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ON SUMS OF FOUR PENTAGONAL NUMBERS
WITH COEFFICIENTS

DMITRY KRACHUN AND ZHI-WEI SUN*

ABSTRACT. The pentagonal numbers are the integers given by ps(n) = n(3n—
1)/2 (n=0,1,2,...). Let (b, c,d) be one of the triples (1, 1,2), (1,2, 3), (1,2, 6)
and (2, 3,4). We show that eachn = 0,1, 2, ... can be written as w+bz+cy+dz
with w, z,y, z pentagonal numbers, which was first conjectured by Z.-W. Sun
in 2016. In particular, any nonnegative integer is a sum of five pentagonal
numbers two of which are equal; this refines a classical result of Cauchy claimed
by Fermat.

1. INTRODUCTION

For each m = 3,4, 5, ..., the polygonal numbers of order m are given by

P (1) = (m—2)<g> tn (neN=1{0,1,2,...).

In particular, those ps(n) with n € N are called pentagonal numbers. A famous
claim of Fermat states that each n € N can be written as a sum of m polygonal
numbers of order m. This was proved by Lagrange for m = 4 in 1770, by Gauss for
m = 3 in 1796, and by Cauchy for m > 5 in 1813. For Cauchy’s polygonal number
theorem, one may consult Nathanson [6] and [7, Chapter 1, pp. 3-34] for details. In
1830 Legendre refined Cauchy’s polygonal number theorem by showing that for any
m = 5,6, ... every sufficiently large integer is a sum of five polygonal numbers of
order m one of which is 0 or 1 (cf. [7, p. 33]).

In 2016 Sun [9, Conjecture 5.2(ii)] conjectured that each n € N can be written
as

ps(w) + bps () + cps(y) + dps(z) with w,2,y,2 €N,

provided that (b, ¢,d) is among the following 15 triples:

(1,1,2),(1,2,2),(1,2,3),(1,2,4),(1,2,5),(1,2,6), (1, 3,6),
(2,2,4),(2,2,6),(2,3,4),(2,3,5),(2,3,7),(2,4,6), (2,4,7), (2,4, 8).

In 2017, Meng and Sun [5] confirmed this for (b,c,d) = (1,2,2),(1,2,4). In this
paper we prove the conjecture for

(b,c,d) = (1,1,2), (1,2,3), (1,2,6), (2,3,4).
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Theorem 1.1. Fach n € N can be written as a sum of five pentagonal numbers
two of which are equal, that is, there are x,y, z,w € N such that

n = ps(x) + ps(y) + ps(z) + 2ps(w).

Remark 1.1. Clearly, Theorem 1.1 is stronger than the classical result that any
nonnegative integer is a sum of five pentagonal numbers. In Feb. 2019 the second
author even conjectured that any integer n > 33066 is a sum of three pentagonal
numbers.

Theorem 1.2. Anyn € N can be written as ps(w) + 2ps () + 3ps(y) + 4ps(z) with
w,xz,y, 2 € N.

Theorem 1.3. Let § € {1,2}. Then any n € N can be written as ps(w) + ps(z) +
2p5(y) + 30ps(2) with w,x,y,z € N.

We will prove Theorems 1.1-1.3 in Sections 2-4 respectively. Our proofs use some
known results on ternary quadratic forms.

Those ps(x) = x(3z—1)/2 with « € Z are called generalized pentagonal numbers.
Clearly,

{ps(x) : er}:{n(gg_l): neN}U{n(?m;_l): neN}.

Recently, Ju [3] showed that for any positive integers a1, ..., a; the set
{a1ps(x1) + ...+ appr(zk) © 21,..., 26 € Z}

contains all nonnegative integers whenever it contains the twelve numbers
1, 3, 8,9, 11, 18, 19, 25, 27, 43, 98, 109.

The generalized octagonal numbers are those ps(z) = z(3z — 2) with x € Z.
In 2016, Sun [9] proved that any positive integer can be written as a sum of four
generalized octagonal numbers one of which is odd. See also Sun [11] and [10] for
representations of nonnegative integers in the form z(ax + 0)/2 + y(cy + d)/2 +
z(ez + f)/2 with z,y, z integers or nonnegative integers, where a,c, e are positive
integers and b, d, f are integers with a + b,c+ d,e + f all even.

2. PROOF OF THEOREM 1.1

Lemma 2.1. Any positive even number n not in the set {5***1m : km €
N and m = £2 (mod 5)} can be written as > + y*> + 22 + (z + y + 2)?/2 with
x,y, 2 € 7.

Proof. By Dickson [2, pp. 112-113],
N\ {z? +2y* +102%: z,y,2 € Z}
={8m +7: meN}U{5**"]: klecNandl==+1 (mod5)}.

Thus 8n = s + 2t + 1022 for some s,t,2 € Z. Clearly, 2 | s and ¢t = z (mod 2).
Without loss of generality, we may assume that ¢ Z z (mod 4) if 2§ z. (If ¢t =
z (mod 4) with 2z odd, then —t # 2z (mod 4).) Write s = 2r and t = 2w + z with
r,w € Z. Then 2t w if 2t z. Since

0=8n=s>+22w+ 2)* + 1022 = (2r)* + 122% + 8w(w + 2) (mod 16),
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both r — z and w(w + z) are even. If 2 | z then 2 | w. Recall that 2t w if 2 ¢ z.
So w =z =7 (mod 2). Now, both z = (r + w)/2 and y = (w — r)/2 are integers.
Observe that

2 2
2n:7’2+2(w+§) +10(§) =72 4+ (w+2)* +w? + 222
=@ =+ @+’ + (@ +y+2)* + 222
=222 + 207 + 222 + (z +y + 2)?
and hence n = 2% + y? + 22 + (v + y + 2)?/2. This ends the proof. O

Lemma 2.2. Let n € N. Suppose that there are B € N and x,y,z € Z such that
3|n+ B and

g S
Then n = ps(xo) + ps(yo) + ps(20) + 2ps(wp) for some xg,yo, 20, wo € N.

2
g(n+B)—|—B—5Bz:x2—|—y2+22+

Proof. Clearly, w = —(z +y+ 2)/2 € Z. As |z|,|y|, |z], |w| < B, all the numbers
ro=2+B, yo=y+B, 2o=2+B, ww=w+ B
are nonnegative integers. Observe that

p5(x0) + p5(Yo) + ps(20) + 2ps(wo)
3(zd + yd + 28 + 2wd) — (w0 + yo + 20 + 2wp)
2
3(5B% + 2 +y* +2° 4+ 2u?) 5B _ 2n+5B-5B _
2 - 2 -
This concludes the proof. O

Proof of Theorem 1.1. We can easily verify the desired result for n = 0,...,8891.
Below we assume that n > 8892. If

N [on 1
2.1 Y Lo <B< /=42
(2.1) 3 eSSV e
then )
2 , _ 15(B—1/6)*> 5B s 5
- _ >V 7 - _ _
3(n+B)+B 5B% > 3 +5 —5B = 5>0
and
2 2 1\\> 5B
= B)+B-5B* <> B— - == —5B2
3(n—|— )+ 5 _3(3( 6)) + 3 5
:BQ—;)(B—;)gBQ
Case 1. 5{n.
As
> 3* 8892
n = )
| (/2/15 — 1/3)2
we have
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and hence there is an integer B satisfying (2.1) with B = —n (mod 3). By the
above,

_ 2n+5B
3

As the even number 2(n + B) + B — 5B? is not divisible by 5, in light of Lemma
2.1 there are z,y, z € Z such that

< —5B% < B2

2
0<§(n+B)+B—5B2

(z+y+2)°

5 .
Now, by applying Lemma 2.2 we find that n = ps(xo) + p5(yo) + ps(20) + 2p5(wo)
for some xg,y, 20, wo € N.

2
g(n—&-B)—l—B—SBQ:xQ—i—yQ—i—zQ—i—

Case 2. n = 5q for some q € N.
In this case, we can easily verify the desired result when 8892 < n < 222288.

Below we assume that
> 222289 15°
n = y————————— .
- (1/2/15 = 1/3)2

Choose ¢ € {0, £1} such that 1 — ¢ — 6 # 0,£2 (mod 5). As

2n 1 n 1 2 1

s (ErS) == -2 > 15

56 ( 3+6> ( 15 3>\/ﬁ_ ’
there is an integer B satisfying (2.1) such that B = —n (mod 3) and (B — 1)? =
d (mod 5). Note that

2 2+ B
3(n+B)+B—532=5( q; —BQ>

== B*=1-¢q-(B-1?=1-q—6%#0,+2 (mod 5).

Thus, by applying Lemmas 2.1 and 2.2 we get that n = p5(xo) + p5(yo) + p5(20) +
2ps (wo) for some g,y 20, wo € N.
In view of the above, we have completed the proof of Theorem 1.1. a

3. PROOF OF THEOREM 1.2

Lemma 3.1. Let ¢ € N with q odd and not squarefree, or2 | q and q ¢ {4*(161+6) :
k,l € N}. Then there are x,y,z € Z such that

6q = 227 + 3y* + 42° + (22 + 3y + 42)%

Proof. By K. Ono and K. Soundararajan [8], and Dickson [1], the Ramanujan form
22 4+ y? + 1022 represents q. Write ¢ = a? + b? + 10c? with a,b, ¢ € Z. Then, for

r=a+b+2c, y=-b+2c, z=—3c,
we have
222 + 3y% 4+ 422 + (22 + 3y + 42)% = 6(a® + b? + 10¢%) = 6q.
This concludes the proof. O
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Lemma 3.2. Let n € N. Suppose that there are B € N and x,y, z € Z such that

2n +10B
3

Then n = ps(wo) + 2p5(wo) + 3ps(yo) + 4ps(20) for some wo, xo, Yo, 20 € N.

—10B? = 227 + 3y + 422 + (22 + 3y + 42)* < (B + 1)

Proof. Set w = —(2z 4+ 3y + 42). As |w|, |z, |y, |z| < B, all the numbers
wo=w+B, xo=r+B, yo=y+B, 20=2+B
are nonnegative integers. Observe that

ps(wo) + 2p5(7o) + 3ps(yo) + 4ps(20)
3(wg + 225 + 3yg + 425) — (wo + 220 + 3yo + 420)
2
3(1032 + w? 4+ 222 + 3y2 + 42’2) — 10B _ 2n + 10B — 10B _
2 - 2 ="
This ends the proof. (|

Proof of Theorem 1.2. We can verify the result for n =0, ...,45325137 directly via
a computer. Below we assume that

_ 2
n > 45325138 — {(81 1/6 +1/16) w .

(/1/15 — \/2/33)2
n 1 2n 1
56 (@*m) = 8L,

2n 1 n
4 _<B<,/—
33 16—  — V15

Since

there is an integer B with
!
6
such that
= —9n3 + 12n? — 38n (mod 81)
if n is odd, and B = 3n — 1 (mod 8) and B = 3n? — 2n (mod 9) if n is even. Note

that

2n + 10B 30(B —1/6)? + 10B 5

—10B% > —10B>=-"=>0
3 = 3 T
and
2n + 10B 33(B — 1/16)% + 10B
24108 g 330 /16) + —10B?
3 3
47 11
=By — 1)2.
B +24B+256<(B+ )

Let ¢ = (n+ 5B — 15B%)/9. When n is odd, we can easily see that ¢ is an odd
integer divisible by 9. When n is even, ¢ is an even integer with ¢ = 4 (mod 8), and
hence q # 4¥(161 + 6) for any k,I € N. By Lemma 3.1, we can write 6¢ = (2n +
10B)/3—10B2 as 222 +3y? +42% 4+ (22 +3y+42)? with x,y, 2 € Z. Applying Lemma
3.2, we see that n = p5(wo) + 2ps5(x0) + 3p5(yo) +4ps(z0) for some wy, o, yo, 20 € N.

The proof of Theorem 1.2 is now complete. O
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4. PROOF OF THEOREM 1.3
Lemma 4.1. Let ¢ € N be a multiple of 9 with 71 q or
qge{mr: reZ andr=1,2,4 (mod 7)}.
Then there are x,y, z € Z such that
6g = 2% + 2y% + 322 + (v + 2y + 32)°.
Proof. Since 9 | ¢ and
q {7 kleNandl=3,56 (mod 7)},
by [4, Theorem 2] we can write ¢ as a? + b? + 7c? with a, b, c € Z. For
r=06c, y=a—b—rc, z=0b—c,
we have
2 + 297 4+ 322 + (2 + 2y + 32)% = 6(a” 4+ b* 4 7c?) = 6q.
This concludes the proof. g
Lemma 4.2. Let n € N and § € {1,2}. Suppose that there are B € N and
x,y,z € Z such that
2n+ (30 +4)B
3
Then n = ps(wo) + ps(xo) + 2p5(yo) + 30ps(20) for some wyg, To, Yo, 20 € N.

— (30 +4)B? = 2% + 2y* +362% + (v + 2y + 302)* < (B + 1)

Proof. Set w = —(z + 2y + 30z). As |w|, |z, |y, |2| < B, all the numbers
wo=w+B, xo=x+B, yo=y+ B, 20=2+DB
are nonnegative integers. Observe that

ps(wo) + ps(wo) + 2ps(yo) + 30ps(20)
3(wi + xd +2y3 + 3822) — (wo + o + 2yo + 3620)

2
~3((36 + 4)B? + w? 4 2? + 2y* 4 362) — (30 + 4)B
B 2
2+ (30 +4)B— (30 +4)B "
= 5 —
This ends the proof. a

Proof of Theorem 1.3 with 6 = 1. We can verify the desired result for n =
0,1,...,808834880 directly via a computer. Below we assume that

(7 x 81+ 1/48 — 1/6)2-‘

(/2/21 — \/1/12)2

n > 808834881 = {

Since
2n

1 n 1
S (O T
21 1 6 < 12+48>_7X81’

there is an integer B with
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such that B = 18n% +3n2 —35n (mod 81), and 3n/7+1—(B+1)? = 3,5,6 (mod 7)
if 7| n. Such an integer B exists in view of the Chinese Remainder Theorem and
the simple observations

0-12=1-32=6-0%=6 (mod 7),
2-22=5-02=5(mod 7), 3—-0°=4—12=3 (mod 7).

Note that
2n+ 7B 5 21(B—-1/6)2+17B , 7
—— —7B*> —TB>=_—_>0
3 = 3 36~
and
2 B 24(B — 1/48)% + 7B 1
%—73% ( /38) T 77B2:Bz+28+@<(8+1)2.

It is easy to see that
1 /2n+78B 9
=—(———-17B
o= ()
is an integer divisible by 9. If n = Tng for some ng € N, then

9 _1(2n0+B g
7 6 3

_ 97?,0 — 6B
o 3
By Lemma 4.1, we can write 6¢ = (2n+7B)/3—7B? as 22 4+2y>+ 322+ (2 +2y+32)?
with z,y, 2z € Z. Applying Lemma 4.2 with § = 1, we see that n = p5(wo) +ps5(zo)+
2ps5(yo) + 3ps(z0) for some wy, o, Yo, 20 € N. This completes the proof. a

— B2> =(B+1)?~(3ng+1)=1,2,4 (mod 7).

Lemma 4.3. Let ¢ € N with ¢ # 7 (mod 8) or
q & {5* ' k1eNandl==+1 (mod 5)}.
Then there are x,y,z € Z such that
6qg = 22 +2y% + 62% + (z + 2y + 62)°.

Proof. By Dickson [2, pp. 112-113], we can write g as a® + 2b* +10c? with a, b, c € Z.
For

r=2a—b+4+3c, y=—a—-0b+3c, z=—2c,
we have
2?4 242 + 622 + (x + 2y + 62)? = 6(a® + 20° + 10¢%) = 6q.
This ends the proof. |

Proof of Theorem 1.3 with § = 2. We can verify the desired result for n =
0,1,...,897099188 directly via a computer.
Below we assume that

1/16 — 1 2
n > 897099189 — P360+ /16 —1/6) w

(\/1/15 — \/2/33)2

n 1 2n 1
— 4 —(V=+=]>
15+6 ( 33+16>5><8><9,

Since
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there is an integer B with

27n+i<B< £+}
33 16— ~ V15 6

such that B = 3n%? — 2n (mod 9) and B = n? —n — 1 (mod 8), and (B — 1)% #

2n

arn

0£1,2n9 — 2 (mod 5) if n = 5ngy with ng € N. Then

_ 2
gL (2108 e n5B o158
6 3 9
d g # 7 (mod 8). If n = 5ng for some ny € N, then
B — 3B? B? -2B
) 9 2
B—-12—-2ny—-1
_( )2 "0 20,41 (mod 5).
As in the proof of Theorem 1.2, we also have
2 10B
O<6q:%—1032<(3+1)2.

Now applying Lemma 4.3 and Lemma 4.2 with 6 = 2, we obtain that n = p5(wp) +
ps5(z0) + 2p5(yo) + 6ps(20) for some wo, zo, Yo, 20 € N.
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The proof of Theorem 1.3 with § = 2 is now complete. O
REFERENCES
] L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math., 49

(1927), 39-56. MR 1506600

| L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago,
1939. MR 0000387

| J. Ju, Universal sums of generalized pentagonal numbers, Ramanujan J., 51 (2020), 479-494.

I. Kaplansky, The first nontrivial genus of positive definite ternary forms, Math. Comput., 64

(1995), 341-345. MR 1265017

| X.-Z. Meng and Z.-W. Sun, Sums of four polygonal numbers with coefficients, Acta Arith.,
180 (2017), 229-249. MR 3709643

] M. B. Nathanson, A short proof of Cauchy’s polygonal theorem, Proc. Amer. Math. Soc., 99
(1987), 22-24. MR 866422

] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., vol.
164, Springer, New York, 1996. MR 1395371

] K. Ono and K. Soundararajan, Ramanujan’s ternary quadratic form, Invent. Math., 130
(1997), 415-454. MR 1483991

| Z.-W. Sun, A result similar to Lagrange’s theorem, J. Number Theory, 162 (2016), 190-211.
MR 3448267

| Z.-W. Sun, On universal sums z(axz + b)/2 + y(cy + d)/2 + z(ez + f)/2, Nanjing Univ. J.
Math. Biquarterly, 35 (2018), 85-199.

| Z.-W. Sun, Universal sums of three quadratic polynomials, Sci. China Math., 63 (2020),
501-520. MR 4070776

DMITRY KRACHUN, ST. PETERSBURG DEPARTMENT OF STEKLOV MATHEMATICAL INSTITUTE OF
SSIAN ACADEMY OF SCIENCES, FONTANKA 27, 191023, ST. PETERSBURG, RUSSIA
Email address: dmitrykrachun@gmail.com

ZH1-WEI SUN, DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA
Email address: zusun@nju.edu.cn


http://dx.doi.org/10.2307/2370770
http://www.ams.org/mathscinet-getitem?mr=1506600&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0000387&return=pdf
http://dx.doi.org/10.1007/s11139-019-00142-3
http://dx.doi.org/10.2307/2153338
http://www.ams.org/mathscinet-getitem?mr=1265017&return=pdf
http://dx.doi.org/10.4064/aa8630-4-2017
http://www.ams.org/mathscinet-getitem?mr=3709643&return=pdf
http://dx.doi.org/10.2307/2046263
http://www.ams.org/mathscinet-getitem?mr=866422&return=pdf
http://dx.doi.org/10.1007/978-1-4757-3845-2
http://www.ams.org/mathscinet-getitem?mr=1395371&return=pdf
http://dx.doi.org/10.1007/s002220050191
http://www.ams.org/mathscinet-getitem?mr=1483991&return=pdf
http://dx.doi.org/10.1016/j.jnt.2015.10.014
http://www.ams.org/mathscinet-getitem?mr=3448267&return=pdf
http://dx.doi.org/10.1007/s11425-017-9354-4
http://www.ams.org/mathscinet-getitem?mr=4070776&return=pdf

	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	4. Proof of Theorem 1.3
	References

