKMS.2011.48.4.837
http://www.ams.org/mathscinet-getitem?mr=2840527&return=pdf
http://dx.doi.org/10.1016/j.jnt.2008.10.002
http://www.ams.org/mathscinet-getitem?mr=2499416&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0152507&return=pdf
http://dx.doi.org/10.4064/aa127-2-1
http://www.ams.org/mathscinet-getitem?mr=2289977&return=pdf
http://dx.doi.org/10.1007/s11425-015-4994-4
http://www.ams.org/mathscinet-getitem?mr=3353977&return=pdf
http://dx.doi.org/10.1016/j.jnt.2015.10.014
http://www.ams.org/mathscinet-getitem?mr=3448267&return=pdf
http://dx.doi.org/10.1016/j.jnt.2016.07.024
http://www.ams.org/mathscinet-getitem?mr=3556686&return=pdf
http://oeis.org/A286944
http://dx.doi.org/10.1007/s11425-017-9354-4
https://doi.org/10.1007/s11425-017-9354-4
http://arxiv.org/pdf/1502.03056
http://dx.doi.org/10.1006/jnth.1998.2258
http://www.ams.org/mathscinet-getitem?mr=1651696&return=pdf

	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	4. Proof of Theorem 1.3
	5. Proof of Theorem 1.4
	References

