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ON SUMS OF FOUR PENTAGONAL NUMBERS

WITH COEFFICIENTS

DMITRY KRACHUN AND ZHI-WEI SUN∗

Abstract. The pentagonal numbers are the integers given by p5(n) = n(3n−
1)/2 (n = 0, 1, 2, . . .). Let (b, c, d) be one of the triples (1, 1, 2), (1, 2, 3), (1, 2, 6)

and (2, 3, 4). We show that each n = 0, 1, 2, . . . can be written as w+bx+cy+dz
with w, x, y, z pentagonal numbers, which was first conjectured by Z.-W. Sun

in 2016. In particular, any nonnegative integer is a sum of five pentagonal

numbers two of which are equal; this refines a classical result of Cauchy claimed
by Fermat.

1. Introduction

For each m = 3, 4, 5, . . ., the polygonal numbers of order m are given by

pm(n) = (m− 2)

(
n

2

)
+ n (n ∈ N = {0, 1, 2, . . .}).

In particular, those p5(n) with n ∈ N are called pentagonal numbers. A famous
claim of Fermat states that each n ∈ N can be written as a sum of m polygonal
numbers of order m. This was proved by Lagrange for m = 4 in 1770, by Gauss for
m = 3 in 1796, and by Cauchy for m ≥ 5 in 1813. For Cauchy’s polygonal number
theorem, one may consult Nathanson [6] and [7, Chapter 1, pp. 3-34] for details. In
1830 Legendre refined Cauchy’s polygonal number theorem by showing that for any
m = 5, 6, . . . every sufficiently large integer is a sum of five polygonal numbers of
order m one of which is 0 or 1 (cf. [7, p. 33]).

In 2016 Sun [9, Conjecture 5.2(ii)] conjectured that each n ∈ N can be written
as

p5(w) + bp5(x) + cp5(y) + dp5(z) with w, x, y, z ∈ N,
provided that (b, c, d) is among the following 15 triples:

(1, 1, 2), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 6),

(2, 2, 4), (2, 2, 6), (2, 3, 4), (2, 3, 5), (2, 3, 7), (2, 4, 6), (2, 4, 7), (2, 4, 8).

In 2017, Meng and Sun [5] confirmed this for (b, c, d) = (1, 2, 2), (1, 2, 4). In this
paper we prove the conjecture for

(b, c, d) = (1, 1, 2), (1, 2, 3), (1, 2, 6), (2, 3, 4).
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Theorem 1.1. Each n ∈ N can be written as a sum of five pentagonal numbers
two of which are equal, that is, there are x, y, z, w ∈ N such that

n = p5(x) + p5(y) + p5(z) + 2p5(w).

Remark 1.1. Clearly, Theorem 1.1 is stronger than the classical result that any
nonnegative integer is a sum of five pentagonal numbers. In Feb. 2019 the second
author even conjectured that any integer n > 33066 is a sum of three pentagonal
numbers.

Theorem 1.2. Any n ∈ N can be written as p5(w) + 2p5(x) + 3p5(y) + 4p5(z) with
w, x, y, z ∈ N.

Theorem 1.3. Let δ ∈ {1, 2}. Then any n ∈ N can be written as p5(w) + p5(x) +
2p5(y) + 3δp5(z) with w, x, y, z ∈ N.

We will prove Theorems 1.1-1.3 in Sections 2-4 respectively. Our proofs use some
known results on ternary quadratic forms.

Those p5(x) = x(3x−1)/2 with x ∈ Z are called generalized pentagonal numbers.
Clearly,

{p5(x) : x ∈ Z} =

{
n(3n− 1)

2
: n ∈ N

}⋃{
n(3n+ 1)

2
: n ∈ N

}
.

Recently, Ju [3] showed that for any positive integers a1, . . . , ak the set

{a1p5(x1) + . . .+ akpk(xk) : x1, . . . , xk ∈ Z}

contains all nonnegative integers whenever it contains the twelve numbers

1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, 109.

The generalized octagonal numbers are those p8(x) = x(3x − 2) with x ∈ Z.
In 2016, Sun [9] proved that any positive integer can be written as a sum of four
generalized octagonal numbers one of which is odd. See also Sun [11] and [10] for
representations of nonnegative integers in the form x(ax + b)/2 + y(cy + d)/2 +
z(ez + f)/2 with x, y, z integers or nonnegative integers, where a, c, e are positive
integers and b, d, f are integers with a+ b, c+ d, e+ f all even.

2. Proof of Theorem 1.1

Lemma 2.1. Any positive even number n not in the set {52k+1m : k,m ∈
N and m ≡ ±2 (mod 5)} can be written as x2 + y2 + z2 + (x + y + z)2/2 with
x, y, z ∈ Z.

Proof. By Dickson [2, pp. 112-113],

N \ {x2 + 2y2 + 10z2 : x, y, z ∈ Z}

={8m+ 7 : m ∈ N} ∪ {52k+1l : k, l ∈ N and l ≡ ±1 (mod 5)}.

Thus 8n = s2 + 2t2 + 10z2 for some s, t, z ∈ Z. Clearly, 2 | s and t ≡ z (mod 2).
Without loss of generality, we may assume that t 6≡ z (mod 4) if 2 - z. (If t ≡
z (mod 4) with z odd, then −t 6≡ z (mod 4).) Write s = 2r and t = 2w + z with
r, w ∈ Z. Then 2 - w if 2 - z. Since

0 ≡ 8n = s2 + 2(2w + z)2 + 10z2 = (2r)2 + 12z2 + 8w(w + z) (mod 16),
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both r − z and w(w + z) are even. If 2 | z then 2 | w. Recall that 2 - w if 2 - z.
So w ≡ z ≡ r (mod 2). Now, both x = (r + w)/2 and y = (w − r)/2 are integers.
Observe that

2n =r2 + 2
(
w +

z

2

)2
+ 10

(z
2

)2
= r2 + (w + z)2 + w2 + 2z2

=(x− y)2 + (x+ y)2 + (x+ y + z)2 + 2z2

=2x2 + 2y2 + 2z2 + (x+ y + z)2

and hence n = x2 + y2 + z2 + (x+ y + z)2/2. This ends the proof. �

Lemma 2.2. Let n ∈ N. Suppose that there are B ∈ N and x, y, z ∈ Z such that
3 | n+B and

2

3
(n+B) +B − 5B2 = x2 + y2 + z2 +

(x+ y + z)2

2
≤ B2.

Then n = p5(x0) + p5(y0) + p5(z0) + 2p5(w0) for some x0, y0, z0, w0 ∈ N.

Proof. Clearly, w = −(x+ y + z)/2 ∈ Z. As |x|, |y|, |z|, |w| ≤ B, all the numbers

x0 = x+B, y0 = y +B, z0 = z +B, w0 = w +B

are nonnegative integers. Observe that

p5(x0) + p5(y0) + p5(z0) + 2p5(w0)

=
3(x20 + y20 + z20 + 2w2

0)− (x0 + y0 + z0 + 2w0)

2

=
3(5B2 + x2 + y2 + z2 + 2w2)− 5B

2
=

2n+ 5B − 5B

2
= n.

This concludes the proof. �

Proof of Theorem 1.1. We can easily verify the desired result for n = 0, . . . , 8891.
Below we assume that n ≥ 8892. If

(2.1)

√
n

3
+

1

6
≤ B ≤

√
2n

15
+

1

6
,

then
2

3
(n+B) +B − 5B2 ≥ 15(B − 1/6)2

3
+

5B

3
− 5B2 =

5

36
> 0

and

2

3
(n+B) +B − 5B2 ≤2

3

(
3

(
B − 1

6

))2

+
5B

3
− 5B2

=B2 − 1

3

(
B − 1

2

)
≤ B2.

Case 1. 5 - n.
As

n ≥

⌈
32

(
√

2/15− 1/3)2

⌉
= 8892,

we have √
2n

15
+

1

6
−
(√

n

3
+

1

6

)
=

(√
2

15
− 1

3

)
√
n ≥ 3
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and hence there is an integer B satisfying (2.1) with B ≡ −n (mod 3). By the
above,

0 ≤ 2

3
(n+B) +B − 5B2 =

2n+ 5B

3
− 5B2 ≤ B2.

As the even number 2
3 (n + B) + B − 5B2 is not divisible by 5, in light of Lemma

2.1 there are x, y, z ∈ Z such that

2

3
(n+B) +B − 5B2 = x2 + y2 + z2 +

(x+ y + z)2

2
.

Now, by applying Lemma 2.2 we find that n = p5(x0) + p5(y0) + p5(z0) + 2p5(w0)
for some x0, y,z0, w0 ∈ N.

Case 2. n = 5q for some q ∈ N.
In this case, we can easily verify the desired result when 8892 ≤ n ≤ 222288.

Below we assume that

n ≥ 222289 =

⌈
152

(
√

2/15− 1/3)2

⌉
.

Choose δ ∈ {0,±1} such that 1− q − δ 6≡ 0,±2 (mod 5). As√
2n

15
+

1

6
−
(√

n

3
+

1

6

)
=

(√
2

15
− 1

3

)
√
n ≥ 15,

there is an integer B satisfying (2.1) such that B ≡ −n (mod 3) and (B − 1)2 ≡
δ (mod 5). Note that

2

3
(n+B) +B − 5B2 = 5

(
2q +B

3
−B2

)
and

2q +B

3
−B2 ≡ −2q +B

2
−B2 ≡ 1− q − (B − 1)2 ≡ 1− q − δ 6≡ 0,±2 (mod 5).

Thus, by applying Lemmas 2.1 and 2.2 we get that n = p5(x0) + p5(y0) + p5(z0) +
2p5(w0) for some x0, y,z0, w0 ∈ N.

In view of the above, we have completed the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

Lemma 3.1. Let q ∈ N with q odd and not squarefree, or 2 | q and q 6∈ {4k(16l+6) :
k, l ∈ N}. Then there are x, y, z ∈ Z such that

6q = 2x2 + 3y2 + 4z2 + (2x+ 3y + 4z)2.

Proof. By K. Ono and K. Soundararajan [8], and Dickson [1], the Ramanujan form
x2 + y2 + 10z2 represents q. Write q = a2 + b2 + 10c2 with a, b, c ∈ Z. Then, for

x = a+ b+ 2c, y = −b+ 2c, z = −3c,

we have

2x2 + 3y2 + 4z2 + (2x+ 3y + 4z)2 = 6(a2 + b2 + 10c2) = 6q.

This concludes the proof. �
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Lemma 3.2. Let n ∈ N. Suppose that there are B ∈ N and x, y, z ∈ Z such that

2n+ 10B

3
− 10B2 = 2x2 + 3y2 + 4z2 + (2x+ 3y + 4z)2 < (B + 1)2.

Then n = p5(w0) + 2p5(x0) + 3p5(y0) + 4p5(z0) for some w0, x0, y0, z0 ∈ N.

Proof. Set w = −(2x+ 3y + 4z). As |w|, |x|, |y|, |z| ≤ B, all the numbers

w0 = w +B, x0 = x+B, y0 = y +B, z0 = z +B

are nonnegative integers. Observe that

p5(w0) + 2p5(x0) + 3p5(y0) + 4p5(z0)

=
3(w2

0 + 2x20 + 3y20 + 4z20)− (w0 + 2x0 + 3y0 + 4z0)

2

=
3(10B2 + w2 + 2x2 + 3y2 + 4z2)− 10B

2
=

2n+ 10B − 10B

2
= n.

This ends the proof. �

Proof of Theorem 1.2. We can verify the result for n = 0, . . . , 45325137 directly via
a computer. Below we assume that

n ≥ 45325138 =

⌈
(81− 1/6 + 1/16)2

(
√

1/15−
√

2/33)2

⌉
.

Since √
n

15
+

1

6
−

(√
2n

33
+

1

16

)
≥ 81,

there is an integer B with √
2n

33
+

1

16
≤ B ≤

√
n

15
+

1

6

such that

B ≡ −9n3 + 12n2 − 38n (mod 81)

if n is odd, and B ≡ 3n− 1 (mod 8) and B ≡ 3n2 − 2n (mod 9) if n is even. Note
that

2n+ 10B

3
− 10B2 ≥ 30(B − 1/6)2 + 10B

3
− 10B2 =

5

18
> 0

and

2n+ 10B

3
− 10B2 ≤33(B − 1/16)2 + 10B

3
− 10B2

=B2 +
47

24
B +

11

256
< (B + 1)2.

Let q = (n + 5B − 15B2)/9. When n is odd, we can easily see that q is an odd
integer divisible by 9. When n is even, q is an even integer with q ≡ 4 (mod 8), and
hence q 6= 4k(16l + 6) for any k, l ∈ N. By Lemma 3.1, we can write 6q = (2n +
10B)/3−10B2 as 2x2+3y2+4z2+(2x+3y+4z)2 with x, y, z ∈ Z. Applying Lemma
3.2, we see that n = p5(w0)+2p5(x0)+3p5(y0)+4p5(z0) for some w0, x0, y0, z0 ∈ N.

The proof of Theorem 1.2 is now complete. �
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4. Proof of Theorem 1.3

Lemma 4.1. Let q ∈ N be a multiple of 9 with 7 - q or

q ∈ {7r : r ∈ Z and r ≡ 1, 2, 4 (mod 7)}.

Then there are x, y, z ∈ Z such that

6q = x2 + 2y2 + 3z2 + (x+ 2y + 3z)2.

Proof. Since 9 | q and

q 6∈ {72k+1l : k, l ∈ N and l ≡ 3, 5, 6 (mod 7)},

by [4, Theorem 2] we can write q as a2 + b2 + 7c2 with a, b, c ∈ Z. For

x = 6c, y = a− b− c, z = b− c,

we have

x2 + 2y2 + 3z2 + (x+ 2y + 3z)2 = 6(a2 + b2 + 7c2) = 6q.

This concludes the proof. �

Lemma 4.2. Let n ∈ N and δ ∈ {1, 2}. Suppose that there are B ∈ N and
x, y, z ∈ Z such that

2n+ (3δ + 4)B

3
− (3δ + 4)B2 = x2 + 2y2 + 3δz2 + (x+ 2y + 3δz)2 < (B + 1)2.

Then n = p5(w0) + p5(x0) + 2p5(y0) + 3δp5(z0) for some w0, x0, y0, z0 ∈ N.

Proof. Set w = −(x+ 2y + 3δz). As |w|, |x|, |y|, |z| ≤ B, all the numbers

w0 = w +B, x0 = x+B, y0 = y +B, z0 = z +B

are nonnegative integers. Observe that

p5(w0) + p5(x0) + 2p5(y0) + 3δp5(z0)

=
3(w2

0 + x20 + 2y20 + 3δz20)− (w0 + x0 + 2y0 + 3δz0)

2

=
3((3δ + 4)B2 + w2 + x2 + 2y2 + 3δz2)− (3δ + 4)B

2

=
2n+ (3δ + 4)B − (3δ + 4)B

2
= n.

This ends the proof. �

Proof of Theorem 1.3 with δ = 1. We can verify the desired result for n =
0, 1, . . . , 808834880 directly via a computer. Below we assume that

n ≥ 808834881 =

⌈
(7× 81 + 1/48− 1/6)2

(
√

2/21−
√

1/12)2

⌉
.

Since √
2n

21
+

1

6
−
(√

n

12
+

1

48

)
≥ 7× 81,

there is an integer B with √
n

12
+

1

48
≤ B ≤

√
2n

21
+

1

6
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such that B ≡ 18n3 +3n2−35n (mod 81), and 3n/7+1− (B+1)2 ≡ 3, 5, 6 (mod 7)
if 7 | n. Such an integer B exists in view of the Chinese Remainder Theorem and
the simple observations

0− 12 ≡ 1− 32 ≡ 6− 02 ≡ 6 (mod 7),

2− 22 ≡ 5− 02 ≡ 5 (mod 7), 3− 02 ≡ 4− 12 ≡ 3 (mod 7).

Note that

2n+ 7B

3
− 7B2 ≥ 21(B − 1/6)2 + 7B

3
− 7B2 =

7

36
> 0

and

2n+ 7B

3
− 7B2 ≤ 24(B − 1/48)2 + 7B

3
− 7B2 = B2 + 2B +

1

288
< (B + 1)2.

It is easy to see that

q :=
1

6

(
2n+ 7B

3
− 7B2

)
is an integer divisible by 9. If n = 7n0 for some n0 ∈ N, then

q

7
=

1

6

(
2n0 +B

3
−B2

)
≡−

(
9n0 − 6B

3
−B2

)
= (B + 1)2 − (3n0 + 1) ≡ 1, 2, 4 (mod 7).

By Lemma 4.1, we can write 6q = (2n+7B)/3−7B2 as x2+2y2+3z2+(x+2y+3z)2

with x, y, z ∈ Z. Applying Lemma 4.2 with δ = 1, we see that n = p5(w0)+p5(x0)+
2p5(y0) + 3p5(z0) for some w0, x0, y0, z0 ∈ N. This completes the proof. �

Lemma 4.3. Let q ∈ N with q 6≡ 7 (mod 8) or

q 6∈ {52k+1l : k, l ∈ N and l ≡ ±1 (mod 5)}.

Then there are x, y, z ∈ Z such that

6q = x2 + 2y2 + 6z2 + (x+ 2y + 6z)2.

Proof. By Dickson [2, pp. 112-113], we can write q as a2 +2b2 +10c2 with a, b, c ∈ Z.
For

x = 2a− b+ 3c, y = −a− b+ 3c, z = −2c,

we have

x2 + 2y2 + 6z2 + (x+ 2y + 6z)2 = 6(a2 + 2b2 + 10c2) = 6q.

This ends the proof. �

Proof of Theorem 1.3 with δ = 2. We can verify the desired result for n =
0, 1, . . . , 897099188 directly via a computer.

Below we assume that

n ≥ 897099189 =

⌈
(360 + 1/16− 1/6)2

(
√

1/15−
√

2/33)2

⌉
.

Since √
n

15
+

1

6
−

(√
2n

33
+

1

16

)
≥ 5× 8× 9,
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there is an integer B with √
2n

33
+

1

16
≤ B ≤

√
n

15
+

1

6

such that B ≡ 3n2 − 2n (mod 9) and B ≡ n2 − n − 1 (mod 8), and (B − 1)2 6≡
2n0 ± 1, 2n0 − 2 (mod 5) if n = 5n0 with n0 ∈ N. Then

q =
1

6

(
2n+ 10B

3
− 10B2

)
=
n+ 5B − 15B2

9
∈ Z

and q 6≡ 7 (mod 8). If n = 5n0 for some n0 ∈ N, then

q

5
=
n0 +B − 3B2

9
≡ 3B2 −B − n0 ≡

B2 − 2B

2
− n0

=
(B − 1)2 − 2n0 − 1

2
6≡ 0,±1 (mod 5).

As in the proof of Theorem 1.2, we also have

0 < 6q =
2n+ 10B

3
− 10B2 < (B + 1)2.

Now applying Lemma 4.3 and Lemma 4.2 with δ = 2, we obtain that n = p5(w0) +
p5(x0) + 2p5(y0) + 6p5(z0) for some w0, x0, y0, z0 ∈ N.

The proof of Theorem 1.3 with δ = 2 is now complete. �
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