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A NEW EXTENSION OF THE SUN-ZAGIER RESULT
INVOLVING BELL NUMBERS AND DERANGEMENT

NUMBERS

ZHI-WEI SUN

Abstract. Let p be any prime and let a and n be positive integers
with p - n. We show that

pa−1∑
k=1

Bk

(−n)k
≡ a(−1)n−1Dn−1 (mod p),

where B0, B1, . . . are the Bell numbers and D0, D1, . . . are the de-
rangement numbers. This extends a result of Sun and Zagier pub-
lished in 2011. Furthermore, we prove that

(−x)n
pa−1∑
k=1

Bk(x)

(−n)k
≡ −

a∑
r=1

xpr
n−1∑
k=0

(n− 1)!

k!
(−x)k (mod pZp[x]),

where Bk(x) =
∑k

l=0 S(k, l)x
l is the Bell polynomial of degree k

with S(k, l) (0 6 l 6 k) the Stirling numbers of the second kind,
and Zp is the ring of all p-adic integers.

1. Introduction

Let B0 = 1. For each n ∈ Z+ = {1, 2, 3, . . .} let Bn denote the
number of partitions of a set of cardinality n. For example, B3 = 5
since there are totally 5 partitions of {1, 2, 3}:
{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1, 2, 3}}.

The Bell numbers B0, B1, . . ., named after Bell who studied them in
the 1930s, play important roles in combinatorics. Here are the values
of B1, . . . , B7:

B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877.

It is known that
∞∑
n=0

Bn
xn

n!
= ee

x−1 and Bn+1 =
n∑

k=0

(
n

k

)
Bk (n = 0, 1, 2, . . .).
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The author’s conjecture (cf. [6, Conjecture 3.2]) that the sequence
( n+1
√
Bn+1/

n
√
Bn)n>1 is strictly decreasing (with limit 1), is still open.

For any prime p and m,n ∈ N = {0, 1, 2, . . .}, we have the classical
Touchard congruence (cf. [8])

Bpm+n ≡ mBn +Bn+1 (mod p).

Let D0 = 1, and define Dn (n ∈ Z+) by

Dn = |{π ∈ Sn : π(k) 6= k for all k = 1, . . . , n}|,

where Sn is the symmetric group of all permutations on {1, . . . , n}.
Those D0, D1, D2, . . . are called the derangement numbers, and they
were first introduced by Euler. It is well known that

Dn = n!
n∑

k=0

(−1)k

k!
for all n ∈ N.

In 2011, the author and Zagier [7] showed that for any prime p and
n ∈ Z+ with p - n we have

p−1∑
k=1

Bk

(−n)k
≡ (−1)n−1Dn−1 (mod p), (1.1)

which relates the Bell numbers to the derangement numbers. The sur-
prising congruence (1.1) was called the Sun-Zagier congruence by Sun,
Wu and Zhuang [5] who used the umbral calculus to give a generaliza-
tion, by Mező and Ramirez [3] in 2017 who extended it to the so-called
r-Bell numbers, and by Mu [4] in 2018 who re-proved via an identity
of Clarke and Sved [1] relating the Bell numbers to the derangement
numbers.

In this paper we extend the fundamental Sun-Zagier result in a new
way.

Theorem 1.1. Let p be any prime and let a be a positive integer. For
any n ∈ Z+ with p - n, we have

pa−1∑
k=1

Bk

(−n)k
≡ a(−1)n−1Dn−1 (mod p). (1.2)

Remark 1.1. Note that (1.2) in the case a = 1 gives (1.1).

For n ∈ Z+ and k ∈ {0, . . . , n}, the Stirling number S(n, k) of the
second kind denotes the number of ways to partition the set {1, . . . , n}
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into k disjoint nonempty parts. In addition, we adopt the usual con-
vention S(0, 0) = 1. For n > k > 0, it is well known that

k!S(n, k) =
k∑

j=0

(
k

j

)
(−1)k−jjn. (1.3)

For any n ∈ N, the Bell polynomial (or the Touchard polynomial) of
degree n is given by

Bn(x) =
n∑

k=0

S(n, k)xk. (1.4)

Clearly, Bn(1) = Bn for all n ∈ N, and Bn(x) = x
∑n

k=1 S(n, k)xk−1 for
all n ∈ Z+. Theorem 1.1 actually follows from our following theorem
concerning the Bell polynomials.

Theorem 1.2. Let a be any positive integer. For any n ∈ Z+ and
prime p - n, we have

(−x)n
pa−1∑
k=1

Bk(x)

(−n)k
≡ −

a∑
r=1

xp
r
n−1∑
k=0

(n− 1)!

k!
(−x)k (mod pZp[x]), (1.5)

where Zp denotes the ring of all p-adic integers.

Remark 1.2. The congruence (1.5) in the case a = 1 was deduced
by Sun and Zagier [7] via the usual explicit formula (1.3) for Stirling
numbers of the second kind. Our Theorem 1.2 can be further extended
in the spirit of [5, 3], we omit the details.

We will show Theorem 1.2 in the next section.

2. Proof of Theorem 1.2

Lemma 2.1. Let p be a prime and let a ∈ Z+.
(i) For any j, k ∈ N with j + k 6 pa − 1, we have(

pa − 1− k
j

)/(
−1− k

j

)
≡ 1 (mod p).

In particular,(
pa − 1

j

)
≡ (−1)j (mod p) for all j = 0, . . . , pa − 1.

(ii) We have

Bpa(x) ≡
a∑

r=0

xp
r

(mod pZp[x]).
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Proof. (i) Since j + k < pa we have(
pa−1−k

j

)(−1−k
j

) =

∏
0<i6j

pa−i−k
i∏

0<i6j
−i−k

i

=
∏

0<i6j

(
1− pa

i+ k

)
≡ 1 (mod p).

When k = 0, this yields(
pa − 1

j

)
≡
(
−1

j

)
= (−1)j (mod p).

(ii) By Gertsch and Robert’s extension [2] of Touchard’s congruence,
for any n ∈ N we have

Bpa+n(x) ≡ Bn+1(x) +Bn(x)
a∑

r=1

xp
r

(mod pZp[x]).

In particular,

Bpa(x) ≡ B1(x) +B0(x)
a∑

r=1

xp
r

= x+
a∑

r=1

xp
r

=
a∑

r=0

xp
r

(mod pZp[x]).

In view of the above, we have completed the proof of Lemma 2.1. �

Proof of Theorem 1.2. It is known that

Bm+1(x) = x
m∑
k=0

(
m

k

)
Bk(x) for all m ∈ N. (2.1)

In light of this and Lemma 2.1, for any prime p we have

pa−1∑
k=1

(−1)kBk(x) ≡
pa−1∑
k=1

(
pa − 1

k

)
Bk(x) =

Bpa(x)

x
−B0(x)

≡
a∑

r=1

xp
r−1 (mod pZp[x]).

So the desired result holds when n = 1.
Now we fix n ∈ Z+ and assume that (1.5) holds for every prime p - n.
Let p be any prime not dividing n+1. If p | n, then n!/k! ≡ 0 (mod p)

for all k = 0, . . . , n− 1, and hence

(−x)n+1

pa−1∑
k=1

Bk(x)

(−n− 1)k
≡(−x)n+1

pa−1∑
k=1

Bk(x)

(−1)k
≡ (−x)n+1

a∑
r=1

xp
r−1

≡−
a∑

r=1

xp
r

n∑
k=0

n!

k!
(−x)k (mod pZp[x]).
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Now we suppose that p - n. In view of (2.1) and Lemma 2.1, we have

pa−1∑
k=1

Bk(x)/x

(−n)k
=

pa−1∑
k=1

∑k−1
l=0

(
k−1
l

)
Bl(x)

(−n)k
=

pa−2∑
l=0

Bl(x)

(−n)l

pa−1∑
k=l+1

(
k−1
l

)
(−n)k−l

=

pa−2∑
l=0

Bl(x)

(−n)l+1

pa−1−l∑
r=1

(
l+r−1
r−1

)
(−n)r−1

=

pa−2∑
l=0

Bl(x)

(−n)l+1

pa−1−l∑
r=1

(−l−1
r−1

)
nr−1

≡
pa−2∑
l=0

Bl(x)

(−n)l+1

pa−1−l∑
r=1

(
pa − 1− l
r − 1

)
n−(r−1)

≡
pa−1∑
l=0

Bl(x)

(−n)l+1

((
1 +

1

n

)pa−1−l

− 1

npa−1−l

)

≡
pa−1∑
l=0

nlBl(x)

(−n)l+1

(
1

(n+ 1)l
− 1

)
(mod p)

with the aid of Fermat’s little theorem. Therefore

−n
pa−1∑
k=1

Bk(x)/x

(−n)k
≡

pa−1∑
k=1

Bk(x)

(−n− 1)k
−

pa−1∑
l=1

Bl(x)

(−1)l
(mod pZp[x])

and hence
pa−1∑
k=1

Bk(x)

(−n− 1)k
≡ −n

pa−1∑
k=1

Bk(x)/x

(−n)k
+

a∑
r=1

xp
r−1 (mod pZp[x]).

Combining this with (1.5), we obtain

(−x)n+1

pa−1∑
k=1

Bk(x)

(−n− 1)k
≡− n

a∑
r=1

xp
r
n−1∑
k=0

(n− 1)!

k!
(−x)k + (−x)n+1

a∑
r=1

xp
r−1

=−
a∑

r=1

xp
r

n∑
k=0

n!

k!
(−x)k (mod pZp[x]).

This concludes the induction step.
By the above, the proof of Theorem 1.1 is now complete. �
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