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Abstract. We confirm several conjectures of Sun involving quadratic residues

modulo odd primes. For any prime p ≡ 1 (mod 4) and integer a 6≡ 0 (mod p),

we prove that

(−1)
|{1≤k< p

4
: ( k

p
)=−1}| ∏

1≤j<k≤(p−1)/2

(e2πiaj
2/p + e2πiak

2/p)

=

1 if p ≡ 1 (mod 8),(
a
p

)
ε
−( a

p
)h(p)

p if p ≡ 5 (mod 8),

and that ∣∣∣∣{(j, k) : 1 ≤ j < k ≤
p− 1

2
& {aj2}p > {ak2}p

}∣∣∣∣
+

∣∣∣∣{(j, k) : 1 ≤ j < k ≤
p− 1

2
& {ak2 − aj2}p >

p

2

}∣∣∣∣
≡
∣∣∣∣{1 ≤ k <

p

4
:

(
k

p

)
=

(
a

p

)}∣∣∣∣ (mod 2),

where (a
p

) is the Legendre symbol, εp and h(p) are the fundamental unit and

the class number of the real quadratic field Q(
√
p) respectively, and {x}p is

the least nonnegative residue of an integer x modulo p. Also, for any prime
p ≡ 3 (mod 4) and δ = 1, 2, we determine

(−1)|{(j,k): 1≤j<k≤(p−1)/2 and {δTj}p>{δTk}p}|,
where Tm denotes the triangular number m(m+ 1)/2.
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1. Introduction. Let p be an odd prime. It is well known that the numbers

12, 22, . . . ,

(
p− 1

2

)2

are pairwise incongruent modulo p, and they give all the (p−1)/2 quadratic residues
modulo p. Recently Z.-W. Sun [7] initiated the study of permutations related to
quadratic residues modulo p as well as evaluations of related products involving
pth roots of unity; many of his results in [7] are related to the class number of the

quadratic field Q(
√

(−1)(p−1)/2p). In this paper, we confirm some conjectures of
Sun [7] in this new direction.

Let p > 3 be a prime and let ζ = e2πi/p. Let a ∈ Z with p - a. Recently, Z.-W.
Sun [7, Theorem 1.3(ii)] showed that∏

1≤j<k≤(p−1)/2

(ζaj
2

− ζak
2

)

=


±i(p−1)/4p(p−3)/8ε(

a
p )h(p)/2
p if p ≡ 1 (mod 4),

(−p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(p+1)/8+(h(−p)−1)/2(ap )p(p−3)/8i if p ≡ 7 (mod 8),

where (ap ) is the Legendre symbol, εp with p ≡ 1 (mod 4) is the fundamental unit

of the real quadratic field Q(
√
p), and h(d) with d ≡ 0, 1 (mod 4) not a square is

the class number of the quadratic field with discriminant d. Sun [7, Theorem 1.5]
also proved that

(−1)a
p+1
2 b

p−1
4 c2(p−1)(p−3)/8

∏
1≤j<k≤(p−1)/2

cosπ
a(k2 − j2)

p

=
∏

1≤j<k≤(p−1)/2

(ζaj
2

+ ζak
2

) =

{
1 if p ≡ 3 (mod 4),

±ε(
a
p )h(p)((

2
p )−1)/2

p if p ≡ 1 (mod 4).

(1.1)

Our first theorem confirms [7, Conjecture 6.7].

Theorem 1.1. Let p be a prime with p ≡ 1 (mod 4), and let ζ = e2πi/p. Let a be
an integer not divisible by p.

(i) If p ≡ 1 (mod 8), then∏
1≤j<k≤(p−1)/2

(ζaj
2

+ ζak
2

) = (−1)|{1≤k<
p
4 : ( k

p )=−1}|. (1.2)

(ii) When p ≡ 5 (mod 8), we have

(−1)|{1≤k<
p
4 : ( k

p )=−1}|
∏

1≤j<k≤(p−1)/2

(ζaj
2

+ ζak
2

) =

(
a

p

)
ε
−( a

p )h(p)
p . (1.3)

Remark 1.1. Let p be a prime with p ≡ 1 (mod 4). Then (p−12 !)2 ≡ −1 (mod p)

by Wilson’s theorem. We may write p = x2 + y2 with x, y ∈ Z, x ≡ 1 (mod 4) and
y ≡ p−1

2 !x (mod p). As y2 ≡ p− 1 (mod 8), we see that y ≡ ( 2
p )− 1 (mod 4). By a

result of K. Burde [3], we have∣∣∣∣{1 ≤ k < p

4
:

(
k

p

)
= 1

}∣∣∣∣ ≡ 0 (mod 2) ⇐⇒ y ≡
(

2

p

)
− 1 (mod 8).
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Thus
(−1)|{1≤k<

p
4 : ( k

p )=−1}| = (−1)
p−1
4 (−1)

1
4 (y−(

2
p )+1) = (−1)b

y
4 c. (1.4)

Let p be an odd prime. For each a ∈ Z we let {a}p denote the least nonnegative
residue of a modulo p. Define

s(p) :=

∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {j2}p > {k2}p

}∣∣∣∣
and

t(p) :=

∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {k2 − j2}p >

p

2

}∣∣∣∣
as in [7], where (j, k) is an ordered pair. Sun [7, Theorem 1.4(i)] showed that

(−1)s(p) = (−1)t(p) =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8).

He also conjectured that (cf. [7, Conjecture 6.1]) if p ≡ 1 (mod 4) then

s(p) + t(p) ≡
∣∣∣∣{1 ≤ k < p

4
:

(
k

p

)
= 1

}∣∣∣∣ (mod 2). (1.5)

Our second theorem in the case a = 1 confirms this conjecture.

Theorem 1.2. Let p be a prime with p ≡ 1 (mod 4), and let a ∈ Z with p - a.
Then ∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {aj2}p > {ak2}p

}∣∣∣∣
+

∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {ak2 − aj2}p >

p

2

}∣∣∣∣
≡
∣∣∣∣{1 ≤ k < p

4
:

(
k

p

)
=

(
a

p

)}∣∣∣∣ (mod 2).

(1.6)

Our third theorem was first conjectured by Sun (cf. [7, Conjectures 6.3 and 6.4]).

Theorem 1.3. Let p be a prime with p ≡ 3 (mod 4).
(i) We have

(−1)|{(j,k): 1≤j<k≤(p−1)/2 and {j(j+1)}p>{k(k+1)}p}| = (−1)b(p+1)/8c. (1.7)

(ii) Suppose p > 3 and write Tm = m(m+ 1)/2 for m ∈ N. Then

(−1)|{(j,k): 1≤j<k≤(p−1)/2 & {Tj}p>{Tk}p}| = (−1)
h(−p)+1

2 +|{1≤k≤b p+1
8 c: ( k

p )=1}|.

(1.8)

We will prove Theorems 1.1-1.2 in Section 2. Based on an auxiliary theorem
given in Section 3, we are going to prove Theorem 1.3 in Section 4.

2. Proofs of Theorems 1.1-1.2. In 2006, H. Pan [6] obtained the following
lemma.

Lemma 2.1. (H. Pan [6]) Let n > 1 be an odd integer and let c be any integer
relatively prime to n. For each j = 1, . . . , (n − 1)/2 let πc(j) be the unique r ∈
{1, . . . , (n− 1)/2} with cj congruent to r or −r modulo n. For the permutation πc
on {1, . . . , (n− 1)/2}, its sign is given by

sign(πc) =
( c
n

)(n+1)/2

,

where ( cn ) is the Jacobi symbol.
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Proof of the First Part of Theorem 1.1. As p ≡ 1 (mod 8), there is an integer
c with c2 ≡ 2 (mod p). For j = 1, . . . , (p − 1)/2 let πc(j) be the unique r ∈
{1, . . . , (p−1)/2} with cj congruent to r or −r modulo p. Then πc is a permutation
on {1, . . . , (p− 1)/2}, and∏

1≤j<k≤(p−1)/2

ζ2aj
2 − ζ2ak2

ζaj2 − ζak2
=

∏
1≤j<k≤(p−1)/2

ζaπc(j)
2 − ζaπc(k)

2

ζaj2 − ζak2

=(−1)|{(j,k): 1≤j<k≤(p−1)/2 & πc(j)>πc(k)}| = sign(πc) =

(
c

p

)
with the aid of Lemma 2.1. In view of K. S. Williams and J. D. Currie [8, (1.4)],
we have(

c

p

)
≡ c(p−1)/2 = (c2)(p−1)/4 ≡ 2(p−1)/4 ≡ (−1)|{0<k<

p
4 : ( k

p )=−1}| (mod p).

Therefore (1.2) holds in the case p ≡ 1 (mod 8).

Remark 2.1. Our method to prove part (i) of Theorem 1.1 does not work for part
(ii) of Theorem 1.1.

Proof of the Second Part of Theorem 1.1. We distinguish two cases.

Case 1. (ap ) = 1.

In this case,{
{aj2}p : 1 ≤ j ≤ p− 1

2

}
=

{
{k2}p : 1 ≤ k ≤ p− 1

2

}
So it suffices to show (1.3) for a = 1. In view of (1.1) with a = 1, we only need to
prove that

(−1)|{0<k<
p
4 : ( k

p )=−1}|
∏

1≤j<k≤(p−1)/2

(ζj
2

+ ζk
2

) > 0. (2.1)

As (−1p ) = 1, for each 1 ≤ j ≤ (p−1)/2 there is a unique integer j∗ ∈ {1, . . . , (p−
1)/2} such that p− j2 ≡ j2∗ (mod p). As ( 2

p ) = −1, we have j 6= j∗. For any distinct

j, k ∈ {1, . . . , (p− 1)/2}, we have ζj
2

+ ζk
2 6= 0 (since ζ2j

2 6= ζ2k
2

) and

(ζj
2

+ ζk
2

)(ζj
2
∗ + ζk

2
∗) = (ζj

2

+ ζk
2

)(ζ−j
2

+ ζ−k
2

) = |ζj
2

+ ζk
2

|2 > 0;

also,
{j, k} = {j∗, k∗} ⇐⇒ j∗ = k and k∗ = j ⇐⇒ j∗ = k.

For 1 ≤ j ≤ (p− 1)/2, clearly

ζj
2

+ ζj
2
∗ = ζj

2

+ ζ−j
2

= 2 cos 2π
j2

p
= 2 cos 2π

j2∗
p

and hence

ζj
2

+ ζj
2
∗ > 0 ⇐⇒ cos 2π

j2

p
> 0 ⇐⇒ {j2}p <

p

4
or {j2∗}p <

p

4
.

Thus the sign of the product∏
1≤j<k≤(p−1)/2

p|j2+k2

(ζj
2

+ ζk
2

) = (−1)(p−1)/4
∏

1≤j<j∗≤(p−1)/2

(−ζj
2

− ζj
2
∗)

is
(−1)(p−1)/4−|{1≤k<

p
4 : ( k

p )=1}| = (−1)|{1≤k<
p
4 : ( k

p )=−1}|.
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So (2.1) holds and (1.3) follows.

Case 2. (ap ) = −1.

By the discussion in Case 1, we have

(−1)|{0<k<
p
4 : ( k

p )=−1}|
∏

1≤j<k≤(p−1)/2

(ζj
2

+ ζk
2

) = ε−h(p)p . (2.2)

Let ϕa be the element of the Galois group Gal(Q(ζ)/Q) with ϕa(ζ) = ζa. Then

ϕa(
√
p) = ϕa

( p−1∑
x=0

ζx
2

)
=

p−1∑
x=0

ζax
2

=

(
a

p

)
√
p = −√p

by the evaluation of quadratic Gauss sums (cf. [5, pp. 70-75]). Hence

ϕa(ε−h(p)p ) =

(
N(εp)

εp

)−h(p)
= −εh(p)p

where N(εp) is the norm of εp with respect to the field extension Q(ζ)/Q, and we
have used the known results N(εp) = −1 and 2 - h(p) (cf. [4, p. 185 and p. 187]).
Thus, by applying the automorphism ϕa to the identity (2.2), we get

(−1)|{0<k<
p
4 : ( k

p )=−1}|
∏

1≤j<k≤(p−1)/2

(ζaj
2

+ ζak
2

)

=ϕa(ε−h(p)p ) = −εh(p)p =

(
a

p

)
ε
−( a

p )h(p)
p .

In view of the above, we have proven Theorem 1.1(ii).

Lemma 2.2. Let p be an odd prime, and let a ∈ Z with p - a. Then∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {aj2}p > {ak2}p

}∣∣∣∣
+

∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& {ak2 − aj2}p >

p

2

}∣∣∣∣
≡
∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& |{aj2}p − {ak2}p| >

p

2

}∣∣∣∣ (mod 2).

(2.3)

Proof. This can be easily checked by distinguishing the cases {aj2}p < {ak2}p and
{aj2}p > {ak2}p for 1 ≤ j < k ≤ (p− 1)/2.

Proof of Theorem 1.2. In view of Lemma 2.2, it suffices to show that∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& |{aj2}p − {ak2}p| >

p

2

}∣∣∣∣
≡
∣∣∣∣{1 ≤ k < p

4
:

(
ak

p

)
= 1

}∣∣∣∣ (mod 2).

(2.4)

As (−1p ) = 1, for each 1 ≤ j ≤ (p−1)/2 there is a unique integer j∗ ∈ {1, . . . , (p−
1)/2} such that −j2 ≡ j2∗ (mod p) and hence −aj2 ≡ aj2∗ (mod p). Clearly,
|{1 ≤ j ≤ (p− 1)/2 : j = j∗}| ≤ 1. Note that

|{aj2∗}p − {ak2∗}p| = |(p− {aj2}p)− (p− {ak2}p)| = |{aj2}p − {ak2}p|.
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If j and k are distinct elements of {1, . . . , (p − 1)/2}, then {j, k} = {j∗, k∗} if and
only if j∗ = k and k∗ = j. Thus∣∣∣∣{(j, k) : 1 ≤ j < k ≤ p− 1

2
& |{aj2}p − {ak2}p| >

p

2

}∣∣∣∣
≡1

2

∣∣∣∣{1 ≤ j ≤ p− 1

2
: |{aj2}p − {aj2∗}| = |2{aj2}p − p| >

p

2

}∣∣∣∣
=

1

2

∣∣∣∣{1 ≤ j ≤ p− 1

2
: {aj2}p <

p

4
or {aj2}p >

3

4
p

}∣∣∣∣
=

1

2

∣∣∣∣{1 ≤ j ≤ p− 1

2
: {aj2}p <

p

4

}∣∣∣∣+
1

2

∣∣∣∣{1 ≤ j ≤ p− 1

2
: {aj2∗}p <

p

4

}∣∣∣∣
=

∣∣∣∣{1 ≤ j ≤ p− 1

2
: {aj2}p <

p

4

}∣∣∣∣ =

∣∣∣∣{1 ≤ k < p

4
:

(
ak

p

)
= 1

}∣∣∣∣ (mod 2).

This proves the desired (2.4). So (1.6) holds.

3. An auxiliary theorem. We first need a result of Sun [7].

Lemma 3.1. Let p = 2n+ 1 be a prime with n odd, and let a ∈ Z with p - a. Then

(−1)|{(j,k): 1≤j<k≤n & {aj2}p>{ak2}p}|

=

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2(ap ) if p ≡ 7 (mod 8).

(3.1)

Proof. By Sun [7, Theorem 1.4(ii)],∏
1≤j<k≤(p−1)/2

(
cotπ

aj2

p
− cotπ

ak2

p

)

=

{
(2p−1/p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2(ap )(2p−1/p)(p−3)/8 if p ≡ 7 (mod 8).

This implies (3.1) since for any 1 ≤ j < k ≤ (p− 1)/2 we have

cotπ
aj2

p
< cotπ

ak2

p
⇐⇒ {aj2}p > {ak2}p.

We are done.

Theorem 3.2. Let p = 2n+ 1 be a prime with n odd, and let a, b ∈ {1, . . . , p− 1}.
Then

(−1)|{(s,t): 0≤t<s≤n & {as2−b}p>{at2−b}p}|−|{0<r<b: ( r
p )=( a

p )}|

=

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)−1)/2(ap ) if p ≡ 7 (mod 8).

(3.2)

Proof. Let 0 ≤ t < s ≤ n. By comparing {as2}p and {at2}p with b, we verify case
by case that

[{as2 − b}p > {at2 − b}p] + [{as2}p > {at2}p]
is odd if and only if

{as2}p ≥ b > {at2}p or {at2}p ≥ b > {as2}p,
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where for an assertion A we define

[A] =

{
1 if A holds,

0 otherwise.

Note that

|{(s, t) : 0 ≤ t < s ≤ n, {as2}p ≥ b > {at2}p or {as2}p < b ≤ {at2}p}|

=

∣∣∣∣{(r1, r2) : 0 ≤ r1 < b ≤ r2 ≤ p− 1 &

(
ar1
p

)
,

(
ar2
p

)
6= −1

}∣∣∣∣
=

∣∣∣∣{0 ≤ r < b :

(
ar

p

)
6= −1

}∣∣∣∣× (p+ 1

2
−
∣∣∣∣{0 ≤ r < b :

(
ar

p

)
6= −1

}∣∣∣∣)
≡
∣∣∣∣{0 ≤ r < b :

(
ar

p

)
6= −1

}∣∣∣∣ = 1 +

∣∣∣∣{0 < r < b :

(
r

p

)
=

(
a

p

)}∣∣∣∣ (mod 2)

and

|{(s, t) : 0 ≤ t < s ≤ n & {as2}p > {at2}p}|

=

(
n+ 1

2

)
− |{(s, t) : 0 ≤ t < s ≤ n & {as2}p < {at2}p}|

with
(
n+1
2

)
≡ p+1

4 (mod 2). Combining the above with (3.1), we finally obtain
(3.2).

4. Proof of Theorem 1.3.

Lemma 4.1. Let p be a prime with p ≡ 3 (mod 4).
(i) (Dirichlet (cf. [5, p. 238])) If p > 3 then(

2−
(

2

p

))
h(−p) =

(p−1)/2∑
k=1

(
k

p

)
.

(ii) (B. C. Berndt and S. Chowla [1]) If p ≡ 3 (mod 8), then
∑

0<k<p/4(kp ) = 0.

If p ≡ 7 (mod 8), then
∑
p/4<k<p/2(kp ) = 0.

Proof of Theorem 1.3. We just prove the second part in details since the first part
can be proved similarly.

Write n = (p− 1)/2, and set

a =
p+ 1

2
and b =

{
(5p+ 1)/8 if p ≡ 3 (mod 8),

(p+ 1)/8 if p ≡ 7 (mod 8).

For any r ∈ Z, we have

Tn−r =
n(n+ 1)

2
− (2n+ 1)

r

2
+
r2

2
≡ ar2 − b (mod p).

Thus

|{(j, k) : 0 ≤ j < k ≤ n & {Tj}p > {Tk}p}|
=|{(t, s) : 0 ≤ t < s ≤ n & {Tn−s}p > {Tn−t}p}|
=|{(t, s) : 0 ≤ t < s ≤ n & {as2 − b}p > {at2 − b}p}|.
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Note that (ap ) = ( 2
p ). Set

B :=

∣∣∣∣{0 < r < b :

(
r

p

)
=

(
2

p

)}∣∣∣∣ . (4.1)

Applying Theorem 3.2, from the above we obtain

|{(j, k) : 1 ≤ j < k ≤ n & {Tj}p > {Tk}p}|

≡B +

{
0 (mod 2) if p ≡ 3 (mod 8),

(h(−p)− 1)/2 (mod 2) if p ≡ 7 (mod 8).

(4.2)

When p ≡ 7 (mod 8), we have

B + 1 =

∣∣∣∣{1 ≤ k ≤ p+ 1

8
:

(
k

p

)
= 1

}∣∣∣∣
and hence (1.8) follows from (4.2).

Below we handle the case p ≡ 3 (mod 8). Observe that

B =

(p−1)/2∑
k=1

1− (kp )

2
+

∣∣∣∣{p2 < k <
5p+ 1

8
:

(
2k − p
p

)
= 1

}∣∣∣∣
=
p− 1

4
− 1

2

(p−1)/2∑
k=1

(
k

p

)
+

∣∣∣∣{0 < r <
p+ 1

4
: 2 - r &

(
r

p

)
= 1

}∣∣∣∣ .
Applying Lemma 4.1, we obtain

B =
p− 1

4
− 3h(−p)

2
+

∑
0<k<p/4

1 + (kp )

2

−
∣∣∣∣{0 < r <

p+ 1

4
: 2 | r &

(
r

p

)
= 1

}∣∣∣∣
≡h(−p) + 1

2
+
p− 3

8
−
∣∣∣∣{0 < k <

p+ 1

8
:

(
2k

p

)
= 1

}∣∣∣∣
=
h(−p) + 1

2
+

∣∣∣∣{0 < k <
p+ 1

8
:

(
2k

p

)
= −1

}∣∣∣∣
=
h(−p) + 1

2
+

∣∣∣∣{1 ≤ k ≤
⌊
p+ 1

8

⌋
:

(
k

p

)
= 1

}∣∣∣∣ (mod 2).

So, in this case, (1.8) also follows from (4.2).
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