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Abstract. Let a, b, c, d, e, f be integers with a > c > e > 0, b > −a and b ≡ a (mod 2),

d > −c and d ≡ c (mod 2), f > −e and f ≡ e (mod 2). Suppose that b > d if a = c,
and d > f if c = e. When b(a − b), d(c − d) and f(e − f) are not all zero, we prove

that if each n ∈ N = {0, 1, 2, . . . } can be written x(ax+ b)/2 + y(cy + d)/2 + z(ez + f)/2

with x, y, z ∈ N then the tuple (a, b, c, d, e, f) must be on our list of 473 candidates, and
show that 56 of them meet our purpose. When b ∈ [0, a), d ∈ [0, c) and f ∈ [0, e), we

investigate the universal tuples (a, b, c, d, e, f) over Z for which any n ∈ N can be written

x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x, y, z ∈ Z, and show that there are totally 12082
such candidates some of which are proved to be universal tuples over Z. For example, we

show that any n ∈ N can be written as x(x+1)/2+y(3y+1)/2+z(5z+1)/2 with x, y, z ∈ Z,
and conjecture that each n ∈ N can be written as x(x+ 1)/2 + y(3y + 1)/2 + z(5z + 1)/2
with x, y, z ∈ N.

1. Introduction

Recall that the triangular numbers have the form Tx = x(x+ 1)/2 with x ∈ Z. Since
T−1−n = Tn for all n ∈ N = {0, 1, 2, . . . }, we have {Tx : x ∈ Z} = {Tn : n ∈ N}. In
1796 Gauss proved Fermat’s assertion that each n ∈ N can be written as the sum of
three triangular numbers. For each m = 3, 4, 5, . . . the m-gonal numbers (or polygonal
numbers of order m) are given by

pm(x) := (m− 2)

(
x

2

)
+ x =

x((m− 2)x− (m− 4))

2
(x ∈ N).

Note that p3(x) = Tx and p4(x) = x2. For m ∈ {5, 6, 7, . . . }, those pm(x) with x ∈ Z
are called generalized m-gonal numbers.

For a subset S of Z and polynomials f1(x), f2(x), f3(x) with fi(S) = {fi(x) : x ∈
S} ⊆ N for i = 1, 2, 3, if any n ∈ N can be written as f1(x)+f2(y)+f3(z) with x, y, z ∈ S
then we call the sum f1(x) + f2(y) + f3(z) universal over S.
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Let Z+ = {1, 2, 3, . . . }. In 1862 Liouville (cf. Berndt [B, p. 82] and Dickson [D99,
p. 23]) determined all those universal sums aTx+bTy+cTz (over N or Z) with a, b, c ∈ Z+.
It is known that ax2 + by2 + cz2 is not universal (over N or Z) for any a, b, c ∈ Z+ (cf.
[DW]). The determination of those universal sums api(x)+bpj(y)+cpk(z) (over N or Z)
with {i, j, k} = {3, 4} and a, b, c ∈ Z+ was proposed by the author [S07] and completed
via the three papers [S07], [GPS] and [OS]. Note that

{Tx + Ty : x, y ∈ Z} = {x2 + 2Ty : x, y ∈ Z} (1.1)

as observed by Euler (cf. [D99, p. 11]); in fact, x2+2Ty = Tx+y+Ty−x = Tx+y+Tx−y−1.
The author [S15] showed that there are only 95 candidates for universal sums api(x)+

bpj(y) + cpk(z) over N with a, b, c ∈ Z+, i, j, k ∈ {3, 4, 5, . . . } and max{i, j, k} > 5.
Though none of the 95 sums has been proved to be universal over N, many of them
have been proved to be universal over Z (cf. [S15] and [JOS]).

For c ∈ Z+ and m ∈ {3, 4, . . . }, clearly cpm(x) = x(a0x + b0)/2 with a0 = c(m − 2)
and b0 = −c(m − 4) ∈ (−a0, a0]. Instead of cpm(x), we may consider more general
polynomials

ψa,b(x) :=
x(ax+ b)

2
with a ∈ Z+, b ∈ Z, b > −a and a ≡ b (mod 2). (1.2)

Clearly, ψa,b(N) ⊆ N. For positive integers a, c, e and integers b > −a, d > −c, f > −e
with a+ b, c+ d, e+ f all even, if ψa,b(x) +ψc,d(y) +ψe,f (z) is universal over N then we
simply call the ordered tuple (a, b, c, d, e, f) universal over N. In view of Liouville’s result
(cf. [D99, p. 23]), and [S07], [GPS] and [OS], all those universal tuples (a, b, c, d, e, f)
over N with b ∈ {0, a}, d ∈ {0, c} and f ∈ {0, e} have been determined.

In our first theorem, we give some new universal tuples (a, b, c, d, e, f) over N with
a | b, c | d and e | f .

Theorem 1.1. All the following 56 ordered tuples

(1, 3, 1, 1, 1, 1), (1, 3, 1, 3, 1, 1), (1, 5, 1, 1, 1, 1), (1, 5, 1, 3, 1, 1), (1, 7, 1, 1, 1, 1),

(1, 7, 1, 3, 1, 1), (1, 9, 1, 1, 1, 1), (2, 0, 1, 3, 1, 1), (2, 0, 1, 3, 1, 3), (2, 0, 1, 5, 1, 1),

(2, 0, 1, 5, 1, 3), (2, 0, 1, 7, 1, 1), (2, 0, 1, 7, 1, 3), (2, 0, 1, 9, 1, 1), (2, 0, 1, 9, 1, 3),

(2, 0, 1, 11, 1, 1), (2, 0, 1, 11, 1, 3), (2, 0, 1, 13, 1, 1), (2, 0, 1, 13, 1, 3), (2, 0, 1, 15, 1, 1),

(2, 0, 2, 0, 1, 3), (2, 2, 1, 3, 1, 1), (2, 2, 1, 5, 1, 1), (2, 2, 1, 7, 1, 1), (2, 2, 2, 0, 1, 3),

(2, 2, 2, 0, 1, 5), (2, 2, 2, 0, 1, 7), (2, 2, 2, 0, 1, 9), (2, 4, 1, 1, 1, 1), (2, 4, 2, 0, 1, 1),

(2, 4, 2, 0, 1, 3), (2, 4, 2, 2, 1, 1), (2, 4, 2, 2, 2, 0), (2, 6, 1, 1, 1, 1), (2, 6, 1, 3, 1, 1),

(2, 6, 2, 0, 1, 1), (2, 6, 2, 0, 1, 3), (2, 6, 2, 2, 1, 1), (2, 6, 2, 2, 2, 0), (2, 8, 1, 1, 1, 1),

(2, 8, 2, 0, 1, 1), (2, 8, 2, 0, 1, 3), (2, 8, 2, 2, 2, 0), (2, 10, 2, 0, 1, 1), (2, 10, 2, 0, 1, 3),

(2, 12, 2, 0, 1, 1), (2, 12, 2, 0, 1, 3), (2, 14, 2, 0, 1, 1), (3, 3, 2, 0, 1, 3), (3, 9, 2, 0, 1, 1),

(3, 9, 2, 0, 1, 3), (4, 0, 1, 3, 1, 1), (4, 0, 1, 5, 1, 1), (4, 0, 1, 7, 1, 1), (4, 4, 1, 3, 1, 1)

(8, 0, 1, 3, 1, 1)

are universal over N.

We have the following conjecture on other possible universal tuples (a, b, c, d, e, f)
over N with a | b, c | d and e | f .
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Conjecture 1.2. The following 10 ordered tuples

(4, 0, 2, 0, 1, 3), (4, 0, 2, 0, 1, 5), (4, 0, 2, 6, 1, 1), (4, 0, 2, 6, 2, 0), (4, 4, 2, 0, 1, 3),

(4, 8, 2, 0, 1, 1), (4, 8, 2, 0, 1, 3), (4, 12, 2, 0, 1, 1), (6, 0, 2, 0, 1, 3), (6, 6, 2, 0, 1, 3)

are universal over N.

Remark 1.3. It is easy to see that (4, 8, 2, 0, 1, 3) is universal over N if and only if any
integer n > 2 can be written as x2 + 2y2 + Tz with x ∈ N and y, z ∈ Z+.

Now we state our second theorem.

Theorem 1.4. Let a, c, e be positive integers and let b > −a, d > −c and f > −e be
integers with a+ b, c+ d, e+ f all even. Suppose that a > c > e, and b > d if a = c, and
d > f if c = e, and that the ordered tuple (a, b, c, d, e, f) is universal over N.

(i) If a | b, c | d and e | f , but b(a − b), d(c − d), f(e − f) are not all zero, then
(a, b, c, d, e, f) must be among the 56 tuples in Theorem 1.1 or the 10 tuples in Conjecture
1.1.

(ii) If a - b or c - d or e - f , then (a, b, c, d, e, f) must be among the 407 tuples listed
in the Appendix.

Conjecture 1.5. All the 407 tuples in the Appendix are universal over N. In particular,{
x(x+ 1)

2
+
y(3y + 1)

2
+
z(5z + 1)

2
: x, y, z ∈ N

}
= N. (1.3)

Remark 1.6. The author would like to offer 135 US dollars for the first proof of (1.3).
In [S17] the author conjectured that any n ∈ Z+ can be written as x3 + y2 + Tz with
x, y ∈ N and z ∈ Z+; we also conjecture that x3 + Ty + z(3z + 7)/2 is universal over N.

Guy [G94] noted that p5(x) + p5(y) + p5(z) is universal over Z. Sun [S15] proved
that if ap5(x) + bp5(y) + cp5(z) is universal over Z with a, b, c ∈ Z+ and a 6 b 6 c then
(a, b, c) is among the following 20 triples:

(1, 1, i) (i = 1, . . . , 6, 8, 9, 10), (1, 2, j) (j = 2, 3, 4, 6, 8), (1, 3, k) (k = 3, 4, 6, 7, 8, 9).

By Sun [S15, Theorem 1.1(ii)], Ge and Sun [GS], and Oh [O11], for each (a, b, c) among
the 20 triples the sum ap5(x) + bp5(y) + cp5(z) is indeed universal over Z.

Recall that Tx + Ty + Tz is universal over Z. It is easy to see that

ψ1,1(Z) = {Tx : x ∈ Z} = {x(2x+ 1) : x ∈ Z} = ψ4,2(Z). (1.4)

Motivated by this, Sun [S17] investigated universal sums over Z of the form x(ax+ 1) +
y(by + 1) + z(cz + 1) with 1 6 a 6 b 6 c, or the form x(ax+ b) + y(ay + c) + z(az + d)
with 2 < a > b > c > d > 0. Later, Ju and Oh [JO] proved some conjectures of Sun
[S17] in this direction.

For a ∈ Z+, clearly ψa,−b(Z) = ψa,b(Z) for all b = 0, . . . , a with b ≡ a (mod 2), and
ψa,a(Z) = ψ4a,2a(Z) by (1.4). Thus we are led to find all the sums

ψa,b(x) + ψc,d(y) + ψe,f (z) =
x(ax+ b)

2
+
y(cy + d)

2
+
z(ez + f)

2
(1.5)

which are universal over Z, where a, c, e ∈ Z+, b, d, f ∈ N, b < a and a ≡ b (mod 2),
d < c and c ≡ d (mod 2), and f < e and e ≡ f (mod 2). If the sum in (1.5) is universal
over Z, then we say that the ordered tuple (a, b, c, d, e, f) is universal over Z.
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Theorem 1.7. Let a, b, c, d, e, f ∈ N with a > b, c > d, e > f , a ≡ b (mod 2), c ≡ d
(mod 2), e ≡ f (mod 2), a > c > e > 2, and b > d if a = c, and d > f if c = e.
Suppose that the ordered tuple (a, b, c, d, e, f) is universal over Z. Then (a, b, c, d, e, f)
must be among the 12082 ordered tuples listed in [S17a].

Remark 1.8. Chan and Oh [CO] showed that there are only finitely many equivalence
classes of positive ternary universal integral quadratic polynomials. We have analysed
those tuples (a, b, c, d, e, f) with a 6 5 listed in [S17a], only the following 10 tuples

(5, 1, 2, 0, 2, 0), (5, 3, 2, 0, 2, 0), (5, 1, 4, 0, 2, 0), (5, 3, 4, 0, 2, 0), (5, 1, 4, 0, 3, 1),

(5, 3, 4, 0, 3, 1), (5, 1, 5, 1, 2, 0), (5, 3, 5, 3, 2, 0), (5, 3, 4, 0, 4, 0), (5, 3, 5, 3, 4, 0)

have not yet been proved to be universal over Z.

For polynomials f1, f2, f3, f4 with fi(Z) ⊆ N, if

{f1(x) + f2(y) : x, y ∈ Z} = {f3(x) + f4(y) : x, y ∈ Z}

then we say that f1(x) + f2(y) is equivalent to f3(x) + f4(y) and write f1(x) + f2(y) ∼
f3(x)+f4(y) for this. (1.1) indicates that Tx+Ty ∼ x2 +2Ty. In light of this, we obtain
the following auxiliary result which has its own interest.

Theorem 1.9. (i) For any a ∈ Z+ and b ∈ N with b 6 a/2, we have

x(ax+ b) + y(ay + a− b) ∼ aTx + ψa,a−2b(y). (1.6)

(ii) We have

x2 + Ty ∼ p5(x) + 2p5(y), (1.7)

Tx + 2Ty ∼ p5(x) + p8(y), (1.8)

x2 + 4Ty ∼ 4p5(x) + p8(y), (1.9)

Tx + Ty ∼ ψ5,1(x) + ψ5,3(y). (1.10)

Remark 1.10. (1.6) with a = 1 and b = 0 gives (1.1). Putting a = 3 and b = 1 in (1.6)
we get

2p5(x) + p8(y) ∼ 3Tx + p5(y). (1.11)

With helps of Theorem 1.9 and the theory of ternary quadratic forms, we establish
the following new result.

Theorem 1.11. (i) We have{
x(x+ 1)

2
+
y(3y + 1)

2
+
z(5z + 1)

2
: x, y, z ∈ Z

}
= N. (1.12)

(ii) For any δ ∈ {0, 1} and r ∈ {1, 3, 5}, we have{
x(x+ δ) +

y(3y + 1)

2
+
z(5z + r)

2
: x, y, z ∈ Z

}
= N. (1.13)
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(iii) For any r, s, t ∈ {1, 3} with {r, s} 6= {3}, we have{
x(3x+ r)

2
+
y(3y + s)

2
+
z(5z + t)

2
: x, y, z ∈ Z

}
= N. (1.14)

(iv) Let s, t ∈ {1, 3, 5} with {s, t} 6= {5}. Then{
x(3x+ 1)

2
+
y(5y + s)

2
+
z(5z + t)

2
: x, y, z ∈ Z

}
= N. (1.15)

Remark 1.12. The author [S17, Conjecture 1.2] conjectured that x2 + y(3y + 1)/2 +
z(5z + 3)/2 is universal over N. In view of (1.11), and (1.14) with r = 3, s = 1 and
t ∈ {1, 3}, the tuples (6, 4, 6, 2, 5, 1) and (6, 4, 6, 2, 5, 3) are universal over Z.

We are going to prove Theorem 1.1 in Section 3 based on some lemmas given in the
next section. Theorems 1.4 and 1.7 and Theorems 1.9 and 1.11 will be shown in Sections
4 and 5 respectively.

2. Some lemmas

The Gauss-Legendre theorem on sums of three squares (cf. [N96, pp. 17-23]) asserts
that {x2 + y2 + z2 : x, y, z ∈ Z} = N \ {4k(8l + 7) : k, l ∈ N}. For n ∈ N we define

R3(n) := |{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n and gcd(x, y, z) = 1}|.

Lemma 2.1 (Gauss). Let n ∈ N. Then R3(1) = 6, R3(2) = 12, R3(3) = 8, and

R3(n) =


12h(−n) if n > 3 and n ≡ 1, 2 (mod 4),

24h(−n) if n > 3 and n ≡ 3 (mod 8),

0 if 4 | n or n ≡ 7 (mod 8),

where h(−n) denotes the class number of the field Q(
√
−n).

Remark 2.2. One may consult [P, p. 140] for this classical result.

Lemma 2.3. Let n ∈ Z+ be squarefree.
(i) h(−n) = 1 if and only if n is among the following nine numbers

1, 2, 3, 7, 11, 19, 43, 67, 163.

(ii) h(−n) = 2 if and only if n is among the following numbers

5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427.

(iii) h(−n) = 3 if and only if n is among the following numbers

23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907.
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(iv) h(−n) = 4 if and only if n is among the following numbers

14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97,

102, 130, 133, 142, 155, 177, 190, 193, 195, 203, 219, 253, 259, 291,

323, 355, 435, 483, 555, 595, 627, 667, 715, 723, 763, 795, 955, 1003,

1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555.

(v) If n ≡ 1 (mod 8), then h(−n) ∈ {5, 6, 7, 8} if and only if n is among the following
numbers

41, 65, 105, 113, 137, 145, 217, 265, 273, 313, 337, 345, 385, 457, 505, 553, 697, 793.

Remark 2.4. This is a known result, see, [A], [ARW], [W], [Wa] and [We].

Lemma 2.5. Any integer n > 1 can be written as Tx + Ty + Tz with x, y ∈ Z+ and
z ∈ N.

Proof. By Gauss’ result, n = Tx + Ty + Tz for some x, y, z ∈ N with x > y > z. If y > 0
then x, y ∈ Z+. If y = 0, then z is also zero and n = Tx is a triangular number.

Now assume that n = Tm > 1 with m ∈ N. Clearly, m > 1. If 8Tm+3 = (2m+1)2+2
is divisible by d2 for some integer d > 1, then

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8Tm + 3 & gcd(x, y, z) = d}| = R3

(
8Tm + 3

d2

)
> 0

by Lemma 2.1, and hence 8Tm + 3 = x2 + y2 + z2 for some positive odd integers
x, y, z with min{x, y} > d > 1. When 8Tm + 3 = (2m + 1)2 + 2 is squarefree, by
Lemma 2.1 and Lemma 2.3(i) we have R3(8Tm + 3) = 24h(−8Tm − 3) > 24 since
8Tm+3 = (2m+1)2+2 6∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, hence there are integral solutions
of the equation x2 + y2 + z2 = 8Tm + 3 other than the 24 trivial solutions

(±1,±1,±(2m+ 1)), (±1,±(2m+ 1),±1), (±(2m+ 1),±1,±1).

Thus, for some x, y ∈ Z+ and z ∈ N we have

8Tm + 3 = (2x+ 1)2 + (2y + 1)2 + (2z + 1)2, i.e., Tm = Tx + Ty + Tz.

This concludes our proof. �

Lemma 2.6. Let n > 2 be an integer. Then

4n+ 2 = x2 + y2 + z2 for some x, y, z ∈ N with x > y > 1.

Proof. If d2 | 4n+ 2 for some integer d > 1, then R3((4n+ 2)/d2) > 0 (by Lemma 2.1)
and hence 4n+ 2 = (dx)2 + (dy)2 + (dz)2 for some x, y, z ∈ N with two of dx, dy, dz odd
and greater than one. If neither 4n nor 4n + 1 is a square, then 4n + 2 is not of the
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form x2 + 2 or x2 + 1 with x ∈ Z, and by the Gauss-Legendre theorem we can write
4n+ 2 = x2 + y2 + z2 with x, y, z ∈ N and x > y > 1.

Now assume that 4n+δ = t2 with δ ∈ {0, 1} and t ∈ N, and that 4n+2 is squarefree.
Then R3(4n + 2) = 12h(−4n − 2) > 24 by Lemmas 2.1 and 2.2. (Note that none of
22 − 2, 22 − 1, 58 − 2, 58 − 1 is a square.) So the equation 4n + 2 = x2 + y2 + z2 has
integral solutions other than the trivial solutions

(±1,±δ̄,±t), (±δ̄,±1,±t), (±1,±t,±δ̄), (±δ̄,±t,±1), (±t,±1,±δ̄), (±t,±δ̄,±1),

where δ̄ = 1 − δ. (No matter δ = 0 or 1 there are exactly 24 trivial solutions.) Hence
4n + 2 = x2 + y2 + z2 for some x, y, z ∈ N with x > y > z and y > 1. This ends the
proof. �

Lemma 2.7. Let n > 1 be an odd integer. Then, for each m = 1, 2 there are x, y, z ∈ N
with max{x, z} > 0 and max{y, z} > 0 such that x2 + y2 +mz2 = n2.

Proof. In 1907 Hurwitz (cf. [D99, p. 271]) showed that

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}| = 6
∏
p|n

(
pordp(n) +

(
1−

(
−1

p

))
pordp(n) − 1

p− 1

)
,

where ordp(n) is the order of n at the prime p and ( ·p ) is the Legendre symbol. This

implies that

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}| > 6
∏
p|n

pordp(n) = 6n > 6.

So the equation x2+y2+z2 = n2 has integral solutions other than the 6 trivial solutions
(0, 0,±n), (0,±n, 0), (±n, 0, 0). This proves the desired result in the case m = 1.

Now we consider the case m = 2. By a result of Cooper and Lam [CL], we have

|{(x, y, z) ∈ Z3 : x2 + y2 + 2z2 = n2}| =4
∏
p|n

pordp(n)+1 − 1− (−2p )(pordp(n) − 1)

p− 1

>4
∏
p|n

pordp(n)+1 − pordp(n)

p− 1
= 4n > 4.

So the equation x2+y2+2z2 = n2 has integral solutions other than the 4 trivial solutions
(±n, 0, 0) and (0,±n, 0). This proves the desired result in the case m = 2. �

Lemma 2.8. Let m > 3 be an integer. Then we can write Tm = x2 + y2 + Tz with
x, y, z ∈ N, y > 3 and z > 1.

Proof. It is easy to verify the desired result for m = 4, 5, 6, 7, 8. When m = a2 with
a ∈ {3, 4, . . . }, the desired result also holds since Tm = m+ Tm−1 = 02 + a2 + Ta2−1.

Now we assume that m is greater than 8 and not a square. By Dickson [D39, pp. 112-
113],

N \ {x2 + y2 + 2z2 : x, y, z ∈ Z} = {4k(16l + 14) : k, l ∈ N}.
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Thus, in view of Lemma 2.7, no matter 2m+1 is a square or not, 2m+1 = x2+y2+2z2 for
some x, y, z ∈ N with (x2+z2)(y2+z2) > 0. Note that x2+y2 > 1. If (x2+z2)(y2+z2) 6
16, then xy 6 4 and z 6 2, hence 2m+1 = x2 +y2 +2z2 6 17 which contradicts m > 8.
Thus (x2 + z2)(y2 + z2) > 16.

Observe that

8Tm + 1 =(2m+ 1)2 = (x2 + z2 + (y2 + z2))2

=(x2 + z2 − (y2 + z2))2 + 4(x2 + z2)(y2 + z2)

=(x2 − y2)2 + 4((xy + z2)2 + (xz − yz)2).

Since x 6≡ y (mod 2) and |x2 − y2| > x + y > 1, we have |x2 − y2| = 2w + 1 for some
w ∈ Z+. Note that (xy + z2)2 + (|x− y|z)2 = (x2 + z2)(y2 + z2) ≡ 0 (mod 2). Thus

u :=
xy + z2 + |x− y|z

2
∈ N and v :=

∣∣∣∣xy + z2 − |x− y|z
2

∣∣∣∣ ∈ N.

Since

u2 + v2 =
(xy + z2)2 + (xz − yz)2

2
=

(x2 + z2)(y2 + z2)

2
> 8,

we have max{u, v} > 3. Finally, 8Tm + 1 = (2w + 1)2 + 8(u2 + v2) and hence Tm =
u2 + v2 + Tw. This concludes the proof. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We first make a useful observation:

z(z + 2k + 1)

2
= Tz+k − Tk for all k ∈ N.

(a) Let k ∈ {1, 2, 3}. Clearly (1, 2k+1, 1, 3, 1, 1) is universal over N if and only if each
integer n > Tk + 1 can be written as Tx+k + Ty+1 + Tz with x, y, z ∈ N. Let n be any
integer with n > Tk + 1. By Lemma 2.3, we can write n as Tx +Ty +Tz with x, y, z ∈ N
and x > y > max{z, 1}. If x < k, then k ∈ {2, 3} and n = Tx + Ty + Tz 6 3Tk−1.
Note that 3T2−1 < T2 + 1, T3 + 1 = 7 and 3T3−1 = 9. Clearly, 7 = T3 + T1 + T0,
8 = T3 + T1 + T1 and 9 = T3 + T2 + T0. Thus (1, 2k + 1, 1, 3, 1, 1) is universal over N.

Similarly, for each k ∈ {1, 2, 3, 4}, the tuple (1, 2k + 1, 1, 1, 1, 1) is universal over N
and so is (2, 2, 2, 0, 1, 2k + 1) in view of (1.1).

(b) By Lemma 2.6, for any integer n > 2 there are x, y ∈ Z+ and z ∈ N with z 6 y
such that

4n+ 2 = (2x+ 1)2 + (y + z + 1)2 + (y − z)2, i.e., n = 2Tx + Ty + Tz.

So, for any n ∈ N there are x, y, z ∈ N such that n+ 3 = 2Tx+1 + Ty+1 + Tz and hence
n = x(x + 3) + y(y + 3)/2 + z(z + 1)/2. This prove the universality of (2, 6, 1, 3, 1, 1)
over N. As y(y+ 3)/2 = Ty+1− 1 and Ty +Tz ∼ y2 + 2Tz, the tuples (2, 6, 1, 1, 1, 1) and
(2, 6, 2, 2, 2, 0) are also universal over N.
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Let k ∈ {1, 2, 3}. It is easy to check that each n = Tk, Tk + 1, . . . , k2 − k + 6 can be
written as 2Tx + Ty + Tz with x, y, z ∈ N and z > k. Let n ∈ N with n > k(k − 1) + 6.
Then n = 2Tx + Ty + Tz for some x, y, z ∈ N. As n > 2T2 + Tk−1 + Tk−1, either
x > 3 or max{y, z} > k. If max{y, z} < k, then x > 3 > k, Ty + Tz 6 2Tk−1 =
k(k − 1) 6 6 and Ty + Tz 6= 5. It is easy to check that 2Tx + 2δ = 2Tδ + Tx + Tx and
2Tx + 2δ + 1 = 2Tδ + Tx−1 + Tx+1 for δ = 0, 1; also, 2Tx + 4 = 2T0 + Tx−2 + Tx+2 and
2Tx + 6 = T0 + T3 + 2Tx. Therefore (2, 2, 1, 2k + 1, 1, 1) is a universal tuple over N.

In view of Lemma 2.6, for any n ∈ Z+ we can write

8n+ 6 = 4(2n+ 1) + 2 = (2x+ 1)2 + (2y + 1)2 + w2

with x ∈ Z+ and y, w ∈ N. Since w2 ≡ 4 (mod 8), we have w = 2(2z + 1) for some
z ∈ N. Therefore 8n+ 6 = (2x+ 1)2 + (2y + 1)2 + 4(2z + 1)2, hence n = Tx + Ty + 4Tz
and n− 1 = m(m+ 3)/2 + Ty + 4Tz with m = x− 1 ∈ N. This proves the universality
of (4, 4, 1, 3, 1, 1) over N.

(c) The tuple (2, 0, 1, 15, 1, 1) is universal over N if and only if any integer n > 28 can
be written in the form x2 + Ty + Tz with x, y, z ∈ N and max{y, z} > 7. It is easy to
verify that every n = 28, 29, . . . , 78 can be written as x2 + Ty + Tz with x, y, z ∈ N and
z > 7. Now let n ∈ N with n > 78. We can write n as x2 + Ty + Tz with x, y, z ∈ N (cf.
[S07]). Suppose that max{y, z} 6 6. Then n− x2 = Ty + Tz belongs to the set

R := {Ti+Tj : i, j = 0, . . . , 6} = ({0, . . . , 31}∪{36, 42})\{5, 8, 14, 17, 19, 23, 26, 28, 29}

and hence x > 6 since 36 + 42 < n. Note that

R ⊆
6⋃

m=0

{m2, m2 + 2, m(m+ 1) + 02, . . . , m(m+ 1) + 52}.

Also, x2 = Tx−1 + Tx, x2 + 2 = Tx−2 + Tx+1 and x2 +m(m+ 1) = Tx−m−1 + Tx+m. So
the tuple (2, 0, 1, 15, 1, 1) is indeed universal over N.

Let k ∈ {2, 3, 4, 5, 6}. By the last paragraph, any integer n > T7 = 28 can be written
in the form x2 + Ty + Tz with x, y, z ∈ N and z > 7 > k. It is easy to verify that
each n = Tk, Tk + 1, . . . , 27 can be written as x2 + Ty + Tz with x, y, z ∈ N and z > k.
Therefore the tuple (2, 0, 1, 2k + 1, 1, 1) is universal over N.

(d) Let n > 1 be an integer. We claim that the equation 4n+ 1 = x2 + y2 + z2 has
at most 23 × 3! = 48 integral solutions with x− z, y − z ∈ {±1}.

For any y, z ∈ Z+, it is easy to see that 2(y−1)2 +y2 6= 2(z+ 1)2 + z2 by considering
the cases y < z, y ∈ {z, z + 1}, and y > z + 1.

Suppose that 4n+ 1 = (z0 + 1)2 + (z0 − 1)2 + z20 for some z0 ∈ N. Then z0 > 0. For
any z ∈ N with z < z0 we have

2(z − 1)2 + z2 <(z + 1)2 + (z − 1)2 + z2 < 2(z + 1)2 + z2 6 2z20 + (z0 − 1)2

<(z0 + 1)2 + (z0 − 1)2 + z20 = 4n+ 1,

and for any integer z > z0 + 1 we have

2(z + 1)2 + z2 >(z + 1)2 + (z − 1)2 + z2 > 2(z − 1)2 + z2 > 2(z0 + 1)2 + (z0 + 2)2

>(z0 + 1)2 + (z0 − 1)2 + z20 = 4n+ 1.
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Note also that

2(z0 − 1)2 + z20 <(z0 + 1)2 + (z0 − 1)2 + z20 = 4n+ 1

<2z20 + (z0 + 1)2 < 2(z0 + 1)2 + z20 < 2(z0 + 2)2 + (z0 + 1)2.

So 4n+ 1 6= 2(z ± 1)2 + z2 for any z ∈ N.
In view of the above, the claim does hold.
If d2 | 4n + 1 for some integer d > 1, then R3((4n + 1)/d2) > 0 by Lemma 2.1, and

hence there are x, y, z ∈ N with gcd(x, y, z) = 1 such that 4n+1 = (dx)2 +(dy)2 +(dz)2

with dx− dy, dx− dz, dy− dz 6= ±1. When 4n+ 1 is squarefree, by Lemma 2.3 we have
h(−4n− 1) 6 4 if and only if 4n+ 1 belongs to the set

S := {13, 17, 21, 33, 37, 57, 73, 85, 93, 97, 133, 177, 193, 253}.

If 4n+ 1 ∈ S then we can easily write 4n+ 1 as x2 + y2 + z2 with x, y, z ∈ N, 2 - z and
y−z 6= ±1. (For example, 4×63+1 = 253 = 102 +122 +32.) When 4n+1 is squarefree
with 4n+ 1 6∈ S, by Lemma 2.1 we have R3(4n+ 1) > 12h(−4n− 1) > 12× 4 = 48 and
hence 4n+ 1 = x2 + y2 + z2 for some x, y, z ∈ N with 2 - z and y − z 6= ±1.

In view of the above, we can write 4n+ 1 as (2x)2 + (2y)2 + (2z+ 1)2 with x, y, z ∈ N
and 2y − (2z + 1) 6= ±1. It follows that n = x2 + y2 + 2Tz = x2 + Ty+z + Tz−y with
z − y 6∈ {0,−1}. Note that Tz−y 6= 0. If y + z 6 5, then Ty+z + Tz−y belongs to the set

T := {Ti + Tj : i, j = 0, . . . , 5} = {0, 1, 3, 4, 6, 7, 9, . . . , 13, 15, 16, 18, 20, 21, 25, 30}.

If n = x2 + t > 66 = 62 + 30 with x ∈ N and t ∈ T , then x > 6 and hence by (c) we can
write x2 + t as a2 + Tb + Tc with a, b, c ∈ N, b > c > 0 and b > 6.

Let k ∈ {1, 2, 3, 4, 5, 6}. It is easy to verify that each n = Tk + 1, Tk + 2, . . . , 66 can
be written as x2 + Ty + Tz with x, y, z ∈ N, y > k and z > 1. Thus, for any n ∈ N we
can write n+ Tk + 1 as x2 + Ty+k + Tz+1 with x, y, z ∈ N and hence

n = x2 + Ty+k − Tk + Tz+1 − T1 = x2 +
y(y + 2k + 1)

2
+
z(z + 3)

2
.

This proves the universality of (2, 0, 1, 2k + 1, 1, 3) over N.
(e) As conjectured by Sun [S07] and proved in [OS], any positive integer can be

written as the sum of a square, an odd square and a triangular number. So, for any
m ∈ Z+ there are a, b, c ∈ N with a odd such that Tm = a2 + b2 + Tc and hence
2Tm = (a+ b)2 + |a− b|2 + 2Tc with a+ b > a > 0. If n ∈ Z+ is not twice a triangular
number, then 4n + 1 is not a square, hence by the Gauss-Legendre theorem there are
x, y, z ∈ N with max{x, y} > 0 such that 4n + 1 = (2x)2 + (2y)2 + (2z + 1)2 and thus
n = x2 + y2 + 2Tz.

By the above, for any n ∈ N there are x, y, z ∈ N such that n+1 = (x+1)2+y2+2Tz =
x(x+ 2) + 1 + Ty+z + Tz−y. So (2, 4, 2, 2, 2, 0) and (2, 4, 1, 1, 1, 1) are universal over N.

Clearly, 4x2 + Ty + z(z + 3)/2 is universal over N if and only if any positive integer
can be written as 4x2 + Ty + Tz with x, y, z ∈ N and max{y, z} > 0. By Sun [S07,
Theorem 1(i)], we can write any n ∈ Z+ in the form (2x)2 + Ty + Tz with x, y, z ∈ N.
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If y = z = 0, then n = 4x2 = 4× 02 + T2x−1 + T2x. Thus 4x2 + Ty + z(z + 3)/2 (or the
tuple (8, 0, 1, 3, 1, 1)) is universal over N.

(f) Let n > 3 be an integer. If 4n+ 1 = m2 with m ∈ {4, 5, 6, . . . }, then by Lemma
2.5 we can write 4n+ 1 = x2 + y2 + z2 with x, y, z ∈ N, 2 - z and max{x, y} > 0, hence
{x, y} 6⊆ {0,±2} since m2 − z2 6∈ {22, 22 + 22}. If 4n+ 1 is not a square but d2 | 4n+ 1
for some integer d > 1, then by Lemma 2.1 there are x, y, z ∈ N with 2 - z such that
4n+ 1 = (dx)2 + (dy)2 + (dz)2 with max{dx, dy} > d > 2.

Now suppose that 4n + 1 is squarefree. If n = 9, then 4n + 1 = 02 + 62 + 12. If
n 6= 9, then by Lemmas 2.1 and 2.3 we have R3(4n+ 1) = 12h(−4n− 1) > 12× 2 = 24
and hence the equation x2 + y2 + z2 = 4n + 1 has integral solutions with 2 - z and
{x, y} 6⊆ {0,±2}. (As 4n + 1 > 16, there is at most one value of δ ∈ {0, 1, 2} with
4n+ 1− δ22 a square.)

By the above, for any integer n > 2 there are x, y, z ∈ N such that 4(n + 2) + 1 =
(2(x+2))2+(2y)2+(2z+1)2 and hence n = x(x+4)+y2+2Tz = x(x+4)+Ty+z+Tz−y.
Note also that n = 0(0 + 4) +n2 + 2T0 = 0(0 + 4) +Tn +T0 for each n = 0, 1. Therefore
both (2, 8, 2, 2, 2, 0) and (2, 8, 1, 1, 1, 1) are universal tuples over N.

Let n ∈ N. As mentioned in the last paragraph, there are x, y, z ∈ N such that

4(2n+ 5) + 1 = (2x+ 4)2 + (2y)2 + (2z+ 1)2 = 2(x+ y+ 2)2 + 2(x− y+ 2)2 + (2z+ 1)2.

Since (x+y+2)2+(x−y+2)2 ≡ 2 (mod 4), there are u, v ∈ N such that x+y+2 = 2u+3
and |x− y+ 2| = 2v+ 1. Thus 8n+ 21 = 2(2u+ 3)2 + 2(2v+ 1)2 + (2z+ 1)2 and hence
n = u(u+ 3) + v(v + 1) + Tz. This proves the universality of (2, 6, 2, 2, 1, 1) over N.

(g) Let n > 2 be an integer. By Lemma 2.5, there are x, y, z ∈ N with x > y > z and
y > 0 such that n = Tx + Ty + Tz. If {x − z, y − z} ⊆ {1, 3, 5}, then x − y 6∈ {1, 3, 5}
since x ≡ y (mod 2), and n 6 T5 + T5 + T0 = 30 if z = 0.

Let n > 31 be an integer. By the last paragraph, n = Tx + Ty + Tz for some
x, y ∈ Z+ and z ∈ {0, . . . , y} with y − z 6∈ {1, 3, 5}. If y + z + 1 ∈ {1, 3, 5}, then
(y, z) ∈ {(1, 1), (2, 0), (2, 2), (3, 1), (4, 0)} and hence Ty + Tz 6 T4 = 10, thus x > 6 (as
n > T6 + 10 = 31), and x − z, x + z + 1 6∈ {1, 3, 5} unless (y, z) = (2, 2) and x = 7
in which case n = T7 + T2 + T2 = T7 + T3 + T0 with 7 − 0, 7 + 0 + 1 6∈ {1, 3, 5}.
Therefore, we can always write n as Tu + Tv + Tw with u, v ∈ Z+, w ∈ {0, . . . , v} and
v − w, v + w + 1 6∈ {1, 3, 5}. It follows that

Tv + Tw =
(v + w + 1)2 + (v − w)2 − 1

4
=

(2r)2 + (2s+ 1)2 − 1

4
= r2 + s(s+ 1)

for some r, s ∈ N with s > 2. Hence n = Tu + r2 + s(s + 1). For each k ∈ {0, 1, 2, 3},
clearly t = s− k ∈ N and

n− k(k + 1) = Tu + r2 + (t+ k)(t+ k + 1)− k(k + 1) = Tu + r2 + t(t+ 2k + 1).

Note also that Tu = Ta+1 = a(a+ 3)/2 + 1 with a = u− 1 ∈ N.
Let k ∈ {1, 2, 3}. By the above, any integer n > 30 − k(k − 1) can be written

a(a + 3)/2 + r2 + t(t + 2(k − 1) + 1) with a, r, t ∈ N. We can easily see that each
n = 0, 1, . . . , 30 − k(k − 1) also can be written as x(x + 3)/2 + y2 + z(z + 2k − 1)
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with x, y, z ∈ N. Thus the tuple (2, 4k − 2, 2, 0, 1, 3) is universal over N. Similarly,
(2, 4k + 2, 2, 0, 1, 1) is also a universal tuple over N.

(h) Let k ∈ {1, 2, 3}. It is easy to verify that every n = k2, . . . , 33 can be written as
Tx + y2 + z2 with x, y, z ∈ N and max{y, z} > k.

Now let n ∈ N with n > 33. By [OS], n = Tx + y2 + z2 for some x, y, z ∈ N with y
odd. Assume that max{y, z} < k. Then y = 1 and z 6 k − 1, hence

r := n− Tx ∈ {s2 + 1 : s = 0, . . . , k − 1} ⊆ {s2 + 1 : s = 0, 1, 2} = {1, 2, 5}.

As n > 33, we have Tx > 28 and hence x > 7. Since Tx < n = Tx + r 6 Tx + 5 < Tx+1,
n is not a triangular number. By [S07, Theorem 1(ii)], there are a, b, c, u, v, w ∈ N with
a 6≡ b (mod 2) and u ≡ v (mod 2) such that n = a2 + b2 + Tc = u2 + v2 + Tw. Suppose
that max{a, b} < k 6 3 and also max{u, v} < k 6 3. Then a2+b2 ∈ {12+02, 12+22} and
u2 +v2 ∈ {02 +02, 02 +22, 12 +12, 22 +22}. Note that Tx+1 > n > Tw = n− (u2 +v2) >
Tx+1−8 > Tx−1. So we have w = x and hence r = u2+v2 ∈ {0, 2, 4, 8}. Similarly, c = x
and hence r = a2+b2 ∈ {1, 5}. Thus we get a contradiction since {0, 2, 4, 8}∩{1, 5} = ∅.

In view of the above, Tx + y2 + z(z + 2k) = Tx + y2 + (z + k)2 − k2 is universal over
N, i.e., the tuple (2, 4k, 2, 0, 1, 1) is universal over N.

(i) Let n ∈ N. By Lemma 2.1 we have R3(8(n + 1) + 3) > 0 and hence n + 1 =
Tx+Ty+Tz for some x, y, z ∈ N with y > z. Clearly, 4(Ty+Tz)+1 = (y+z+1)2 +(y−
z)2 = (2(u+ 1))2 + (2v+ 1)2 for some u, v ∈ N, and hence n = Tx + u(u+ 2) + v(v+ 1).
Therefore (2, 4, 2, 2, 1, 1) is universal over N.

(j) Let k ∈ {1, 2, 3}. Clearly, (2, 4k, 2, 0, 1, 3) is universal over N if and only if any
integer n > k2 + 1 can be written as x2 + y2 + Tz with x, y, z ∈ N, y > k and z > 1. By
Lemma 2.8 and the equalities T2 = 12 + 12 + T1 and T3 = 12 + 22 + T1, any triangular
number greater than k2 can be written as x2 +y2 +Tz with x, y, z ∈ N, y > k and z > 1.

Now we fix an integer n > k2 + 1 which is not a triangular number. Then 8n+ 1 is
not a square. By [S07, Theorem 1(ii)],

r0(n) = r1(n) =
1

4
|{(x, y, z) ∈ Z3 : x2 + y2 + Tz = n}|,

where

rδ(n) := |{(x, y, z) ∈ Z× Z× N : x2 + y2 + Tz = n and x− y ≡ δ (mod 2)}|

for δ = 0, 1. For x, y, z ∈ Z, clearly

n = x2 + y2 + Tz ⇐⇒ 8n+ 1 = (2x+ 2y)2 + (2x− 2y)2 + (2z + 1)2.

If 8n+ 1 = u2 + v2 + w2 with u, v, w ∈ N and 2 - w, then 8 | u2 + v2, hence 2 | u, 2 | v
and u/2 ≡ v/2 (mod 2). Thus, with the help of the Gauss-Legendre theorem we have

12r0(n) = 12r1(n) = |{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1}| > 0. (3.1)

If n−02−12 and n−22−12 are both triangular numbers, then n = 11. If at least two
of n− 12− 12, n− 02− 22, n− 22− 22 are triangular numbers, then n ∈ {14, 23}. When
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n ∈ {11, 14, 23}, we can easily verify that n = x2+y2+Tz for some x, y, z ∈ N with y > k
and z > 1. Let n 6= 11, 14, 23. If r0(n) = r1(n) > 4(k − 1), or r0(n) = r1(n) > 4 and
n− 5 6∈ {Tm : m ∈ N}, then n = a2 + b2 +Tc = u2 + v2 +Tw for some a, b, c, u, v, w ∈ N
with a 6≡ b (mod 2), u ≡ v (mod 2), max{a, b} > k and max{u, v} > k, hence Tc 6≡ Tw
(mod 2) and thus n = x2 + y2 + Tz for some x, y, z ∈ N with y > k and z > 1.

The above arguments with k = 1 yield that any integer n > 12 + 1 can be written
as x2 + (y + 1)2 + Tz+1 with x, y, z ∈ N. Thus (2, 0, 2, 0, 1, 3) and (2, 4, 2, 0, 1, 3) are
universal tuples over N.

Now we assume that k ∈ {2, 3}. Write 8n+ 1 = d2q with d, q ∈ Z+ and q squarefree.
Then q > 1 and q ≡ 1 (mod 8). By Lemma 2.3, h(−8n − 1) = h(−q) > 4, and the
equality holds only when q belongs to the set Q = {17, 33, 57, 73, 97, 177, 193}. By
Lemma 2.1, if d > 1 then

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1}| > R3(8n+ 1) +R3(q) > 24h(−q)

and hence r0(n) = r1(n) > 2h(−q) > 8. If n = 12 + 22 + Tm for some m ∈ N, then
(2m + 1)2 + 40 = 8n + 1 = d2q and hence q 6∈ Q since (−40p ) = −1 for all p ∈ Q with

( ·p ) the Jacobi symbol, therefore r0(n) = r1(n) > 2h(−q) > 8 when d > 1.

Now we handle the case d = 1. If 8n + 1 = q ∈ Q, then n ∈ {2, 4, 7, 9, 12, 22, 24}.
Recall that n > k2 + 1. Clearly,

7 = 02+22+T2, 9 = 22+22+T1, 12 = 02+32+T2, 22 = 02+42+T3, 24 = 02+32+T5.

Now assume that 8n + 1 = q 6∈ Q. Then h(−q) > 4. If h(−q) 6 8, then by Lemma
2.3(v), n belongs to the set

{5, 8, 13, 14, 17, 18, 27, 33, 34, 39, 42, 43, 48, 57, 66, 69, 87, 99}

and we can directly verify that n = x2+y2+Tz for some x, y, z ∈ N with y > k and z > 1.
When h(−q) > 8, by (3.1) and Lemma 2.1 we have r0(n) = r1(n) = R3(8n + 1)/12 >
h(−8n− 1) = h(−q) > 8. Thus (2, 4k, 2, 0, 1, 3) is indeed universal over N.

(k) Let k ∈ {1, 2, 3}. We want to prove that 2x2 +Ty + z(z+ 2k+ 1)/2 = 2x2 +Ty +
Tz+k − Tk is universal over N (i.e., (4, 0, 1, 2k + 1, 1, 1) is a universal tuple over N). It
is easy to check that each n = Tk, Tk + 1, . . . , 77 can be written as x2 + Ty + Tz with
x, y, z ∈ N and max{y, z} > k.

Now let n ∈ Z+ with n > 78. If 8n+ 2 = x2 + a = y2 + b with x, y ∈ N, a < b and

a, b ∈ A := {w2 + z2 : w, z ∈ {1, 3, 5}} = {2, 10, 18, 26, 34, 50},

then x > y >
√

8× 78 + 2− 50 = 24 and hence x2+a > y2+2y+a > y2+48+a > y2+b.
So 8n+2 can be written as x2+a with a ∈ A in at most one way. Therefore, the equation
8n + 2 = x2 + y2 + z2 has at most 3! × 23 = 48 integral solutions with the two odd
numbers among x, y, z in the set {±1,±3,±5}.

Write 8n+2 = d2q with d, q ∈ Z+ and q squarefree. Then 8 | (q−2). By Lemma 2.3,
h(−q) 6 4 only when q is among 2, 10, 34, 42, 82, 130. Clearly, 82d2 = 02 + d2 + (9d)2

and 130d2 = 02 + (7d)2 + (9d)2. If h(−q) > 4, then by Lemma 2.1 we have

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 2}| > R3(q) = 12h(−q) > 48
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and hence 8n+2 = x2 +y2 +z2 for some x, y, z ∈ N with the two odd numbers of x, y, z
not all in {1, 3, 5}. As R3((8n + 2)/d2) > 0 by Lemma 2.1, there are x, y, z ∈ N with
gcd(x, y, z) = 1 such that 8n+ 2 = (dx)2 + (dy)2 + (dz)2 with two of the odd numbers
among dx, dy, dz at least d. If d ∈ {1, 3}, then q = (8n+2)/d2 > (8×78+2)/9 = 626/9 >
69. If d = 5 then q > 626/25 > 25. Note that 52 × 34 = 02 + 152 + 252 and 52 × 42 =
202 + 52 + 252. Therefore, we always can write 8n+ 2 = (2w)2 + (2y + 1)2 + (2z + 1)2

with w, y, z ∈ N and max{y, z} > 3 > k. Clearly, w = 2x for some x ∈ N, and hence
n = 2x2 + Ty + Tz. We are done.

(l) To prove that (3, 9, 2, 0, 1, 3), (3, 3, 2, 0, 1, 3) and (3, 9, 2, 0, 1, 1) are universal tuples
over N, we only need to show that any integer n > 4 can be written as x2 + Ty + 3Tz
with x ∈ N and y, z ∈ Z+ which can be easily verified for all n = 4, 5, . . . , 45.

Now, we fix an integer n > 46. By the Gauss-Legendre theorem, 12n+6 = x2+y2+z2

for some x, y, z ∈ Z with 2 | x and 2 - yz. Note that 12n + 6 > 12 × 46 + 6 >
92 + (9 + 3)2 + (9 + 9)2. It is easy to see that the equation 12n+ 6 = x2 + y2 + z2 has
at most 2!× 23 = 16 integral solutions with x even, and y, z ∈ {±(x− 3),±(x+ 3)} or

{y, z} ∈ {{ε1(x+ 3ε0), ε2(x+ 9ε0)} : ε0, ε1, ε2 ∈ {±1}}. (3.2)

Write 12n + 6 = d2q with d, q ∈ Z+ and q squarefree. Obviously q ≡ 2 (mod 4). If
d > 3, then by Lemma 2.1 we have 12n + 6 = x2 + y2 + z2 for some x, y, z ∈ N with
2 | x and gcd(x, y, z) = d > 3, hence {y, z} 6⊆ {±(x − 3),±(x + 3)} and (3.2) fails. If
h(−q) > 4, then by Lemma 2.3 we have R3(12n+ 6) = 12h(−12n− 6) = 12h(−q) > 48
and hence the equation 12n+ 6 = x2 + y2 + z2 has more than 16 solutions with x even.
If h(q) 6 4, then by Lemma 2.3 the number q belongs to the set

E = {2, 6, 10, 14, 22, 30, 34, 42, 46, 58, 70, 78, 82, 102, 130, 142, 190}.

If d = 1, then q = 12n+ 6 > 12× 46 + 6 > 190 and hence h(−q) > 4. If 12n+ 6 = 32q
with q ∈ E, then we can verify that the equation 12n+ 6 = x2 + y2 + z2 has solutions
with x even, {y, z} 6⊆ {±(x− 3),±(x+ 3)} and (3.2) invalid.

By the above, there are x, y, z ∈ Z with 2 | x, 2 - yz and {y, z} 6⊆ {±(x−3),±(x+3)}
such that (3.2) fails. As x2 + y2 + z2 ≡ 0 (mod 3), either x ≡ y ≡ z ≡ 0 (mod 3) or
3 - xyz. Without loss of generality, we may assume that x ≡ y ≡ z (mod 3). Recall
Jacobi’s identity

3(x2 + y2 + z2) = (x+ y + z)2 + 2

(
x+ y

2
− z
)2

+ 6

(
x− y

2

)2

(3.3)

which can be verified directly. Clearly, x+y+ z = 6w for some w ∈ Z, and x+y−2z =
6u+ 3 and x− y = 6v + 3 for some u, v ∈ Z. Thus, by (3.3) we have

36n+ 18 = 3(x2 + y2 + z2) = (6w)2 + 2

(
6u+ 3

2

)2

+ 6

(
6v + 3

2

)2

and hence n = w2 + Tu + 3Tv. If x − y 6= ±3, then v 6= 0,−1 and hence Tv 6= 0.
If x + y − 2z 6= ±3, then u 6= 0,−1 and hence Tu 6= 0. So we are done if {x −
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y, x + y − 2z} ∩ {±3} = ∅. Due to the symmetry of y and z, we are also done if
{x− z, x+ z − 2y} ∩ {±3} = ∅.

If {x+y−2z, x+z−2y} ⊆ {±3}, then 3(y−z) = x+y−2z− (x+z−2y) ∈ {0,±6},
hence y = z (since y ≡ z (mod 3)) and x − y = x − z ∈ {±3}, which contradicts that
{y, z} 6⊆ {±(x−3),±(x+3)}. If x−y, x−z 6= ±3, then we are done since x+y−2z 6= ±3
or x+ z − 2y 6= ±3.

Now we consider the remaining case in which exactly one of |x− y| and |x− z| is 3.
Without loss of generality, we assume that x− y 6= ±3 and x− z ∈ {±3}. Thus y 6= z.
We are done if x+ y − 2z 6= ±3. Suppose that x+ y − 2z = (x− z) + (y − z) ∈ {±3}.
Then y − z = −2(x − z) ∈ {±6} and x − y = x − z − (y − z) = 3(x − z) ∈ {±9}. So
(y, z) = (x+ 9, x+ 3) or (x− 9, x− 3), which contradicts that (3.2) fails.

In view of the above, we have completed the proof of Theorem 1.1. �

4. Proofs of Theorems 1.4 and 1.7

Lemma 4.1. Let a, b, c, d ∈ Z with a > c > 1, b > −a, d > −c, a ≡ b (mod 2) and
c ≡ d (mod 2). Then {1, . . . , 18} 6⊆ {ψa,b(x) + ψc,d(y) : x, y ∈ N}.
Proof. It is easy to see that neither {x(ax + b)/2 : x ∈ N} nor {y(cy + d)/2 : y ∈ N}
contains {1, 2}. So {1, 2} 6⊆ {ψa,b(x) + ψc,d(y) : x, y ∈ N} if ψa,b(1) = (a+ b)/2 > 2 or
ψc,d(1) = (c+ d)/2 > 2.

Below we suppose that a+ b 6 4 and c+d 6 4. In the case ac < 212, via a computer
we find that one of 1, . . . , 9 cannot be written as ψa,b(x) + ψc,d(y) with x, y ∈ N.

Now we assume that ac > 212. Then 1/a+ 1/c 6 213/212.
Fix a positive integer N . For x ∈ Z, it is easy to see that

x(ax+ b)

2
6 N ⇐⇒ −

√
8aN + b2 + b

2a
6 x 6

√
8aN + b2 − b

2a
. (4.1)

As −a < b 6 a or b > 0, we have

|{x ∈ N : ψa,b(x) 6 N}| 6 1 +

√
8aN + b2 − b

2a
<

3

2
+

√
2N

a
+

1

4
;

Similarly, |{x ∈ N : ψc,d(x) 6 N}| < 3/2 +
√

2N/c+ 1/4. Note that

√
u+
√
v 6
√

2u+ 2v for all u, v > 0. (4.2)

Therefore

|{ψa,b(x) + ψc,d(y) : x, y ∈ N} ∩ [0, N ]|

<

(
3

2
+

√
2N

a
+

1

4

)(
3

2
+

√
2N

c
+

1

4

)

6
9

4
+

√
4N2

ac
+
N

2

(
1

a
+

1

c

)
+

1

16
+

3

2

√
4N

(
1

a
+

1

c

)
+ 1

6f(N) :=
9

4
+

√
4N2

212
+
N

2
· 213

212
+

1

16
+

3

2

√
4N × 213

212
+ 1.
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Now, take N = 18. Then

|{ψa,b(x) + ψc,d(y) : x, y ∈ N} ∩ [0, N ]| 6 f(N) < 1 +N.

So one of 1, . . . , N cannot be written as ψa,b(x) + ψc,d(y) with x, y ∈ N. �

Proof of Theorem 1.4. In view of Lemma 4.1, for certain m ∈ {1, . . . , 18} we can write
m = ψa,b(x) + ψc,d(y) + ψe,f (z) with x, y, z ∈ N and x > 0, and hence (a + b)/2 6
ψa,b(x) 6 m 6 18. Similarly, (c+ d)/2 6 18 and (e+ f)/2 6 18. Therefore

b 6 36− a, d 6 36− c and f 6 36− e. (4.3)

If ce > 2000 and N = 64, then 1/c+ 1/e 6 2001/2000 and hence

|{ψc,d(y) + ψe,f (z) : y, z ∈ Z} ∩ [0, N ]|

<
9

4
+

√
4N2

2000
+
N

2
· 2001

2000
+

1

16
+

3

2

√
4N × 2001

2000
+ 1 6 33

by the proof of Lemma 4.1, thus

|{ψa,b(x) + ψc,d(y) + ψe,f (z) : x ∈ {0, 1} & y, z ∈ Z} ∩ [0, N ]|

is at most 2×32 = N . So, in the case ce > 2000, we can write certain n ∈ {0, . . . , 64} as
ψa,b(x) +ψc,d(y) +ψe,f (z) with x, y, z ∈ N and x > 2, hence a+ 2 6 2a+ b 6 ψa,b(x) 6
n 6 64 and thus e 6 c 6 a 6 62.

Now we consider the case ce < 2000. In view of (4.3), via a computer we find that
for each i = 1, . . . , 18 there is an integer ni ∈ [i, 58] such that

{ni, ni − i} ∩ {ψc,d(y) + ψe,f (z) : y, z ∈ N} = ∅.

(We note that {58, 58 − 17} ∩ {y2 + p3(z) : y, z ∈ N} = ∅.) For i = (a + b)/2 6 18,
we can write ni as ψa,b(x) + ψc,d(y) + ψe,f (z) with x, y, z ∈ N and x > 1, thus a+ 2 6
2a+ b 6 ψa,b(x) 6 ni 6 58 and hence e 6 c 6 a 6 56.

By the above, either ce > 2000 and e 6 c 6 a 6 62, or ce < 2000 and e 6 c 6 a 6 58.
In view of this and (4.3), via a computer we find that if every n = 0, . . . , 105 can be
written as ψa,b(x)+ψc,d(y)+ψe,f (z) with x, y, z ∈ Z then the tuple (a, b, c, d, e, f) must
be among the 56+10 tuples listed in Theorem 1.1 and Conjecture 1.2 if a | b, c | d
and e | f , or among the 407 tuples listed the Appendix if a - b or c - d or e - f . This
concludes the proof of Theorem 1.4. �

Lemma 4.2. Let a, b, c, d ∈ N with a > c > 2, a > b, c > d, a ≡ b (mod 2) and c ≡ d
(mod 2). Then one of 1, . . . , 28 cannot be written as ψa,b(x) + ψc,d(y) with x, y ∈ Z.

Proof. If ac < 1000, then max{a, b, c, d} = a < 500, and hence we may use a computer
to get that one of 1, . . . , 21 cannot be written as ψa,b(x) + ψc,d(y) with x, y ∈ Z. Note
that 21 6= x(7x+ 1)/2 + y(3y + 1)/2 for all x, y ∈ Z.

Below we assume that ac > 1000. It is easy to see that 1/a+ 1/c 6 251/500.
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Let N be any positive integer. In view of (4.1),

|{x ∈ Z : ψa,b(x) 6 N}| − 1 6

√
8aN + b2 − b

2a
−

(
−
√

8aN + b2 + b

2a

)
<

√
8N

a
+ 1.

Similarly, |{y ∈ Z : ψc,d(y) 6 N}| < 1 +
√

8N/c+ 1. With the help of (4.2), we have

|{ψa,b(x) + ψc,d(y) : x, y ∈ Z} ∩ [0, N ]|

<

(
1 +

√
8N

a
+ 1

)(
1 +

√
8N

c
+ 1

)

61 +

√
64N2

ac
+ 8N

(
1

a
+

1

c

)
+ 1 +

√
16N

(
1

a
+

1

c

)
+ 4

6g(N) := 1 +

√
64N2

1000
+ 8N

251

500
+ 1 +

√
16N

251

500
+ 4.

Now, take N = 28. Then

|{ψa,b(x) + ψc,d(y) : x, y ∈ Z} ∩ [0, N ]| < g(N) 6 1 +N.

Therefore, one of 1, . . . , N cannot be written as ψa,b(x) + ψc,d(y) with x, y ∈ Z. �

Proof of Theorem 1.7. For any integer x with |x| > 2, we have

ψa,b(x) >
|x|(a|x| − b)

2
> a|x| − b > 2a− b > ψa,b(1) =

a+ b

2
.

In view of Lemma 4.2, for certain m ∈ {1, . . . , 28} we can write m = ψa,b(x) +
ψc,d(y) + ψe,f (z) with x, y, z ∈ Z and x 6= 0, and hence (a − b)/2 = ψa,b(−1) 6
ψa,b(x) 6 m 6 28. Similarly, (c− d)/2 6 28 and (e− f)/2 6 28.

If ce > 1000 and N = 190, then

|{ψc,d(y) + ψe,f (z) : y, z ∈ Z} ∩ [0, N ]| < g(N) 6 96

by the proof of Lemma 4.2, and hence

|{ψa,b(x) + ψc,d(y) + ψe,f (z) : x ∈ {0,−1} & y, z ∈ Z} ∩ [0, N ]|
is at most 2×95 = N . So, in the case ce > 1000, we can write certain n ∈ {0, 1, . . . , 190}
as ψa,b(x)+ψc,d(y)+ψe,f (z) with x, y, z ∈ Z and x 6= 0,−1, hence (a+b)/2 6 ψa,b(x) 6
n 6 190 and thus a = (a− b)/2 + (a+ b)/2 6 28 + 190 = 218.

Now we consider the case ce < 1000. Via a computer we find that for each i =
1, . . . , 28 there is an integer ni ∈ [i, 157] such that

{ni, ni − i} ∩ {ψc,d(y) + ψe,f (z) : y, z ∈ Z} = ∅.
For i = (a−b)/2 6 28, we can write ni as ψa,b(x)+ψc,d(y)+ψe,f (z) with x, y, z ∈ Z and
x 6= 0,−1, thus (a+ b)/2 6 ψa,b(x) 6 ni 6 157 and hence a = (a− b)/2 + (a+ b)/2 6
28 + 157 = 185.

By the above, either ce > 1000 and e 6 c 6 a 6 218, or ce < 1000 and e 6
c 6 a 6 185. Via a computer we find that if each n = 0, . . . , 105 can be written as
ψa,b(x) +ψc,d(y) +ψe,f (z) with x, y, z ∈ Z then the tuple (a, b, c, d, e, f) must be among
the 12082 tuples listed in [S17a]. This completes the proof of Theorem 1.7. �
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5. Proofs of Theorems 1.9 and 1.11

Proof of Theorem 1.9. Let n be any nonnegative integer.
(i) n = x(ax+ b) + y(ay + a− b) if and only if 4an+ b2 + (a− b)2 coincides with

(a(2x) + b)2 + (a(2y) + a− b)2 = (a(−2y − 1) + b)2 + (a(−2x− 1) + a− b)2.

Therefore

n ∈ {x(ax+ b) + y(ay + a− b) : x, y ∈ Z}
⇐⇒ 4an+ (a− b)2 + b2 ∈ {(au+ b)2 + (av + a− b)2 : u, v ∈ Z & 2 | u− v}
⇐⇒ 4an+ (a− b)2 + b2 ∈ {(a(x− y) + b)2 + (a(x+ y) + a− b)2 : x, y ∈ Z}
⇐⇒ n ∈ {aTx + ψa,a−2b(y) : x, y ∈ Z}.

This proves (1.6).
(ii) Obverse that 2(x2 + 4Ty) + 1 = 2x2 + (2y + 1)2 and

2n+ 1 ∈ {u2 + 2v2 : u, v ∈ Z}

⇐⇒ 2n+ 1 ∈

{(
x− y

3
+ y

)2

+ 2

(
x− y

3

)2

: x, y ∈ Z & 3 | x− y

}
⇐⇒ 6n+ 3 ∈ {x2 + 2y2 : x, y ∈ Z & 3 | x− y}
⇐⇒ 6n+ 3 ∈ {x2 + 2y2 : x, y ∈ Z}.
⇐⇒ 6n+ 3 ∈ {x2 + 2y2 : x, y ∈ Z, 2 - x & 3 - xy}

(by [JP, p. 173] or [S15, Lemma 2.1])

⇐⇒ 6n+ 3 ∈ {(6x− 1)2 + 2(3y − 1)2 : x, y ∈ Z}
⇐⇒ n = 4p5(x) + p8(y) for some x, y ∈ Z.

So (1.9) holds. Similarly,

n ∈ {x2 + Ty : x, y ∈ Z} ⇐⇒ 8n+ 1 ∈ {u2 + 2v2 : u, v ∈ Z}
⇐⇒ 24n+ 3 ∈ {u2 + 2v2 : u, v ∈ Z, 2 - uv & 3 - uv}
⇐⇒ 24n+ 3 ∈ {(6x− 1)2 + 2(6y − 1)2 : x, y ∈ Z}
⇐⇒ n ∈ {p5(x) + 2p5(y) : x, y ∈ Z},

and

n ∈ {Tx + 2Ty : x, y ∈ Z} ⇐⇒ 8n+ 3 ∈ {u2 + 2v2 : u, v ∈ Z}
⇐⇒ 24n+ 9 ∈ {x2 + 2y2 : x, y ∈ Z & 3 - xy}
⇐⇒ 24n+ 9 ∈ {x2 + 8y2 : x, y ∈ Z, 2 - x & 3 - xy}
⇐⇒ 24n+ 9 ∈ {(6x− 1)2 + 8(3y − 1)2 : x, y ∈ Z}
⇐⇒ n = p5(x) + p8(y) for some x, y ∈ Z.
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This proves (1.7) and (1.8).
Now we show (1.10). Clearly, 8(Tx + Ty) + 2 = (2x+ 1)2 + (2y + 1)2 and

40(ψ5,1(x) +ψ5,3(y)) + 10 = (10x+ 1)2 + (10y+ 3)2 = 5((4x+ 2y+ 1)2 + (4y−2x+ 1)2).

If 8n+2 = u2+v2 with u and v odd, then 40n+10 = (2u+v)2+(u−2v)2 = s2+t2 for some
s, t ∈ Z with 5 - st (by [S17, Lemma 2.1]), and hence 40n+ 10 = (10x+ 1)2 + (10y+ 3)2

for some x, y ∈ Z. Therefore (1.10) holds.
The proof of Theorem 1.9 is now complete. �

Lemma 5.1. Let w = 3u2 + 5v2 ∈ Z+ with u, v ∈ Z and 8 | w. Then w = 3x2 + 5y2

for some odd integers x and y.

Proof. Let k = ord2 gcd(u, v) and write u = 2ku0 and v = 2kv0 with u0, v0 ∈ Z not all
even. If k ∈ {0, 1}, then u0 and v0 are both odd since 8 | w. If u0 6≡ v0 (mod 2), then
k > 2 and 42(3u20 + 5v20) = 3u22 + 5v22 with u2 = u0 − 5v0 and v2 = 3u0 + v0 both odd.

Let j ∈ N. If 4j(3u20 + 5v20) can be written as 3u2j + 5v2j with uj and vj odd, then we
may assume uj 6≡ vj (mod 4) without loss of generality, hence

4j+1(3u20 + 5v20) = 4(3u2j + 5v2j ) = 3u2j+1 + 5v2j+1

with uj+1 = (vj − uj)/2 + 2vj and vj+1 = (vj − uj)/2 + 2uj both odd.
By the above, w = 4k(3u20 + 5v20) = 3u2k + 5v2k for some odd integers uk and vk. �

Remark 5.2. Note also the following useful fact:

3
(x

2
+ y
)2

+ 5
(x

2
− y
)2

= 3

(
x− 3y

2

)2

+ 5

(
x+ y

2

)2

= 2x2 − 2xy + 8y2. (5.1)

The following lemma is a well known result in the theory of quadratic forms.

Lemma 5.3. ([C, Theorem 1.3]) Let f be an integral quadratic form with nonzero
discriminant. If an integer m is represented by f over the field of real numbers as well
as the ring Zp of p-adic integers for each prime p, then m is represented over Z by some
form f∗ in the same genus as f .

Lemma 5.4. Let n ∈ N and δ ∈ {0, 1}. Then 12n+8+3δ ∈ {3x2+3y2+5z2 : x, y, z ∈
Z}.

Proof. There are two classes in the genus of 3x2 + 3y2 + 5z2, the one not containing
3x2 + 3y2 + 5z2 has the representative 3x2 + 2y2 + 8z2 − 2yz. If 12n+ 8 + 3δ = 3x2 +
2y2+8z2−2yz with x, y, z ∈ Z, 2 - y and y 6≡ z (mod 2), then 3δ ≡ 3x2+2y2 ≡ −x2+2
(mod 4) which is impossible. Combining this with (5.1) and Lemma 5.3, we immediately
obtain the desired result. �

Proof of Theorem 1.11. Fix a nonnegative integer n.
(i) It is easy to see that

n =
x(x+ 1)

2
+
y(3y + 1)

2
+
z(5z + 1)

2

⇐⇒ 120n+ 23 = 15(2x+ 1)2 + 5(6y + 1)2 + 3(10z + 1)2.
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There are two classes in the genus of 3x2 + 5y2 + 15z2, and the one not containing
3x2+5y2+15z2 has the representative 2x2−2xy+8y2+15z2. If 120n+23 = 2x2+8y2+
15z2 − 2xy for some x, y ∈ Z with 2 - x and y 6≡ x (mod 2), then 23 ≡ 2x2 + 15z2 ≡ 17
(mod 4) which is impossible. Thus, in view of (5.1) and Lemma 5.3, there are x, y, z ∈ Z
such that 120n+ 23 = 3x2 + 5y2 + 15z2.

If 2 - x, then 5(y2 + 3z2) ≡ 23− 3x2 ≡ 20 (mod 8) and hence y2 + 3z2 = s2 + 3t2 for
some odd integers s and t (cf. [S15, Lemma 3.2]). If 2 - z, then 3x2+5y2 ≡ 23−15z2 ≡ 0
(mod 8) and hence 3x2 + 5y2 = 3u2 + 5v2 for some odd integers u and v (by Lemma
5.1). If x and z are both even, then y2 ≡ 5y2 ≡ 23 ≡ 3 (mod 4) which is impossible.
So we may simply assume 2 - xyz without loss of generality.

Since 3x2 ≡ 23 ≡ 3 (mod 5), x or −x is congruent to 1 modulo 10. As y 6≡ 0
(mod 3), y or −y is congruent to 1 modulo 6. Thus, for some u, v, w ∈ Z we have

120n+ 23 = 3(10w + 1)2 + 5(6v + 1)2 + 15(2u+ 1)2

and hence n = u(u+ 1)/2 + v(3v + 1)/2 + w(5w + 1)/2. This ends our proof of (1.12).

(ii) Let δ ∈ {0, 1} and r ∈ {1, 3, 5}. There are two classes in the genus of 3x2 + 5y2 +
30z2, and the one not containing 3x2 + 5y2 + 30z2 is

2x2 + 15y2 + 15z2 = 2x2 + 30

(
y + z

2

)2

+ 30

(
y − z

2

)2

.

When 120n + 30δ + 3r2 + 5 = 2x2 + 30u2 + 30v2 with x, u, v ∈ Z, if u ≡ v (mod 2)
then x ≡ u ≡ v ≡ δ (mod 2) (since 2 | x − δ and u2 + v2 ≡ 2δ (mod 4)), thus we may
assume x ≡ u (mod 2) without loss of generality, and hence 2x2 + 30u2 = 3a2 + 5b2

with a = (x+ 5u)/2 and b = (x− 3u)/2 both integral. So, with the help of Lemma 5.3,
there are x, y, z ∈ Z such that 120n+ 30δ + 3r2 + 5 = 3x2 + 5y2 + 30z2.

Clearly, z = 2w+ δ for some w ∈ Z. Since 3x2 + 5y2 ≡ 0 (mod 8) and 3x2 + 5y2 6= 0,
by Lemma 5.1 we can write 3x2 + 5y2 = 3s2 + 5t2 with s and t odd. Now, 120n+ 30δ+
3r2 + 5 = 3s2 + 5t2 + 120w(w+ δ) + 30δ. As 3s2 ≡ 3r2 (mod 5), s or −s is congruent to
r modulo 10. Also, t or −t is congruent to 1 modulo 6. So there are u, v ∈ Z such that

120n+ 3r2 + 5 = 3(10v + r)2 + 5(6u+ 1)2 + 120w(w + δ)

and hence n = w(w + δ) + u(3u+ 1)/2 + v(5v + r)/2. This proves (1.13).

(iii) Let r, s, t ∈ {1, 3} with {r, s} 6= {3}. There are two classes in the genus of
3x2 + 5y2 + 5z2, and the one not containing 3x2 + 5y2 + 5z2 has the representative
2x2 − 2xy + 8y2 + 5z2. If 120n + 5r2 + 5s2 + 3t2 = 2x2 + 8y2 − 2xy + 5z2 with
x, y, z ∈ Z, 2 - x and 2 | y, then 13 ≡ 5r2 + 5s2 + 3t2 ≡ 2x2 + 5z2 ≡ 2 + 5 (mod 4)
which is impossible. So, in light of (5.1) and Lemma 5.3, there are x, y, z ∈ Z such that
120n + 5r2 + 5s2 + 3t2 = 3x2 + 5y2 + 5z2. As 3x2 6≡ 13 ≡ 5r2 + 5s2 + 3t2 (mod 4),
y and z cannot be both even. Without loss of generality, we assume that 2 - z. Then
3x2 + 5y2 > 0 and 3x2 + 5y2 ≡ 0 (mod 8). By Lemma 5.1, we can write 3x2 + 5y2 as
3x20 + 5y20 with x0 and y0 both odd.
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By the last paragraph, 120n+5r2 +5s2 +3t2 = 3x2 +5y2 +5z2 for some odd integers
x, y, z. Clearly x or −x has the form 10w + t with w ∈ Z. Since y2 + z2 ≡ r2 + s2

(mod 3), we have y2 + z2 = (6u+ r)2 + (6v + s)2 for some u, v ∈ Z. Therefore

120n+ 5r2 + 5s2 + 3t2 = 3(10w + t)2 + 5(6u+ r)2 + 5(6v + s)2

and hence n = u(3u+ r)/2 + v(3v + s)/2 + w(5w + t)/2. This proves (1.14).
(iv) As 3(s2 + t2) + 5 ≡ 3× 2 + 5 = 11 (mod 12), by Lemma 5.4 there are x, y, z ∈ Z

such that 120n+3(s2 + t2)+5 = 3x2 +3y2 +5z2. Clearly, x and y cannot be both even.
Without loss of generality, we assume that 2 - x. Then 3y2 + 5z2 > 0 and 3y2 + 5z2 ≡ 0
(mod 8). By Lemma 5.1, we can write 3y2 + 5z2 as 3y20 + 5z20 with y0 and z0 both odd.
So, without loss of generality we may simply assume that y and z are also odd.

If {s, t} = {1, 3}, then ψ5,s(y)+ψ5,t(z) ∼ Ty+Tz by (1.10), hence ψ3,1(x)+ψ5,s(y)+
ψ5,t(z) is universal over Z as p5(x) +Ty +Tz is universal over Z by [S15, Theorem 1.14].

Now we assume that {s, t} 6= {1, 3}. Clearly, z or −z has the form 6w+1 with w ∈ Z.
Since x2 + y2 ≡ s2 + t2 6≡ 0 (mod 5), we have x2 + y2 = (10u+ s)2 + (10v+ t)2 for some
u, v ∈ Z. Therefore

120n+ 3s2 + 3t2 + 5 = 5(6w + 1)2 + 3(10u+ s)2 + 3(10v + t)2

and hence n = w(3w + 1)/2 + u(5u+ s)/2 + v(5v + t)/2. This proves (1.15).
In view of the above, we have completed the proof of Theorem 1.11. �
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Appendix

In this appendix, we list our conjectural universal tuples (a, b, c, d, e, f) over N with
a > c > e > 1, b > −a and b ≡ a (mod 2), d > −c and d ≡ c (mod 2), f > −e and
f ≡ e (mod 2), and (a - b or c - d or e - f). For each of the listed tuple (a, b, c, d, e, f),
we have verified that every n = 0, . . . , 106 can be written as ψa,b(x) +ψc,d(y) +ψe,f (z)
with x, y, z ∈ N. Below is our list.

(3,−1, 1, 1, 1, 1), (3,−1, 1, 3, 1, 1), (3,−1, 1, 5, 1, 1), (3,−1, 1, 7, 1, 1),

(3,−1, 1, 9, 1, 1), (3,−1, 1, 11, 1, 1), (3,−1, 1, 13, 1, 1), (3,−1, 1, 15, 1, 1),

(3,−1, 1, 17, 1, 1), (3,−1, 2, 0, 1, 1), (3,−1, 2, 0, 1, 3), (3,−1, 2, 0, 1, 5),

(3,−1, 2, 0, 2, 0), (3,−1, 2, 2, 1, 1), (3,−1, 2, 2, 1, 3), (3,−1, 2, 2, 2, 0),

(3,−1, 2, 4, 1, 1), (3,−1, 2, 4, 1, 3), (3,−1, 2, 4, 2, 2), (3,−1, 2, 6, 1, 1),

(3,−1, 2, 8, 1, 1), (3,−1, 2, 10, 1, 1), (3,−1, 2, 12, 1, 1), (3,−1, 2, 16, 1, 1),

(3,−1, 3,−1, 1, 1), (3,−1, 3,−1, 1, 3), (3, 1, 1, 1, 1, 1), (3, 1, 1, 3, 1, 1),

(3, 1, 1, 5, 1, 1), (3, 1, 1, 7, 1, 1), (3, 1, 2, 0, 1, 1), (3, 1, 2, 0, 1, 3),

(3, 1, 2, 2, 1, 1), (3, 1, 2, 2, 2, 0), (3, 1, 2, 4, 1, 1), (3, 1, 2, 6, 1, 1),

(3, 1, 2, 6, 2, 0), (3, 1, 3,−1, 1, 1), (3, 1, 3,−1, 1, 3), (3, 1, 3,−1, 2, 2),

(3, 1, 3,−1, 2, 6), (3, 3, 3,−1, 1, 1), (3, 3, 3,−1, 1, 3), (3, 3, 3,−1, 2, 0),

(3, 3, 3,−1, 2, 2), (3, 3, 3, 1, 1, 1), (3, 3, 3, 1, 2, 0), (3, 5, 1, 1, 1, 1),

(3, 5, 1, 3, 1, 1), (3, 5, 2, 0, 1, 1), (3, 5, 2, 0, 1, 3), (3, 5, 2, 2, 1, 1),

(3, 5, 2, 2, 2, 0), (3, 5, 3,−1, 1, 1), (3, 5, 3, 1, 1, 1), (3, 7, 1, 1, 1, 1),

(3, 7, 2, 0, 1, 1), (3, 7, 2, 2, 2, 0), (3, 7, 3,−1, 1, 1), (3, 9, 3,−1, 1, 1),

(3, 11, 2, 0, 1, 1), (3, 11, 2, 0, 1, 3), (3, 11, 3,−1, 1, 1), (3, 13, 2, 0, 1, 1),

(3, 15, 3,−1, 1, 1);

(4,−2, 1, 1, 1, 1), (4,−2, 1, 3, 1, 1), (4,−2, 1, 3, 1, 3), (4,−2, 1, 5, 1, 1),

(4,−2, 1, 5, 1, 3), (4,−2, 1, 7, 1, 1), (4,−2, 1, 7, 1, 3), (4,−2, 1, 9, 1, 1),

(4,−2, 2, 0, 1, 1), (4,−2, 2, 0, 1, 3), (4,−2, 2, 0, 1, 5), (4,−2, 2, 2, 1, 1),

(4,−2, 2, 2, 1, 3), (4,−2, 2, 2, 1, 5), (4,−2, 2, 2, 2, 0), (4,−2, 2, 4, 1, 1),

(4,−2, 2, 8, 1, 1), (4,−2, 3,−1, 1, 1), (4,−2, 3,−1, 1, 3), (4,−2, 3,−1, 1, 5),

(4,−2, 3,−1, 2, 0), (4,−2, 3, 1, 1, 1), (4,−2, 3, 1, 1, 3), (4,−2, 3, 1, 2, 0),

(4,−2, 3, 7, 1, 1), (4, 0, 3,−1, 1, 1), (4, 0, 3,−1, 1, 3), (4, 0, 3,−1, 1, 5),

(4, 0, 3,−1, 1, 7), (4, 0, 3,−1, 2, 0), (4, 0, 3,−1, 2, 4), (4, 0, 3, 1, 1, 1),

(4, 0, 3, 1, 2, 0), (4, 0, 3, 5, 1, 1), (4, 0, 3, 5, 2, 0), (4, 0, 4,−2, 1, 1).

(4, 0, 4,−2, 1, 3), (4, 0, 4,−2, 1, 5), (4, 0, 4,−2, 3,−1), (4, 2, 2, 0, 1, 1).

(4, 2, 2, 0, 1, 3), (4, 2, 3,−1, 1, 1), (4, 2, 3,−1, 1, 3), (4, 4, 3,−1, 1, 1),

(4, 4, 3, 1, 1, 1), (4, 6, 3,−1, 1, 1), (4, 8, 3,−1, 1, 1), (4, 10, 3,−1, 1, 1);



24 ZHI-WEI SUN

(5,−3, 1, 1, 1, 1), (5,−3, 1, 3, 1, 1), (5,−3, 1, 5, 1, 1), (5,−3, 1, 7, 1, 1),

(5,−3, 1, 9, 1, 1), (5,−3, 2, 0, 1, 1), (5,−3, 2, 0, 1, 3), (5,−3, 2, 2, 1, 1),

(5,−3, 2, 2, 1, 3), (5,−3, 2, 2, 2, 0), (5,−3, 2, 4, 1, 1), (5,−3, 2, 4, 1, 3),

(5,−3, 2, 4, 2, 2), (5,−3, 2, 8, 1, 1), (5,−3, 3,−1, 1, 1), (5,−3, 3, 1, 1, 1),

(5,−3, 3, 1, 1, 3), (5,−3, 3, 3, 3,−1), (5,−3, 3, 7, 1, 1), (5,−1, 2, 0, 1, 1),

(5,−1, 2, 0, 1, 3), (5,−1, 2, 0, 1, 5), (5,−1, 2, 0, 1, 7), (5,−1, 2, 0, 1, 9),

(5,−1, 2, 2, 1, 1), (5,−1, 2, 6, 1, 1), (5,−1, 3,−1, 1, 1), (5,−1, 3, 1, 1, 1),

(5,−1, 4, 0, 1, 1), (5, 1, 2, 0, 1, 1), (5, 1, 2, 0, 1, 3), (5, 1, 2, 2, 1, 1),

(5, 1, 3,−1, 1, 1), (5, 1, 3,−1, 1, 3), (5, 1, 3, 1, 1, 1), (5, 3, 1, 1, 1, 1),

(5, 3, 1, 3, 1, 1), (5, 3, 2, 0, 1, 1), (5, 3, 2, 2, 1, 1), (5, 3, 2, 2, 2, 0),

(5, 3, 3,−1, 1, 1), (5, 3, 3, 1, 2, 0), (5, 3, 4,−2, 1, 1), (5, 3, 4,−2, 1, 3),

(5, 7, 2, 0, 1, 1), (5, 7, 2, 0, 1, 3), (5, 7, 3,−1, 1, 1), (5, 9, 3,−1, 1, 1),

(5, 11, 2, 0, 1, 1), (5, 13, 3,−1, 1, 1);

(6,−4, 1, 1, 1, 1), (6,−4, 1, 3, 1, 1), (6,−4, 1, 3, 1, 3), (6,−4, 1, 5, 1, 1),

(6,−4, 1, 5, 1, 3), (6,−4, 1, 7, 1, 1), (6,−4, 1, 7, 1, 3), (6,−4, 1, 9, 1, 1),

(6,−4, 2, 0, 1, 1), (6,−4, 2, 0, 1, 3), (6,−4, 2, 2, 1, 1), (6,−4, 2, 2, 1, 3),

(6,−4, 2, 2, 2, 0), (6,−4, 2, 6, 1, 1), (6,−4, 2, 6, 1, 3), (6,−4, 3,−1, 1, 1),

(6,−4, 3, 1, 1, 1), (6,−4, 3, 1, 1, 3), (6,−4, 3, 1, 1, 5), (6,−4, 3, 5, 1, 1),

(6,−4, 3, 7, 1, 1), (6,−4, 4, 0, 1, 1), (6,−4, 4, 0, 1, 3), (6,−4, 4, 0, 1, 5),

(6,−4, 4, 0, 1, 7), (6,−4, 5,−3, 1, 1), (6,−2, 1, 1, 1, 1), (6,−2, 1, 3, 1, 1),

(6,−2, 1, 5, 1, 1), (6,−2, 1, 7, 1, 1), (6,−2, 2, 0, 1, 1), (6,−2, 2, 0, 1, 3),

(6,−2, 2, 0, 1, 5), (6,−2, 2, 0, 1, 7), (6,−2, 2, 0, 1, 9), (6,−2, 2, 2, 2, 0),

(6,−2, 3, 1, 1, 1), (6,−2, 4,−2, 1, 1), (6,−2, 4,−2, 1, 3), (6,−2, 4,−2, 1, 5),

(6,−2, 4, 0, 1, 1), (6,−2, 4, 4, 1, 1), (6,−2, 5,−3, 1, 1), (6,−2, 5,−3, 1, 3),

(6, 0, 3,−1, 1, 1), (6, 0, 3,−1, 2, 2), (6, 0, 3, 1, 1, 1), (6, 0, 6,−4, 1, 1),

(6, 0, 6,−4, 2, 2), (6, 2, 1, 1, 1, 1), (6, 2, 1, 3, 1, 1), (6, 2, 2, 2, 1, 1),

(6, 2, 2, 2, 2, 0), (6, 2, 3,−1, 1, 1), (6, 2, 3, 1, 1, 1), (6, 2, 4, 0, 1, 1),

(6, 2, 6,−4, 1, 1), (6, 4, 1, 1, 1, 1), (6, 4, 2, 2, 2, 0), (6, 4, 6,−4, 1, 1),

(6, 6, 3,−1, 1, 1), (6, 8, 2, 0, 1, 1), (6, 8, 3,−1, 1, 1), (6, 10, 2, 0, 1, 1),

(6, 12, 3,−1, 1, 1);
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(7,−5, 2, 0, 1, 1), (7,−5, 2, 2, 1, 1), (7,−5, 2, 4, 1, 1), (7,−5, 2, 6, 1, 1),

(7,−5, 2, 8, 1, 1), (7,−5, 3,−1, 1, 1), (7,−5, 3,−1, 1, 3), (7,−5, 3,−1, 2, 2),

(7,−5, 3, 5, 1, 1), (7,−5, 4, 0, 1, 1), (7,−3, 2, 0, 1, 1), (7,−3, 2, 2, 1, 1),

(7,−3, 2, 6, 1, 1), (7,−3, 3,−1, 1, 1), (7,−3, 3,−1, 1, 3), (7,−3, 3,−1, 1, 5),

(7,−3, 3, 1, 1, 1), (7,−3, 4, 0, 1, 1), (7,−1, 2, 0, 1, 1), (7,−1, 2, 0, 1, 3),

(7,−1, 2, 2, 1, 1), (7,−1, 3, 1, 1, 1), (7,−1, 6,−4, 1, 1), (7, 1, 2, 0, 1, 1),

(7, 1, 3,−1, 1, 1), (7, 3, 1, 1, 1, 1), (7, 3, 2, 2, 2, 0), (7, 5, 2, 0, 1, 1),

(7, 5, 2, 0, 1, 3);

(8,−6, 1, 1, 1, 1), (8,−6, 1, 3, 1, 1), (8,−6, 1, 5, 1, 1), (8,−6, 1, 7, 1, 1),

(8,−6, 2, 0, 1, 1), (8,−6, 2, 2, 1, 1), (8,−6, 2, 2, 1, 3), (8,−6, 2, 2, 2, 0),

(8,−6, 2, 4, 2, 2), (8,−6, 3, 1, 1, 1), (8,−6, 5,−3, 1, 1), (8,−6, 5,−3, 1, 3),

(8,−4, 2, 2, 1, 1), (8,−4, 2, 6, 1, 1), (8,−4, 6,−4, 1, 1), (8,−2, 3,−1, 1, 1),

(8,−2, 3, 1, 1, 1), (8, 0, 3,−1, 1, 1), (8, 0, 3, 1, 1, 1), (8, 0, 6,−2, 1, 1),

(8, 2, 1, 1, 1, 1), (8, 2, 2, 2, 2, 0);

(9,−7, 2, 0, 1, 1), (9,−7, 2, 4, 1, 1), (9,−7, 2, 8, 1, 1), (9,−7, 3,−1, 1, 1),

(9,−7, 5,−1, 1, 1), (9,−7, 5,−1, 1, 3), (9,−5, 2, 2, 1, 1), (9,−5, 2, 6, 1, 1),

(9,−5, 3,−1, 1, 1), (9,−5, 3,−1, 1, 3), (9,−5, 3, 5, 1, 1), (9,−5, 4, 0, 1, 1),

(9,−1, 1, 1, 1, 1), (9,−1, 1, 3, 1, 1), (9,−1, 2, 0, 1, 1), (9,−1, 2, 2, 1, 1),

(9,−1, 2, 2, 2, 0), (9,−1, 4, 0, 1, 1), (9, 5, 3,−1, 1, 1), (9, 7, 2, 0, 1, 1),

(9, 9, 3,−1, 1, 1);

(10,−8, 1, 1, 1, 1), (10,−8, 1, 3, 1, 1), (10,−8, 1, 5, 1, 1), (10,−8, 1, 7, 1, 1),

(10,−8, 1, 9, 1, 1), (10,−8, 2, 0, 1, 1), (10,−8, 2, 2, 1, 1), (10,−8, 2, 2, 1, 3),

(10,−8, 2, 2, 2, 0), (10,−8, 2, 4, 1, 1), (10,−8, 2, 8, 1, 1), (10,−8, 3, 1, 1, 1),

(10,−8, 3, 1, 1, 3), (10,−8, 3, 7, 1, 1), (10,−6, 2, 0, 1, 1), (10,−6, 2, 0, 1, 3),

(10,−6, 2, 0, 1, 5), (10,−6, 2, 2, 1, 1), (10,−6, 3,−1, 1, 1), (10,−6, 3, 5, 1, 1),

(10,−6, 5,−3, 1, 1), (10,−4, 2, 0, 1, 1), (10,−4, 2, 0, 1, 3), (10,−4, 3,−1, 1, 1),

(10,−2, 3,−1, 1, 1), (10, 2, 3,−1, 1, 1), (10, 4, 3,−1, 1, 1), (10, 6, 2, 0, 1, 1),

(10, 8, 3,−1, 1, 1);

(11,−9, 2, 0, 1, 1), (11,−9, 3,−1, 1, 1), (11,−9, 3, 1, 1, 1), (11,−9, 3, 7, 1, 1),

(11,−7, 1, 1, 1, 1), (11,−7, 1, 3, 1, 1), (11,−7, 1, 5, 1, 1), (11,−7, 2, 2, 2, 0),

(11,−7, 3,−1, 1, 1), (11,−5, 2, 0, 1, 1), (11,−5, 2, 0, 1, 3), (11,−3, 3,−1, 1, 1),

(11,−3, 3, 1, 1, 1), (11, 5, 2, 0, 1, 1);
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(12,−8, 2, 0, 1, 1), (12,−8, 2, 0, 1, 3), (12,−8, 2, 2, 1, 1), (12,−4, 1, 1, 1, 1),

(12,−4, 1, 3, 1, 1), (12,−4, 2, 2, 1, 1), (12,−4, 2, 2, 2, 0), (12,−4, 4, 0, 1, 1).

(13,−11, 2, 0, 1, 1), (13,−11, 2, 2, 1, 1), (13,−11, 2, 2, 1, 3), (13,−9, 2, 0, 1, 1),

(13,−9, 2, 0, 1, 3), (13,−7, 2, 0, 1, 1), (13,−7, 2, 0, 1, 3), (13,−5, 2, 0, 1, 1).

(14,−12, 2, 2, 1, 1), (14,−10, 2, 0, 1, 1), (14,−10, 2, 0, 1, 3), (14,−10, 2, 2, 1, 1),

(14,−10, 3,−1, 1, 1), (14,−2, 2, 0, 1, 1), (14,−2, 3,−1, 1, 1), (14, 2, 2, 0, 1, 1),

(15,−13, 1, 1, 1, 1), (15,−13, 1, 3, 1, 1), (15,−13, 1, 5, 1, 1), (15,−13, 1, 7, 1, 1),

(15,−13, 1, 9, 1, 1), (15,−13, 2, 0, 1, 1), (15,−13, 2, 2, 1, 1), (15,−13, 2, 2, 1, 3),

(15,−13, 2, 2, 2, 0), (15,−13, 2, 4, 1, 1), (15,−13, 2, 4, 2, 2), (15,−13, 2, 8, 1, 1),

(15,−13, 3, 1, 1, 1), (15,−13, 3, 7, 1, 1), (15,−13, 4, 0, 1, 1), (15,−11, 1, 1, 1, 1),

(15,−11, 2, 0, 1, 1), (15,−11, 2, 2, 2, 0), (15,−7, 1, 1, 1, 1), (15,−7, 2, 0, 1, 1),

(15,−7, 2, 2, 1, 1), (15,−7, 2, 2, 2, 0), (15,−3, 3,−1, 1, 1), (15, 3, 3,−1, 1, 1),

(16,−14, 2, 0, 1, 1), (16,−10, 2, 0, 1, 1), (16,−10, 2, 0, 1, 3), (16,−8, 3,−1, 1, 1),

(16,−4, 2, 0, 1, 1), (17,−15, 3, 1, 1, 1), (17,−15, 3, 1, 1, 3), (18,−10, 2, 0, 1, 1),

(20,−16, 2, 2, 1, 1), (20,−16, 2, 6, 1, 1), (20,−12, 3,−1, 1, 1), (20,−4, 2, 0, 1, 1),

(21,−19, 2, 2, 1, 1), (21,−9, 2, 0, 1, 1), (21,−5, 2, 0, 1, 1), (25,−23, 2, 0, 1, 1).


