Int. J. Number Theory 16 (2020), no. 8, 1833–1858.

QUADRATIC RESIDUES AND QUARTIC RESIDUES MODULO PRIMES

ZHI-WEI SUN

ABSTRACT. In this paper we study some products related to quadratic residues and quartic residues modulo primes. Let p be an odd prime and let A be any integer. We determine completely the product

$$f_p(A) := \prod_{\substack{1 \leq i,j \leq (p-1)/2 \\ p \nmid i^2 - Aij - j^2}} (i^2 - Aij - j^2)$$

modulo p; for example, if $p \equiv 1 \pmod{4}$ then

$$f_p(A) \equiv \begin{cases} -(A^2 + 4)^{(p-1)/4} \pmod{p} & \text{if } (\frac{A^2 + 4}{p}) = 1, \\ (-A^2 - 4)^{(p-1)/4} \pmod{p} & \text{if } (\frac{A^2 + 4}{p}) = -1, \end{cases}$$

where $(\frac{\cdot}{p})$ denotes the Legendre symbol. We also determine

$$\prod_{\substack{i,j=1\\p\nmid 2i^2+5ij+2j^2}}^{(p-1)/2} \left(2i^2+5ij+2j^2\right) \text{ and } \prod_{\substack{i,j=1\\p\nmid 2i^2-5ij+2j^2}}^{(p-1)/2} \left(2i^2-5ij+2j^2\right)$$

modulo p.

1. Introduction

For $n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ and x = a/b with $a, b \in \mathbb{Z}$, $b \neq 0$ and $\gcd(b, n) = 1$, we let $\{x\}_n$ denote the unique integer $r \in \{0, \ldots, n-1\}$ with $r \equiv x \pmod n$ (i.e., $a \equiv br \pmod n$). The well-known Gauss Lemma (see, e.g., [6, p. 52]) states that for any odd prime p and integer $x \not\equiv 0 \pmod p$ we have

$$\left(\frac{x}{p}\right) = (-1)^{|\{1 \le k < p/2: \{kx\}_p > p/2\}|},\tag{1.1}$$

where $(\frac{\cdot}{p})$ is the Legendre symbol. This was extended to Jacobi symbols by M. Jenkins [7] in 1867, who showed (by an elementary method) that for any positive odd integer n and integer x with $\gcd(x,n)=1$ we have

$$\left(\frac{x}{n}\right) = (-1)^{|\{1 \le k < n/2: \{kx\}_n > n/2\}|},\tag{1.2}$$

where $(\frac{\cdot}{n})$ is the Jacobi symbol. In the textbook [9, Chapters 11-12], H. Rademacher supplied a proof of Jenkins' result by using subtle properties of quadratic Gauss sums.

Now we present our first new theorem.

Theorem 1.1. Let n be a positive odd integer, and let $x \in \mathbb{Z}$ with gcd(x(1-x), n) = 1. Then

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n > k\}|} = \left(\frac{2x(1-x)}{n}\right). \tag{1.3}$$

Key words and phrases. Quadratic residues, quartic residues, congruences, Lucas sequences. 2020 Mathematics Subject Classification. Primary 11A15; Secondary 11A07, 11B39.

Also,

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n > n/2 \& \{k(1-x)\}_n > n/2\}|} = \left(\frac{2}{n}\right),\tag{1.4}$$

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n < n/2 \& \{k(1-x)\}_n < n/2\}|} = \left(\frac{2x(x-1)}{n}\right), \tag{1.5}$$

and

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n > n/2 > \{k(1-x)\}_n\}|} = \left(\frac{2x}{n}\right). \tag{1.6}$$

Let p be an odd prime, and let $a,b,c\in\mathbb{Z}$ and

$$S_p(a,b,c) := \prod_{\substack{1 \le i < j \le p-1 \\ p!ai^2 + bij + cj^2}} (ai^2 + bij + cj^2).$$
 (1.7)

Using Theorem 1.1, together with [15, Theorem 1.2], we completely determine $S_p(a,b,c) \mod p$ in terms of Legendre symbols.

Theorem 1.2. Let p be an odd prime, and let $a, b, c \in \mathbb{Z}$ and $\Delta = b^2 - 4ac$. When $p \nmid ac(a+b+c)$, we have

$$S_p(a,b,c) \equiv \begin{cases} \left(\frac{a(a+b+c)}{p}\right) \pmod{p} & \text{if } p \mid \Delta, \\ -\left(\frac{ac(a+b+c)\Delta}{p}\right) \pmod{p} & \text{if } p \nmid \Delta. \end{cases}$$
 (1.8)

In the case $p \mid ac(a+b+c)$, we have

$$S_{p}(a,b,c) \equiv \begin{cases} 0 \pmod{p} & \text{if } p \mid a, \ p \mid b \ and \ p \mid c, \\ -(\frac{-a}{p}) \pmod{p} & \text{if } p \nmid a, \ p \mid b \ and \ p \mid c, \\ -(\frac{b}{p}) \pmod{p} & \text{if } p \mid a, \ p \nmid b \ and \ p \mid c, \\ -(\frac{-c}{p}) \pmod{p} & \text{if } p \mid a, \ p \mid b \ and \ p \nmid c, \\ -(\frac{c}{p}) \pmod{p} & \text{if } p \mid a, \ p \nmid bc \ and \ p \mid b + c, \\ -(\frac{a}{p}) \pmod{p} & \text{if } p \nmid ab, \ p \mid a + b \ and \ p \mid c, \\ -(\frac{-a}{p}) \pmod{p} & \text{if } p \nmid ac, \ p \mid a - c \ and \ p \mid a + b + c, \end{cases}$$

$$(1.9)$$

$$(\frac{-ac}{p}) \pmod{p} & \text{if } p \nmid ac(a - c) \ and \ p \mid a + b + c, \\ (\frac{-a(a+b)}{p}) \pmod{p} & \text{if } p \nmid ab(a+b) \ and \ p \mid c, \\ (\frac{-c(b+c)}{p}) \pmod{p} & \text{if } p \mid a \ and \ p \nmid bc(b+c), \end{cases}$$

We will prove Theorem 1.1 and those parts of Theorem 1.2 not covered by [15, Theorem 1.2] in Section 2.

Let p be an odd prime. For $a, b, c \in \mathbb{Z}$ we introduce

$$T_p(a,b,c) := \prod_{\substack{i,j=1\\p \nmid ai^2 + bij + cj^2}}^{(p-1)/2} (ai^2 + bij + cj^2).$$
 (1.10)

Our following theorem determines $T_p(1, -(a+b), -1)$ modulo p for all $a, b \in \mathbb{Z}$ with $ab \equiv -1 \pmod{p}$.

Theorem 1.3. Let p be any odd prime, and let $a, b \in \mathbb{Z}$ with $ab \equiv -1 \pmod{p}$. Set

$$\{a,b\}_p := \prod_{\substack{i,j=1\\i \not\equiv aj, bj \pmod{p}}}^{(p-1)/2} (i-aj)(i-bj), \tag{1.11}$$

which is congruent to $T_p(1, -(a+b), -1)$ modulo p.

(i) We have

$$-\{a,b\}_p \equiv \begin{cases} \left(\frac{a-b}{p}\right) \pmod{p} & \text{if } p \equiv 1 \pmod{4} & \text{if } p \nmid (a-b), \\ \left(\frac{a(a-b)}{p}\right) = \left(\frac{a^2+1}{p}\right) \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(1.12)

(ii) If $a \equiv b \pmod{p}$ and $p \equiv 1 \pmod{8}$, then

$${a,b}_p \equiv (-1)^{(p+7)/8} \frac{p-1}{2}! \pmod{p}.$$

If
$$p \equiv 5 \pmod{8}$$
 and $a \equiv b \equiv (-1)^k ((p-1)/2)! \pmod{p}$ with $k \in \{0, 1\}$, then $\{a, b\}_p \equiv (-1)^{k+(p-5)/8} \pmod{p}$.

Our proof of Theorem 1.3 will be given in Section 3.

For any $A \in \mathbb{Z}$, we define the Lucas sequences $\{u_n(A)\}_{n \geqslant 0}$ and $\{v_n(A)\}_{n \geqslant 0}$ by

$$u_0(A) = 0$$
, $u_1(A) = 1$, and $u_{n+1}(A) = Au_n(A) + u_{n-1}(A)$ for $n = 1, 2, 3, ...$,

and

$$v_0(A) = 2$$
, $v_1(A) = A$, and $v_{n+1}(A) = Av_n(A) + v_{n-1}(A)$ for $n = 1, 2, 3, ...$

It is well known that

$$u_n(A) = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $v_n(A) = \alpha^n + \beta^n$

for all $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, where

$$\alpha = \frac{A + \sqrt{A^2 + 4}}{2}$$
 and $\beta = \frac{A - \sqrt{A^2 + 4}}{2}$.

Thus

$$\left(\frac{A \pm \sqrt{A^2 + 4}}{2}\right)^n = \frac{v_n(A) \pm u_n(A)\sqrt{A^2 + 4}}{2} \quad \text{for all } n \in \mathbb{N}.$$
(1.13)

Now we state our fourth theorem which determines $T_p(1, -A, -1)$ for any odd prime p and integer A.

Theorem 1.4. Let p be an odd prime and let $A \in \mathbb{Z}$.

(i) Suppose that $p \mid (A^2 + 4)$. Then $p \equiv 1 \pmod{4}$, $A/2 \equiv (-1)^k ((p-1)/2)! \pmod{p}$ for some $k \in \{0,1\}$, and

$$T_p(1, -A, -1) \equiv \begin{cases} (-1)^{(p+7)/8} ((p-1)/2)! \pmod{p} & \text{if } p \equiv 1 \pmod{8}, \\ (-1)^{k+(p-5)/8} \pmod{p} & \text{if } p \equiv 5 \pmod{8}. \end{cases}$$
(1.14)

(ii) When $\left(\frac{A^2+4}{p}\right) = 1$, we have

$$T_p(1, -A, -1) \equiv \begin{cases} -(A^2 + 4)^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ -(A^2 + 4)^{(p+1)/4} u_{(p-1)/2}(A)/2 \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

$$(1.15)$$

(iii) When $\left(\frac{A^2+4}{p}\right) = -1$, we have

4

$$T_p(1, -A, -1) \equiv \begin{cases} (-A^2 - 4)^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ (-A^2 - 4)^{(p+1)/4} u_{(p+1)/2}(A)/2 \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

$$(1.16)$$

We will prove Theorem 1.4 in Section 4.

Let p be a prime with $p \equiv 1 \pmod{4}$. Then $(\frac{p-1}{2}!)^2 \equiv -1 \pmod{p}$ by Wilson's theorem. We may write $p = x^2 + y^2$ with $x, y \in \mathbb{Z}$, $x \equiv 1 \pmod{4}$ and $y \equiv \frac{p-1}{2}!x \pmod{p}$. Recall that an integer a not divisible by p is a quartic residue modulo p (i.e., $z^4 \equiv a \pmod{p}$ for some $z \in \mathbb{Z}$) if and only if $a^{(p-1)/4} \equiv 1 \pmod{p}$. Dirichlet proved that 2 is a quartic residue modulo p if and only if $a \pmod{p}$. (see, e.g., $a \pmod{p}$). On the other hand, we have

$$\left| \left\{ 1 \le k < \frac{p}{4} : \left(\frac{k}{p} \right) = 1 \right\} \right| \equiv 0 \pmod{2} \iff y \equiv (-1)^{(p-1)/4} - 1 \pmod{8}$$

as discovered by K. Burde [2] and re-proved by K. S. Williams [16]. In view of Williams and J. D. Currie [17, (1.4)], we have

$$2^{(p-1)/4} \equiv (-1)^{|\{1 \leqslant k < \frac{p}{4}: \ (\frac{k}{p}) = -1\}|} \times \begin{cases} 1 \pmod{p} & \text{if } p \equiv 1 \pmod{8}, \\ \frac{p-1}{2}! \pmod{p} & \text{if } p \equiv 5 \pmod{8}. \end{cases}$$

By Dirichlet's class number formula (see, e.g., L.E. Dickson [4, p. 101]),

$$\left| \frac{p-1}{2} - 4 \right| \left\{ 1 \leqslant k < \frac{p}{4} : \left(\frac{k}{p} \right) = -1 \right\} \right| = h(-4p),$$

where h(d) with $d \equiv 0, 1 \pmod{4}$ not a square denotes the class number of the quadratic field with discriminant d. In 1905, Lerch (see, e.g., [5]) proved that

$$h(-3p) = 2\sum_{1 \le k < p/3} \left(\frac{k}{p}\right).$$

By [17, Lemma 14],

$$(-3)^{(p-1)/4} \equiv \begin{cases} (-1)^{h(-3p)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{12}, \\ (-1)^{(h(-3p)-2)/4} \frac{p-1}{2}! \pmod{p} & \text{if } p \equiv 5 \pmod{12}. \end{cases}$$

Thus, if $p \equiv 1 \pmod{12}$ then

$$(-3)^{(p-1)/4} \equiv (-1)^{\frac{1}{2} \sum_{k=1}^{(p-1)/3} ((\frac{k}{p})-1) + \frac{p-1}{6}} = (-1)^{|\{1 \leqslant k < \frac{p}{3} \colon (\frac{k}{p}) = -1\}|} \ (\text{mod } p);$$

similarly, if $p \equiv 5 \pmod{12}$ then

$$(-3)^{(p-1)/4} \equiv (-1)^{|\{1 \leqslant k < \frac{p}{3}: \ (\frac{k}{p}) = -1\}|} \frac{p-1}{2}! \ (\text{mod } p).$$

From Theorem 1.4, we deduce the following result which will be proved in Section 5.

Theorem 1.5. Let p be an odd prime.

(i) We have

$$T_{p}(1,-1,-1) \equiv \begin{cases} -5^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1,9 \pmod{20}, \\ (-5)^{(p-1)/4} \pmod{p} & \text{if } p \equiv 13,17 \pmod{20}, \\ (-1)^{\lfloor (p-10)/20 \rfloor} \pmod{p} & \text{if } p \equiv 3,7 \pmod{20}, \\ (-1)^{\lfloor (p-5)/10 \rfloor} \pmod{p} & \text{if } p \equiv 11,19 \pmod{20}. \end{cases}$$
(1.17)

(ii) We have

$$T_{p}(1,-2,-1) \equiv \begin{cases} -2^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{8}, \\ 2^{(p-1)/4} \pmod{p} & \text{if } p \equiv 5 \pmod{8}, \\ (-1)^{(p-3)/8} \pmod{p} & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(p-7)/8} \pmod{p} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$
(1.18)

Now we state our sixth theorem.

Theorem 1.6. Let p > 3 be a prime and let $\delta \in \{\pm 1\}$. If $p \equiv 1 \pmod{4}$, then

$$T_p(2,5\delta,2) \equiv (-1)^{\lfloor (p+11)/12 \rfloor} \pmod{p}. \tag{1.19}$$

When $p \equiv 3 \pmod{4}$, we have

$$T_p(2,5\delta,2) \equiv \left(\frac{6}{p}\right) \frac{\delta 2^{\delta}}{3^{\delta}} \binom{(p-3)/2}{(p-3)/4}^{-2\delta} \pmod{p}. \tag{1.20}$$

Note that there is no simple closed form for $\binom{(p-3)/2}{(p-3)/4}$ modulo a prime $p \equiv 3 \pmod 4$. For a prime $p \equiv 1 \pmod 4$ with $p = x^2 + y^2 \pmod p$ and $x \equiv 1 \pmod 4$, Gauss showed the congruence $\binom{(p-1)/2}{(p-1)/4} \equiv 2x \pmod p$, and S. Chowla, B. Dwork and R. J. Evans [3] used Gauss and Jacobi sums to prove further that

$$\binom{(p-1)/2}{(p-1)/4} \equiv \frac{2^{p-1}+1}{2} \left(2x - \frac{p}{2x}\right) \pmod{p^2},$$

which was first conjectured by F. Beukers. (See also [1, Chapter 9] for further related results.)

Though we have made some numerical tests via a computer, we are unable to find general patterns for $T_p(a, b, c)$ modulo p, where p is an arbitrary odd prime and a, b, c are arbitrary integers.

Let p be an odd prime. It is known (cf. [15, (1.6) and (1.7)]) that

$$\prod_{\substack{1 \leqslant i < j \leqslant (p-1)/2 \\ p \nmid j \geqslant 1, j \geqslant 2}} (i^2 + j^2) \equiv \begin{cases} (-1)^{\lfloor (p-5)/8 \rfloor} \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{\lfloor (p+1)/8 \rfloor} \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

From this we immediately get

$$\prod_{\substack{1 \leqslant i < j \leqslant (p-1)/2 \\ p \nmid i^2 + j^2}} \left(\frac{i^2 + j^2}{p} \right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{\lfloor (p+1)/8 \rfloor} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

As the product $\prod_{1 \leq i < j \leq (p-1)/2} (i^2 - j^2)$ modulo p was determined via [15, (1.5)], we also know the value of the product

$$\prod_{1 \le i \le j \le (n-1)/2} \left(\frac{i^2 - j^2}{p} \right) = \prod_{1 \le i \le j \le (n-1)/2} \left(\frac{i - j}{p} \right) \left(\frac{i + j}{p} \right)$$

Motivated by this, we obtain the following result.

Theorem 1.7. Let p > 3 be a prime and let $\delta \in \{\pm 1\}$. Then

$$\prod_{1\leqslant i < j \leqslant (p-1)/2} \left(\frac{j+\delta i}{p} \right) = \begin{cases} (-1)^{|\{0 < k < \frac{p}{4} \colon (\frac{k}{p}) = \delta\}|} & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{(p-3)/8} & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(p+1)/8 + (h(-p)+1)/2} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$
(1.21)

We will prove Theorems 1.6 and 1.7 in Section 6, and pose ten conjectures in Section 7.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. For each k = 1, ..., (n-1)/2, we have

$$\left\lfloor \frac{kx}{n} \right\rfloor - \left\lfloor \frac{k(x-1)}{n} \right\rfloor = \begin{cases} 0 & \text{if } \{kx\}_n > k, \\ 1 & \text{if } \{kx\}_n < k. \end{cases}$$

Thus

$$\left|\left\{1\leqslant k<\frac{n}{2}:\ \{kx\}_n>k\right\}\right|=\frac{n-1}{2}-\sum_{k=1}^{(n-1)/2}\left(\left\lfloor\frac{kx}{n}\right\rfloor-\left\lfloor\frac{k(x-1)}{n}\right\rfloor\right)$$

and hence

$$\begin{aligned} &(-1)^{\left|\{1\leqslant k < n/2: \; \{kx\}_n > k\}\right|} \left(\frac{-1}{n}\right) \\ &= (-1)^{\sum_{k=1}^{(n-1)/2} \lfloor kx/n \rfloor + \sum_{k=1}^{(n-1)/2} \lfloor k(x-1)/n \rfloor} \\ &= (-1)^{\left(\sum_{k=1}^{(n-1)/2} (2x-1)k - \sum_{k=1}^{(n-1)/2} \{kx\}_n - \sum_{k=1}^{(n-1)/2} \{k(x-1)\}_n \right)/n} \\ &= (-1)^{\left(n^2-1\right)/8} (-1)^{\sum_{k=1}^{(n-1)/2} \{kx\}_n + \sum_{k=1}^{(n-1)/2} \{k(x-1)\}_n}. \end{aligned}$$

As $\{kx\}_n \equiv 1 + n - \{kx\}_n \pmod{2}$ for all $k = 1, \dots, (n-1)/2$, we have

$$\sum_{k=1}^{(n-1)/2} \{kx\}_n \equiv \sum_{\substack{k=1\\\{kx\}_n < n/2}}^{(n-1)/2} \{kx\}_n + \sum_{\substack{k=1\\\{kx\}_n > n/2}}^{(n-1)/2} (1 + (n - \{kx\}_n))$$

$$= \sum_{\substack{k=1\\\{kx\}_n > n/2}}^{(n-1)/2} 1 + \sum_{r=1}^{(n-1)/2} r$$

$$= \left| \left\{ 1 \le k < \frac{n}{2} : \{kx\}_n > \frac{n}{2} \right\} \right| + \frac{n^2 - 1}{8} \pmod{2}.$$

and hence

$$(-1)^{\sum_{k=1}^{(n-1)/2} \{kx\}_n} = \left(\frac{x}{n}\right) \left(\frac{2}{n}\right) = \left(\frac{2x}{n}\right)$$

with the help of (1.2). Similarly,

$$(-1)^{\sum_{k=1}^{(n-1)/2} \{k(x-1)\}_n} = \left(\frac{x}{n}\right) \left(\frac{2}{n}\right) = \left(\frac{2(x-1)}{n}\right).$$

In view of the above, we obtain

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n > k\}|} = \left(\frac{-2}{n}\right) (-1)^{\sum_{k=1}^{(n-1)/2} \{kx\}_n} (-1)^{\sum_{k=1}^{(n-1)/2} \{k(x-1)\}_n}$$
$$= \left(\frac{-2}{n}\right) \left(\frac{2x}{n}\right) \left(\frac{2(x-1)}{n}\right) = \left(\frac{2x(1-x)}{n}\right).$$

This proves (1.3).

When $1 \le k < n/2$ and $\{kx\}_n < n/2$, we clearly have

$$\{kx\}_n > k \iff \{k(1-x)\}_n > \frac{n}{2}.$$

Thus

$$\begin{split} & \left| \left\{ 1 \leqslant k < \frac{n}{2} : \ \{kx\}_n > k \right\} \right| - \left| \left\{ 1 \leqslant k < \frac{n}{2} : \ \{kx\}_n > \frac{n}{2} \right\} \right| \\ & = \left| \left\{ 1 \leqslant k < \frac{n}{2} : \ \{kx\}_n < \frac{n}{2} < \{k(1-x)\}_n \right\} \right| \\ & = \left| \left\{ 1 \leqslant k < \frac{n}{2} : \ \{k(1-x)\}_n > \frac{n}{2} \right\} \right| \\ & - \left| \left\{ 1 \leqslant k < \frac{n}{2} : \ \{kx\}_n > \frac{n}{2} \ \& \ \{k(1-x)\}_n > \frac{n}{2} \right\} \right|, \end{split}$$

and hence by (1.2) and (1.3) we get

$$\begin{split} &(-1)^{|\{1\leqslant k < n/2:\ \{kx\}_n > n/2\ \&\ \{k(1-x)\}_n > n/2\}|} \\ = &(-1)^{|\{1\leqslant k < n/2:\ \{kx\}_n > k\}|} \left(\frac{x}{n}\right) \left(\frac{1-x}{n}\right) = \left(\frac{2}{n}\right). \end{split}$$

This proves (1.4).

In view of (1.2) and (1.4), we also have

$$\begin{split} &(-1)^{|\{1\leqslant k < n/2: \ \{kx\}_n > n/2 > \{k(1-x)\}_n\}|} \\ &= (-1)^{|\{1\leqslant k < n/2: \ \{kx\}_n > n/2\}| - ||\{1\leqslant k < n/2: \ \{kx\}_n > n/2 \ \& \ \{k(1-x)\}_n > n/2\}|} \\ &= \left(\frac{x}{n}\right) \left(\frac{2}{n}\right) = \left(\frac{2x}{n}\right). \end{split}$$

This proves (1.6).

By (1.4) and (1.6), we have

$$\left(\frac{2}{n}\right) (-1)^{\left|\left\{1 \leqslant k < n/2: \ \{kx\}_n < n/2 \ \& \ \{k(1-x)\}_n < n/2\}\right|}$$

$$= (-1)^{\left|\left\{1 \leqslant k < n/2: \ (\{kx\}_n - n/2)(\{k(1-x)\}_n - n/2) > 0\}\right|}$$

$$= (-1)^{(n-1)/2 - \left|\left\{1 \leqslant k < n/2: \ \{kx\}_n > n/2 > \{k(1-x)\}_n \ \text{or} \ \{k(1-x)\}_n > n/2 > \{kx\}_n\}\right|}$$

$$= \left(\frac{-1}{n}\right) \left(\frac{2x}{n}\right) \left(\frac{2(1-x)}{n}\right) = \left(\frac{x(x-1)}{n}\right).$$

So (1.5) also holds.

The proof of Theorem 1.1 is now complete.

For any odd prime p and rational p-adic integer x, we define

$$N_p(x) := |\{1 \le k < p/2 : \{kx\}_p > k\}|. \tag{2.1}$$

Proof of Theorem 1.2. By parts (ii)-(iv) of Sun [15, Theorem 1.2], the desired result holds except for the cases

I.
$$p \nmid ac(a-c)$$
 and $p \mid a+b+c$,

II.
$$p \nmid ab(a+b)$$
 and $p \mid c$,

III.
$$p \mid a$$
 and $p \nmid bc(b+c)$.

In case I, by [15, Theorem 1.2(iii)] we have

$$S_p(a,b,c) \equiv (-1)^{N_p(a/c)} \left(\frac{2c(a-c)}{p}\right) \pmod{p}.$$

As

8

$$(-1)^{N_p(a/c)} = \left(\frac{2a(c-a)}{p}\right)$$

by Theorem 1.1, we obtain

$$S_p(a,b,c) \equiv \left(\frac{2a(c-a)}{p}\right) \left(\frac{2c(a-c)}{p}\right) = \left(\frac{-ac}{p}\right) \pmod{p}.$$

In case II, by [15, Theorem 1.2(iv)] we have

$$S_p(a,b,c) \equiv (-1)^{N_p(-a/b)} \left(\frac{2}{p}\right) \pmod{p}.$$

As

$$(-1)^{N_p(-a/b)} = \left(\frac{-2a(a+b)}{p}\right)$$

by Theorem 1.1, we get

$$S_p(a,b,c) \equiv \left(\frac{-2a(a+b)}{p}\right) \left(\frac{2}{p}\right) = \left(\frac{-a(a+b)}{p}\right) \pmod{p}.$$

In case III, by [15, Theorem 1.2(iv)] we have

$$S_p(a,b,c) \equiv (-1)^{N_p(-c/b)} \left(\frac{2}{p}\right) \pmod{p}.$$

Since $(-1)^{N_p(-c/b)} = (\frac{-2c(b+c)}{p})$ by Theorem 1.1, we deduce that

$$S_p(a,b,c) \equiv \left(\frac{-2c(b+c)}{p}\right) \left(\frac{2}{p}\right) = \left(\frac{-c(b+c)}{p}\right) \pmod{p}.$$

In view of the above, we have completed the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Lemma 3.1. Let p be any odd prime. Then

$$\left(\frac{p-1}{2}!\right)^2 \equiv (-1)^{(p+1)/2} \pmod{p},\tag{3.1}$$

and

$$\prod_{1 \leqslant i < j \leqslant (p-1)/2} (j^2 - i^2) \equiv \begin{cases} -((p-1)/2)! \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ 1 \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(3.2)

Remark 3.2. (3.1) is an easy consequence of Wilson's theorem. (3.2) is also known, see [15, (1.5)] and its few-line proof there.

Lemma 3.3. Let p be a prime with $p \equiv 1 \pmod{4}$. Then

$$\left| \left\{ 1 \leqslant k \leqslant \frac{p-1}{2} : \left\{ k \times \frac{p-1}{2}! \right\}_p > \frac{p}{2} \right\} \right| = \frac{p-1}{4}. \tag{3.3}$$

Proof. Let a=((p-1)/2)!. Then $a^2\equiv -1\pmod p$ by (3.1). For any $k=1,\ldots,(p-1)/2$, there is a unique integer $k^*\in\{1,\ldots,(p-1)/2\}$ congruent to ak or -ak modulo p. Note that $k^*\neq k$ since $a\not\equiv \pm 1\pmod p$. If $\{ak\}_p>p/2$ then $\{ak^*\}_p=\{a(-ak)\}_p=k< p/2;$ if $\{ak\}_p< p/2$ then $\{ak^*\}_p=\{a(ak)\}_p=p-k>p/2$. So, exactly one of $\{ak\}_p$ and $\{ak^*\}_p$ is greater than p/2. Therefore (3.3) holds

Remark 3.4. In view of Gauss' Lemma, Lemma 3.3 is stronger than the fact that $(\frac{((p-1)/2)!}{p}) = (\frac{2}{p})$ for any prime $p \equiv 1 \pmod{4}$ (cf. [14, Lemma 2.3]).

Proof of Theorem 1.3. Observe that

$$\prod_{\substack{i,j=1\\p\nmid i^2-j^2}}^{(p-1)/2} (i^2 - j^2) = \prod_{1 \le i < j \le (p-1)/2} (i^2 - j^2)(j^2 - i^2)$$
$$= (-1)^{\binom{(p-1)/2}{2}} \prod_{1 \le i < j \le (p-1)/2} (j^2 - i^2)^2$$

and hence

$$\prod_{\substack{i,j=1\\p\nmid i^2-j^2}}^{(p-1)/2} (i^2 - j^2) \equiv -\left(\frac{2}{p}\right) \pmod{p} \tag{3.4}$$

with the help of Lemma 3.1.

When $a \equiv \pm 1 \pmod{p}$, we have $b \equiv \mp 1 \not\equiv a \pmod{p}$ and hence

$$\{a,b\}_p \equiv -\left(\frac{2}{p}\right) = \begin{cases} -(\frac{a-b}{p}) \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ -(\frac{a^2+1}{p}) \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

So (1.12) holds in the case $a \equiv \pm 1 \pmod{p}$.

Below we assume that $a \not\equiv \pm 1 \pmod{p}$. As $ab \equiv -1 \pmod{p}$, we have

$$\{a,b\}_{p} = \prod_{\substack{i,j=1\\i \neq aj,bj \pmod{p}}}^{(p-1)/2} (i-aj) \times \prod_{\substack{i,j=1\\j \neq ai,bi \pmod{p}}}^{(p-1)/2} (j-bi)$$

$$\equiv \prod_{\substack{i,j=1\\p!(i-aj)(i+ai)}}^{(p-1)/2} (i-aj) \times \prod_{\substack{i,j=1\\p!(i+aj)(i-ai)}}^{(p-1)/2} \frac{i+aj}{a} \pmod{p}.$$
(3.5)

(i) If $p \equiv 3 \pmod{4}$, then $(\frac{-1}{p}) = -1$ and hence $a \not\equiv b \pmod{p}$. Now we prove (1.12) under the assumption $a \not\equiv b \pmod{p}$. Note that $a^2 \not\equiv \pm 1 \pmod{p}$.

For $1 \leqslant i,j \leqslant (p-1)/2$, we cannot have $i^2 - a^2 j^2 \equiv j^2 - a^2 i^2 \equiv 0 \pmod p$. Thus

$$\begin{split} & \left| \left\{ (i,j): \ 1 \leqslant i,j \leqslant \frac{p-1}{2} \ \& \ p \nmid (i+aj)(j-ai) \right\} \right| \\ & = \left(\frac{p-1}{2} \right)^2 - \left| \left\{ (i,j): \ 1 \leqslant i,j \leqslant \frac{p-1}{2} \ \& \ p \mid i+aj \right\} \right| \\ & - \left| \left\{ (i,j): \ 1 \leqslant i,j \leqslant \frac{p-1}{2} \ \& \ p \mid j-ai \right\} \right| \\ & = \left(\frac{p-1}{2} \right)^2 - \left| \left\{ 1 \leqslant j \leqslant \frac{p-1}{2}: \ \{aj\}_p > \frac{p}{2} \right\} \right| \\ & - \left| \left\{ 1 \leqslant i \leqslant \frac{p-1}{2}: \ \{ai\}_p < \frac{p}{2} \right\} \right| \\ & = (p-1)\frac{p-1}{4} - \frac{p-1}{2} = \frac{p-1}{2} \cdot \frac{p+1}{2} - (p-1) \end{split}$$

and hence

$$a^{|\{(i,j):\ 1\leqslant i,j\leqslant (p-1)/2\ \&\ p\nmid (i+aj)(j-ai)\}|}\equiv (a^{(p-1)/2})^{(p+1)/2}\equiv \left(\frac{a}{p}\right)^{(p+1)/2}\ (\mathrm{mod}\ p).$$

Combining this with (3.5), we obtain

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix}^{(p+1)/2} \{a,b\}_{p}$$

$$\equiv \prod_{\substack{i,j=1 \\ p\nmid (i^{2}-a^{2}j^{2})(j^{2}-a^{2}i^{2})}}^{(p-1)/2} (i^{2}-a^{2}j^{2}) \times \prod_{\substack{i,j=1 \\ i\equiv aj \pmod{p}}}^{(p-1)/2} (i+aj) \times \prod_{\substack{i,j=1 \\ i\equiv -aj \pmod{p}}}^{(p-1)/2} (i-aj)$$

$$\times \prod_{\substack{j-ai\equiv -a(i+bj)\equiv 0 \pmod{p}}}^{(p-1)/2} (i-aj) \times \prod_{\substack{j+ai\equiv a(i-bj)\equiv 0 \pmod{p}}}^{(p-1)/2} (i+aj)$$

$$\equiv \prod_{\substack{i,j=1 \\ p\nmid i^{2}-a^{2}j^{2}}}^{(p-1)/2} (i^{2}-a^{2}j^{2}) / \prod_{\substack{i,j=1 \\ p\mid j^{2}-a^{2}i^{2}}}^{(p-1)/2} (i^{2}-a^{2}j^{2})$$

$$\times (-1)^{|\{1\leqslant j\leqslant (p-1)/2: \{aj\}_{p}>p/2\}|} \prod_{j=1}^{(p-1)/2} (2aj)$$

$$\times (-1)^{|\{1\leqslant j\leqslant (p-1)/2: \{bj\}_{p}>p/2\}|} \prod_{j=1}^{(p-1)/2} (bj+aj) \pmod{p}$$

Thus, by using (3.4) and Gauss' Lemma, we see that

$$\begin{split} \left(\frac{a}{p}\right)^{(p+1)/2} \{a,b\}_p &\equiv \prod_{\stackrel{i,k=1}{p \nmid i^2 - k^2}}^{(p-1)/2} (i^2 - k^2) \bigg/ \prod_{i=1}^{(p-1)/2} (i^2 - a^2 (a^2 i^2)) \\ &\times \left(\frac{ab}{p}\right) (2a(a+b))^{(p-1)/2} \left(\frac{p-1}{2}!\right)^2 \\ &\equiv -\left(\frac{2}{p}\right) \left(\frac{-1}{p}\right) \left(\frac{2(a^2-1)(1-a^4)}{p}\right) \\ &= -\left(\frac{a^2+1}{p}\right) = -\left(\frac{a^2-ab}{p}\right) \pmod{p}. \end{split}$$

This proves (1.12).

(ii) Now we come to prove part (ii) of Theorem 1.3. Assume that $a \equiv b \pmod{p}$. Then $a^2 \equiv ab \equiv -1 \pmod{p}$ and hence $p \equiv 1 \pmod{4}$. As $j \pm ai \equiv \pm a(i \mp aj) \pmod{p}$, by (3.5) we have

$$\{a,b\}_p \equiv a^{-|\{(i,j): \ 1 \leqslant i,j \leqslant (p-1)/2 \ \& \ p \nmid i+aj\}|} \prod_{\substack{i,j=1 \\ p \nmid i-aj}}^{(p-1)/2} (i-aj) \times \prod_{\substack{i,j=1 \\ p \nmid i+aj}}^{(p-1)/2} (i+aj)$$

$$\equiv a^{-(p-1)^2/4 + |\{(i,j): \ 1 \leqslant i,j \leqslant (p-1)/2 \ \& \ p \mid i+aj\}|} \prod_{\substack{i,j=1 \\ p \nmid i^2 - (aj)^2}}^{(p-1)/2} (i^2 - (aj)^2)$$

$$\times \prod_{\substack{i,j=1 \\ p \mid i-aj}}^{(p-1)/2} (i+aj) \times \prod_{\substack{i,j=1 \\ p \mid i+aj}}^{(p-1)/2} (i-aj)$$

$$\equiv a^{|\{(i,j): \ 1 \leqslant i,j \leqslant (p-1)/2 \ \& \ p \mid i+aj\}|} \prod_{\substack{i,k=1 \\ p \nmid i^2 - k^2}}^{(p-1)/2} (i^2 - k^2)$$

$$\times (-1)^{|\{1 \leqslant j \leqslant (p-1)/2: \ \{aj\}_p > p/2\}|} \prod_{j=1}^{(p-1)/2} (2aj). \ (\text{mod } p)$$

Applying (3.4) and Gauss' Lemma, from the above we get

$$\{a,b\}_{p} \equiv a^{|\{1 \le j \le (p-1)/2: \{aj\}_{p} > p/2\}|} \times \left(-\left(\frac{2}{p}\right)\right) \left(\frac{a}{p}\right) (2a)^{(p-1)/2} \frac{p-1}{2}!$$

$$\equiv -\frac{p-1}{2}! \times a^{|\{1 \le j \le (p-1)/2: \{aj\}_{p} > p/2\}|} \pmod{p}.$$
(3.6)

As $a^2 \equiv -1 \equiv ((p-1)/2)!)^2$, we have $a \equiv (-1)^k ((p-1)/2)! \pmod{p}$ for some $k \in \{0,1\}$. In view of Lemma 3.3,

$$\begin{split} &\left|\left\{1\leqslant j\leqslant \frac{p-1}{2}:\ \left\{-\frac{p-1}{2}!j\right\}_p>\frac{p}{2}\right\}\right|\\ &=\left|\left\{1\leqslant j\leqslant \frac{p-1}{2}:\ \left\{\frac{p-1}{2}!j\right\}_p<\frac{p}{2}\right\}\right|=\frac{p-1}{4}. \end{split}$$

Hence

$$a^{|\{1\leqslant j\leqslant (p-1)/2:\ \{aj\}_p>p/2\}|}$$

$$\begin{split} &=a^{(p-1)/4}=(-1)^{k(p-1)/4}\left(\frac{p-1}{2}!\right)^{(p-1)/4}\\ &\equiv\begin{cases} (\frac{p-1}{2}!)^{2(p-1)/8}\equiv (-1)^{(p-1)/8}\ (\mathrm{mod}\ p) & \text{if }p\equiv 1\ (\mathrm{mod}\ 8),\\ (-1)^k\frac{p-1}{2}!(\frac{p-1}{2}!)^{2(p-5)/8}\equiv (-1)^{k+(p-5)/8}\frac{p-1}{2}!\ (\mathrm{mod}\ p) & \text{if }p\equiv 5\ (\mathrm{mod}\ 8). \end{cases} \end{split}$$

Combining this with (3.6) we immediately obtain the desired results in Theorem 1.3(ii).

In view of the above, we have completed the proof of Theorem 1.3. \Box

4. Proof of Theorem 1.4

Proof of Theorem 1.4(i). As $A^2 \equiv -4 \pmod{p}$, we have $\left(\frac{-1}{p}\right) = 1$ and hence $p \equiv 1 \pmod{4}$. Since $((p-1)/2)^2 \equiv -1 \equiv (A/2)^2 \pmod{p}$, for some $k \in \{0,1\}$ we have $A/2 \equiv (-1)^k ((p-1)/2)! \pmod{p}$. Choose $a, b \in \mathbb{Z}$ with $a \equiv b \equiv A/2 \pmod{p}$. Note that $\{a,b\}_p \equiv T_p(1,-A,-1) \pmod{p}$. Applying Theorem 1.3(ii) we immediately get the desired (1.14).

For any odd prime p and integer A with $\Delta = A^2 + 4 \not\equiv 0 \pmod{p}$, it is known (cf. [13, Lemma 2.3]) that

$$u_{(p-(\frac{\Delta}{2})/2}(A)v_{(p-(\frac{\Delta}{2}))/2}(A) = u_{p-(\frac{\Delta}{2})}(A) \equiv 0 \pmod{p}.$$

Lemma 4.1. Let $A \in \mathbb{Z}$ and let p be an odd prime not dividing $\Delta = A^2 + 4$. Then

$$p \mid v_{(p-(\frac{\Delta}{p}))/2}(A) \iff \left(\frac{-1}{p}\right) = -1. \tag{4.1}$$

Remark 4.2. This is a known result, see, e.g., [10, Chapter 2, (IV.23)].

Proof of Theorem 1.4(ii). Let $\Delta = A^2 + 4$. As $(\frac{\Delta}{p}) = 1$, we have $d^2 \equiv \Delta$ for some $d \in \mathbb{Z}$ with $p \nmid d$. Choose integers a and b such that

$$a \equiv \frac{A+d}{2} \ (\text{mod} \ p) \ \text{and} \ b \equiv \frac{A-d}{2} \ (\text{mod} \ p).$$

Then $a+b \equiv A \pmod{p}$ and $ab \equiv (A^2-d^2)/4 \equiv -1 \pmod{p}$. Thus, for any $i, j \in \mathbb{Z}$ we have

$$i^2 - Aij - j^2 \equiv (i - aj)(i - bj) \pmod{p}.$$

If $p \equiv 1 \pmod{4}$, then

$$(A^2+4)^{(p-1)/4} \equiv d^{(p-1)/2} \equiv (a-b)^{(p-1)/2} \equiv \left(\frac{a-b}{p}\right) \pmod{p}.$$

If $p \equiv 3 \pmod{4}$, then

$$\left(\frac{2d(A+d)}{p}\right) = \left(\frac{ad}{p}\right) = \left(\frac{a(a-b)}{p}\right).$$

For any positive integer n, clearly

$$\begin{split} u_n(A) = & \frac{1}{\sqrt{\Delta}} \bigg(\left(\frac{A + \sqrt{\Delta}}{2} \right)^n - \left(\frac{A - \sqrt{\Delta}}{2} \right)^n \bigg) \\ = & \frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1} A^{n-1-2k} \Delta^k \\ \equiv & \frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1} A^{n-1-2k} d^{2k} \\ = & \frac{1}{d} \bigg(\left(\frac{A + d}{2} \right)^n - \left(\frac{A - d}{2} \right)^n \bigg) \pmod{p} \end{split}$$

and

$$v_n(A) = \left(\frac{A + \sqrt{\Delta}}{2}\right)^n + \left(\frac{A - \sqrt{\Delta}}{2}\right)^n = \frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} A^{n-2k} \Delta^k$$

$$\equiv \frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} A^{n-2k} d^{2k} = \left(\frac{A+d}{2}\right)^n + \left(\frac{A-d}{2}\right)^n \pmod{p}.$$

In the case $p \equiv 3 \pmod{4}$, we have $p \mid v_{(p-1)/2}(A)$ by Lemma 4.1, and hence

$$\left(\frac{2\delta(A+d)}{p}\right) \equiv d^{(p-1)/2} \left(\frac{A+d}{2}\right)^{(p-1)/2} \equiv d^{(p-1)/2} \frac{v_{(p-1)/2}(A) + du_{(p-1)/2}(A)}{2}$$
$$\equiv \left(d^2\right)^{(p+1)/4} \frac{u_{(p-1)/2}(A)}{2} \equiv \Delta^{(p+1)/4} \frac{u_{(p-1)/2}(A)}{2} \pmod{p}.$$

In view of the above, we obtain (1.15) from Theorem 1.3(i).

Lemma 4.3. Let p be an odd prime, and let $A \in \mathbb{Z}$ with $\Delta = A^2 + 4 \not\equiv 0 \pmod{p}$. If $p \equiv 1 \pmod{4}$, then

$$u_{(p+(\frac{\Delta}{p}))/2}(A) \equiv \pm \Delta^{(p-1)/4} \pmod{p}.$$
 (4.2)

If $p \equiv 3 \pmod{4}$, then

$$u_{(p-(\frac{\Delta}{p}))/2}(A) \equiv \pm 2\Delta^{(p-3)/4} \pmod{p}. \tag{4.3}$$

Remark 4.4. This is a known result, see, e.g., [11, Theorem 4.1].

Proof of Theorem 1.4(iii). Let

$$\Delta = A^2 + 4$$
, $\alpha = \frac{A + \sqrt{\Delta}}{2}$ and $\beta = \frac{A - \sqrt{\Delta}}{2}$.

As $x^2 - Ax - 1 = (x - \alpha)(x - \beta)$, both α and β are algebraic integers. Observe that

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2)$$

$$= \prod_{i,j=1}^{(p-1)/2} (i - \alpha j)(i - \beta j) = \prod_{i,j=1}^{(p-1)/2} (i - \alpha j) \times \prod_{i,j=1}^{(p-1)/2} (j - \beta i)$$

$$= \prod_{i,j=1}^{(p-1)/2} (i - \alpha j) \times \prod_{i,j=1}^{(p-1)/2} \frac{\alpha j + i}{\alpha} = \alpha^{-((p-1)/2)^2} \prod_{i,j=1}^{(p-1)/2} (i^2 - \alpha^2 j^2)$$

$$= \alpha^{-((p-1)/2)^2} \prod_{i,j=1}^{(p-1)/2} (-j^2) \left(\alpha^2 - \frac{i^2}{j^2}\right)$$

$$= (-\alpha)^{-((p-1)/2)^2} \left(\frac{p-1}{2}!\right)^{\frac{2p-1}{2}} \prod_{i=1}^{(p-1)/2} \prod_{i=1}^{(p-1)/2} \left(\alpha^2 - \frac{i^2}{j^2}\right)$$

and hence

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv \beta^{((p-1)/2)^2} \prod_{k=1}^{(p-1)/2} (\alpha^2 - k^2)^{(p-1)/2} \pmod{p}$$

(in the ring of all algebraic integers) since for any j, k = 1, ..., (p-1)/2 there is a unique $i \in \{1, ..., (p-1)/2\}$ congruent to jk or -jk modulo p. Note that

$$\prod_{x=1}^{(p-1)/2} (x - k^2) \equiv x^{(p-1)/2} - 1 \pmod{p}.$$

Thus

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv \beta^{((p-1)/2)^2} ((\alpha^2)^{(p-1)/2} - 1)^{(p-1)/2}
= \beta^{((p-1)/2)^2} (\alpha^{p-1} - 1)^{(p-1)/2}
= ((-\alpha)^{(p-1)/2} - \beta^{(p-1)/2})^{(p-1)/2} \pmod{p}.$$

Case 1. $p \equiv 1 \pmod{4}$.

In this case,

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv \left(\frac{\alpha^{(p-1)/2} - \beta^{(p-1)/2}}{\alpha - \beta}\right)^{(p-1)/2} (\alpha - \beta)^{(p-1)/2}$$
$$= u_{(p-1)/2}(A)^{(p-1)/2} \Delta^{(p-1)/4} \pmod{p}.$$

As $(\frac{\Delta}{p}) = -1$, by Lemma 4.3 we have $u_{(p-1)/2}(A) \equiv \pm \Delta^{(p-1)/4} \pmod{p}$ and hence

$$u_{(p-1)/2}(A)^{(p-1)/2} \equiv \Delta^{\frac{p-1}{2} \cdot \frac{p-1}{4}} \equiv (-1)^{(p-1)/4} \pmod{p}.$$

Therefore

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv (-\Delta)^{(p-1)/4} \pmod{p}.$$

Case 2. $p \equiv 3 \pmod{4}$.

In this case,

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv -\left(\alpha^{(p-1)/2} + \beta^{(p-1)/2}\right)^{(p-1)/2}$$
$$= -v_{(p-1)/2}(A)^{(p-1)/2} \pmod{p}.$$

It is easy to see that $2v_{n-1}(A) = \Delta u_n(A) - Av_n(A)$ for all $n = 1, 2, 3, \ldots$ Hence

$$2v_{(p-1)/2}(A) = \Delta u_{(p+1)/2}(A) - Av_{(p+1)/2}(A) \equiv \Delta u_{(p+1)/2}(A) \pmod{p}$$

since $v_{(p+1)/2}(A) = v_{(p-(\frac{\Delta}{p}))/2}(A) \equiv 0 \pmod{p}$ by Lemma 4.1. Thus

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv -\left(\frac{\Delta}{2} u_{(p+1)/2}(A)\right)^{(p-1)/2}
\equiv \frac{u_{(p+1)/2}(A)}{2} \left(\frac{u_{(p+1)/2}(A)}{2}\right)^{(p-3)/2} \pmod{p}.$$

As $\left(\frac{\Delta}{p}\right) = -1$, by Lemma 4.3 we have $u_{(p+1)/2}(A) \equiv \pm 2\Delta^{(p-3)/4} \pmod{p}$, and hence

$$\prod_{i,j=1}^{(p-1)/2} (i^2 - Aij - j^2) \equiv \frac{u_{(p+1)/2}(A)}{2} \Delta^{\frac{p-3}{4} \cdot \frac{p-3}{2}} = \frac{u_{(p+1)/2}(A)}{2} \Delta^{\frac{p+1}{2} \cdot \frac{p+1}{4} - (p-1)}$$
$$\equiv \frac{u_{(p+1)/2}(A)}{2} (-\Delta)^{(p+1)/4} \pmod{p}.$$

In view of the above, we have completed the proof of Theorem 1.4(iii).

5. Proof of Theorem 1.5

Proof Theorem 1.5. Note that $\{u_n(1)\}_{n\geqslant 0}$ is just the Fibonacci sequence $\{F_n\}_{n\geqslant 0}$. By [12, Corollary 2(iii)], if $p\equiv 3\pmod 4$ and $(\frac{5}{p})=1$, then

$$u_{(p-1)/2}(1) = F_{(p-1)/2} \equiv -2(-1)^{\lfloor (p-5)/10 \rfloor} 5^{(p-3)/4} \pmod{p}$$

and hence

$$-5^{(p+1)/4} \frac{u_{(p-1)/2}(1)}{2} \equiv (-1)^{\lfloor (p-5)/10 \rfloor} 5^{(p+1)/4 + (p-3)/4} \equiv (-1)^{\lfloor (p-5)/10 \rfloor} \pmod{p}.$$

Similarly, if $p \equiv 3 \pmod{4}$ and $(\frac{5}{p}) = -1$, then

$$u_{(p+1)/2}(1) = F_{(p+1)/2} \equiv 2(-1)^{\lfloor (p-5)/10 \rfloor} 5^{(p-3)/4} \pmod{p}$$

and hence

$$5^{(p+1)/4} \frac{u_{(p+1)/2}(1)}{2} \equiv (-1)^{\lfloor (p-5)/10 \rfloor} 5^{(p+1)/4 + (p-3)/4} \equiv (-1)^{\lfloor (p+5)/10 \rfloor} \pmod{p}.$$

Therefore Theorem 1.4 with A = 1 yields (1.17).

When $p \equiv 1 \pmod{4}$, we obviously have

$$8^{(p-1)/4} = 2^{(p-1)/2 + (p-1)/4} \equiv \left(\frac{2}{p}\right) 2^{(p-1)/4} = (-2)^{(p-1)/4} \pmod{p}.$$

If $p \equiv 7 \pmod{8}$, then

$$u_{(p-1)/2}(2) \equiv (-1)^{(p+1)/8} 2^{(p-3)/4} \pmod{p}$$

by [11, (1.7)], and hence

$$-8^{(p+1)/4} \frac{u_{(p-1)/2}(2)}{2} \equiv -2^{(3p+3)/4} (-1)^{(p+1)/8} 2^{(p-7)/4} \equiv (-1)^{(p-7)/8} \pmod{p}.$$

Similarly, if $p \equiv 3 \pmod{8}$, then

$$u_{(p+1)/2}(2) \equiv (-1)^{(p+5)/8} 2^{(p-3)/4} \pmod{p}$$

by [11, (1.7)], and hence

$$(-8)^{(p+1)/4} \frac{u_{(p+1)/2}(2)}{2} \equiv -2^{(3p+3)/4} (-1)^{(p+5)/8} 2^{(p-7)/4} \equiv (-1)^{(p-3)/8} \pmod{p}.$$

So Theorem 1.4 with A=2 yields (1.18). This ends the proof.

6. Proofs of Theorems 1.6 and 1.7

For $n = 1, 2, 3, \ldots$, we adopt the notation

$$n!! := \prod_{k=0}^{\lfloor (n-1)/2 \rfloor} (n-2k).$$

Lemma 6.1. Let p > 3 be a prime. Then

$$\frac{p-1}{2}!! \prod_{\substack{i,j=1\\p\nmid 2i+j}}^{(p-1)/2} (2i+j) \equiv \left(\frac{-2}{p}\right) \frac{p-3}{2}!! \prod_{\substack{i,j=1\\p\nmid 2i-j}}^{(p-1)/2} (2i-j) \equiv \pm 1 \pmod{p}. \tag{6.1}$$

Proof. Set

$$A_p := \frac{p-1}{2}!! \prod_{\stackrel{i,j=1}{p\nmid 2i+j}}^{(p-1)/2} (2i+j) \ \ \text{and} \ \ B_p := \frac{p-3}{2}!! \prod_{\stackrel{i,j=1}{p\nmid 2i-j}}^{(p-1)/2} (2i-j).$$

Then

$$\frac{A_p B_p}{((p-1)/2)!} \equiv \prod_{\substack{i,j=1\\p\nmid 2i+j}}^{(p-1)/2} (2i+j) \times \prod_{\substack{i,j=1\\p\nmid 2i+p-j}}^{(p-1)/2} (2i+p-j) = \prod_{i=1}^{(p-1)/2} \left(\frac{1}{2i} \prod_{\substack{j=0\\p\nmid 2i+j}}^{p-1} (2i+j)\right)$$

$$\equiv \prod_{i=1}^{(p-1)/2} \frac{(p-1)!}{2i} \equiv \frac{\left(\frac{-2}{p}\right)}{\left((p-1)/2\right)!} \pmod{p}$$

and hence

$$A_p B_p \equiv \left(\frac{-2}{p}\right) \pmod{p}. \tag{6.2}$$

On the other hand,

$$\begin{split} \frac{B_p}{((p-3)/2)!!} &= \prod_{\stackrel{i,j=1}{p\nmid 2(\frac{p+1}{2}-i)-j}}^{(p-1)/2} \left(2\left(\frac{p+1}{2}-i\right)-j\right) \\ &\equiv \prod_{\stackrel{i,j=1}{p\nmid 2i+j-1}}^{(p-1)/2} (1-j-2i) = \prod_{i=1}^{(p-1)/2} \frac{-2i}{(-(p-1)/2-2i)^*} \prod_{\stackrel{j=1}{p\nmid j+2i}}^{(p-1)/2} (-j-2i) \\ &\equiv \frac{(-2)^{(p-1)/2}((p-1)/2)!}{\prod_{\stackrel{1\leqslant i< p/2}{4i \neq p+1}}^{1\leqslant i< p/2} ((p+1)/2-2i)} \prod_{\stackrel{i,j=1}{p\nmid 2i+j}}^{(p-1)/2} (2i+j) \\ &\times (-1)^{\sum_{i=1}^{(p-1)/2} ((p-1)/2-|\{1\leqslant j\leqslant (p-1)/2:\ p|2i+j\}|)} \ (\bmod\ p), \end{split}$$

where k^* is 1 or k according as $p \mid k$ or not. Note that

$$\prod_{1 \le i < p/4} \left(\frac{p+1}{2} - 2i \right) = \frac{p-3}{2}!!.$$

Therefore

$$\left(\frac{-2}{p}\right) \frac{B_p}{A_p} \equiv \frac{((p-1)/2)!}{((p-1)/2)!!} \times \prod_{(p+1)/4 < i < p/2} \frac{1}{((p+1)/2 - 2i)} \times (-1)^{((p-1)/2)^2 - |\{1 \le i \le (p-1)/2: \ 2i > p/2\}|} \\
\equiv \frac{((p-3)/2)!!(-1)^{((p-1)/2)^2 - ((p-1)/2 - \lfloor (p-1)/4\rfloor)}}{(-1)^{\lfloor (p-1)/4\rfloor} \prod_{(p+1)/4 \le i < p/2} (2i - (p+1)/2)} = 1 \pmod{p},$$

and hence

$$A_p \equiv \left(\frac{-2}{p}\right) B_p \pmod{p} \tag{6.3}$$

which gives the first congruence in (6.1).

Combining (6.2) and (6.3), we see that $A_p^2 \equiv B_p^2 \equiv 1 \pmod{p}$. So (6.1) does hold. This ends the proof.

Proof of Theorem 1.6. As $2i^2 + \delta 5ij + 2j^2 = (i + \delta 2j)(2i + \delta j)$, we have

$$\begin{split} \prod_{\substack{i,j=1\\p\nmid 2i^2+\delta 5ij+2j^2}}^{(p-1)/2} (2i^2+\delta 5ij+2j^2) &= \prod_{\substack{i,j=1\\p\nmid (i+\delta 2j)(2i+\delta j)}}^{(p-1)/2} (i+\delta 2j) \times \prod_{\substack{i,j=1\\p\nmid (i+\delta 2j)(2i+\delta j)}}^{(p-1)/2} (2i+\delta j) \\ &= \prod_{\substack{i,j=1\\p\nmid (i+\delta 2j)(2i+\delta j)}}^{(p-1)/2} (i+\delta 2j) \times \prod_{\substack{i,j=1\\p\nmid (i+\delta 2j)(2i+\delta j)}}^{(p-1)/2} (2j+\delta i) \\ &= \prod_{\substack{i,j=1\\p\nmid i+\delta 2j}}^{(p-1)/2} \delta(i+\delta 2j)^2 \times \prod_{\substack{i,j=1\\p\nmid j+\delta 2i}}^{(p-1)/2} \frac{1}{\delta(i+\delta 2j)^2}. \end{split}$$

(Note that $i + \delta 2j \equiv j + \delta 2i \equiv 0 \pmod{p}$ for no $i, j = 1, \dots, (p-1)/2$.) Thus, applying Lemma 6.1 and (3.1) we get

$$\begin{split} &\prod_{\substack{p\nmid 2i^2+\delta 5ij+2j^2\\p\nmid 2i^2+\delta 5ij+2j^2}} (2i^2+\delta 5ij+2j^2) \\ &\equiv \frac{\delta^{|(i,j):\ 1\leqslant i,j\leqslant (p-1)/2\ \&\ p\nmid i+\delta 2j\}|}}{((p-2+\delta)/2)!!^2} \times \prod_{\substack{i=1\\\{\delta 2i\}_p>p/2}}^{(p-1)/2} \frac{1}{\delta(i+\delta 2(p-2\delta i))^2} \\ &\equiv \frac{\delta^{((p-1)/2)^2-|\{1\leqslant j\leqslant (p-1)/2:\ \{\delta 2j\}_p>p/2\}|}}{((p-2+\delta)/2)!!^2} \times \prod_{\substack{i=1\\\{\delta 2i\}_p>p/2}}^{(p-1)/2} \frac{1}{\delta(i-4i)^2} \\ &\equiv \frac{\delta^{(p-1)^2/4}}{((p-2+\delta)/2)!!^2} \times \prod_{i=1}^{(p-1)/2} (3i)^{-1-\delta} \times \prod_{\substack{i=1\\\{\delta 2i\}_p>p/2}}^{(p/4)} (3i)^{2\delta} \\ &\equiv \frac{\delta^{(p-1)^2/4}}{((p-2+\delta)/2)!!^2} \times \frac{3^{2\delta \lfloor p/4 \rfloor} \lfloor p/4 \rfloor !^{2\delta}}{((p-1)/2)!^{1+\delta}} \\ &\equiv \delta^{(p-1)^2/4}(-1)^{\frac{p+1}{2}\cdot \frac{1+\delta}{2}} 3^{2\delta \lfloor p/4 \rfloor} \left(\frac{\lfloor p/4 \rfloor !^{\delta}}{((p-2+\delta)/2)!!}\right)^2 \\ &= (-1)^{(p+\delta)/2} 3^{2\delta \lfloor p/4 \rfloor} \left(\frac{\lfloor p/4 \rfloor !^{\delta}}{((p-2+\delta)/2)!!}\right)^2 \pmod{p}. \end{split}$$

Case 1. $p \equiv 1 \pmod{4}$.

In this case,

$$\left(\frac{\lfloor p/4 \rfloor!^{\delta}}{((p-2+\delta)/2)!!}\right)^{2} = \begin{cases} 1/2^{(p-1)/2} & \text{if } \delta = 1, \\ 2^{(p-1)/2}/((p-1)/2)!^{2} & \text{if } \delta = -1. \end{cases}$$

Thus, with the help of (3.1) we have

$$(-1)^{(p+\delta)/2} 3^{2\delta \lfloor p/4 \rfloor} \left(\frac{\lfloor p/4 \rfloor!^{\delta}}{((p-2+\delta)/2)!!} \right)^{2}$$

$$\equiv (-1)^{(1+\delta)/2} \left(\frac{3}{p} \right)^{\delta} \left(\frac{2}{p} \right)^{-\delta} \delta = -\left(\frac{6}{p} \right) = (-1)^{\lfloor (p+11)/12 \rfloor} \pmod{p},$$

and hence (1.19) follows from the above.

Case 2. $p \equiv 3 \pmod{4}$.

In this case, with the aid of (3.1) we have

$$(-1)^{(p+\delta)/2} 3^{2\delta \lfloor p/4 \rfloor} \left(\frac{\lfloor p/4 \rfloor!^{\delta}}{((p-2+\delta)/2)!!} \right)^{2}$$

$$\equiv (-1)^{(\delta-1)/2} 3^{\delta((p-1)/2-1)} \left(\frac{2^{(p-3)/4}}{(p-1)/2 \times \binom{(p-3)/2}{(p-3)/4}} \right)^{2\delta} \left(\frac{p-1}{2}! \right)^{\delta-1}$$

$$\equiv \delta \left(\frac{3}{p} \right) 3^{-\delta} 2^{\delta(p+1)/2} \binom{(p-3)/2}{(p-3)/4}^{-2\delta} \equiv \left(\frac{6}{p} \right) \frac{\delta 2^{\delta}}{3^{\delta}} \binom{(p-3)/2}{(p-3)/4}^{-2\delta} \pmod{p},$$

and hence (1.20) holds.

In view of the above, we have completed the proof.

Proof of Theorem 1.7. Let n = (p-1)/2. Clearly,

$$\prod_{1\leqslant i < j \leqslant n} (j-i) = \prod_{k=1}^n k^{|\{1\leqslant i \leqslant n: \ i+k \leqslant n\}|} = \prod_{k=1}^n k^{n-k}$$

and hence

$$\prod_{1 \leqslant i < j \leqslant n} \left(\frac{j-i}{p} \right) = \left(\frac{n!}{p} \right)^n \prod_{k=1 \atop 2^{jk}}^n \left(\frac{k}{p} \right). \tag{6.4}$$

Case 1. $p \equiv 1 \pmod{4}$.

In this case, n is even, and hence by (6.4) and [15, (3.5)] we have

$$\prod_{1 \leq i < j \leq n} \left(\frac{j-i}{p} \right) = \left(\frac{(n-1)!!}{p} \right) = (-1)^{|\{0 < k < \frac{p}{4}: (\frac{k}{p}) = -1\}|}.$$

By (3.2) and [14, Lemma 2.3],

$$\prod_{1 \leqslant i < j \leqslant n} \left(\frac{j^2 - i^2}{p} \right) = \left(\frac{-n!}{p} \right) = \left(\frac{2}{p} \right) = (-1)^{(p-1)/4}.$$

Thus we also have

$$\prod_{1 \leq i < j \leq n} \left(\frac{j+i}{p} \right) = (-1)^{(p-1)/4} (-1)^{|\{0 < k < \frac{p}{4}: \ (\frac{k}{p}) = -1\}|} = (-1)^{|\{0 < k < \frac{p}{4}: \ (\frac{k}{p}) = 1\}|}.$$

So (1.21) holds in this case.

Case 2. $p \equiv 3 \pmod{4}$.

In this case, n is odd and

$$\prod_{1 \le i < j \le n} \left(\frac{j^2 - i^2}{p} \right) = \left(\frac{1}{p} \right) = 1$$

by (3.2). So it suffices to prove (1.21) for $\delta = -1$.

In view of (6.4), we have

$$\prod_{1 \le i < j \le n} \left(\frac{j-i}{p} \right) = \left(\frac{n!}{p} \right) \left(\frac{n!!}{p} \right) = \left(\frac{(n-1)!!}{p} \right). \tag{6.5}$$

If $p \equiv 3 \pmod{8}$, then by [15, (3.6)] we have

$$\left(\frac{(n-1)!!}{p}\right) = (-1)^{\lfloor (p+1)/8 \rfloor} = (-1)^{(p-3)/8}$$

and hence (1.21) holds for $\delta = -1$. When $p \equiv 7 \pmod{8}$, we have

$$\left(\frac{n!}{p}\right) = \left(\frac{(-1)^{(h(-p)+1)/2}}{p}\right) = (-1)^{(h(-p)+1)/2} \text{ and } \left(\frac{n!!}{p}\right) = (-1)^{(p+1)/8}$$

by Mordell [8] and Sun [15, (3.6)] respectively, hence (1.21) with $\delta = -1$ follows from (6.5).

Combining the above, we have finished the proof of (1.21).

7. Some related conjectures

Motivated by our results in Section 1, here we pose 10 conjectures for further research. We have verified all the following conjectures for primes p < 13000.

Conjecture 7.1. Let p > 3 be a prime and let $\delta \in \{\pm 1\}$. Then

$$\prod_{\substack{1\leqslant i < j \leqslant (p-1)/2 \\ p\nmid 2i^2+\delta 5ij+2j^2}} \left(\frac{2i^2+\delta 5ij+2j^2}{p}\right) = \frac{1}{2} \left(\frac{\delta}{p}\right) \left(\left(\frac{-1}{p}\right) + \left(\frac{2}{p}\right) + \left(\frac{6}{p}\right) - \left(\frac{p}{3}\right)\right). \tag{7.1}$$

Conjecture 7.2. Let p > 3 be a prime. Then

$$\prod_{\substack{1 \leq i < j \leq (p-1)/2 \\ p \nmid i^2 = ij + i^2}} \left(\frac{i^2 - ij + j^2}{p} \right) = \begin{cases} -1 & \text{if } p \equiv 5,7 \pmod{24}, \\ 1 & \text{otherwise.} \end{cases}$$
(7.2)

Also,

$$\prod_{\substack{1 \le i < j \le (p-1)/2 \\ p \nmid i^2 + ij + j^2}} \left(\frac{i^2 + ij + j^2}{p} \right) = \begin{cases} -1 & if \ p \equiv 5, 11 \ (\text{mod } 24), \\ 1 & otherwise. \end{cases}$$
 (7.3)

Conjecture 7.3. Let p > 3 be a prime. Then

$$\prod_{\substack{1 \le i < j \le (p-1)/2 \\ p \nmid i^2 - 3ij + i^2}} \left(\frac{i^2 - 3ij + j^2}{p} \right) = \begin{cases} -1 & \text{if } p \equiv 7, 19 \pmod{20}, \\ 1 & \text{otherwise.} \end{cases}$$
(7.4)

Also,

$$\prod_{\substack{1 \le i < j \le (p-1)/2 \\ p \nmid i^2 + 3ij + j^2}} \left(\frac{i^2 + 3ij + j^2}{p} \right) = \begin{cases} -1 & if \ p \equiv 19, 23, 27, 31 \pmod{40}, \\ 1 & otherwise. \end{cases}$$
 (7.5)

Recall that for any prime $p \equiv 3 \pmod{4}$ the class number h(-p) of the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$ is odd by [8].

Conjecture 7.4. Let $\delta \in \{\pm 1\}$.

(i) For any prime $p \equiv 1 \pmod{12}$, we have

$$T_p(1, 4\delta, 1) \equiv -3^{(p-1)/4} \pmod{p}.$$
 (7.6)

(ii) Let p > 3 be a prime. Then

$$\prod_{\substack{1 \leq i < j \leq (p-1)/2 \\ p \nmid i^2 + \delta 4ij + j^2}} \left(\frac{i^2 + \delta 4ij + j^2}{p} \right) \\
= \begin{cases}
1 & \text{if } p \equiv 1 \pmod{24}, \\
(-1)^{|\{0 < k < \frac{p}{4}: (\frac{k}{p}) = -1\}|} & \text{if } p \equiv 17 \pmod{24}, \\
\delta(-1)^{|\{0 < k < \frac{p}{12}: (\frac{k}{p}) = -1\}| - 1} & \text{if } p \equiv 7 \pmod{24}, \\
\delta(-1)^{|\{0 < k < \frac{p}{12}: (\frac{k}{p}) = -1\}| + \frac{h(-p) - 1}{2}} & \text{if } p \equiv 19 \pmod{24}.
\end{cases}$$
(7.7)

Conjecture 7.5. Let p > 3 be a prime. Then

$$\prod_{\substack{1 \leqslant i \leqslant j \leqslant (p-1)/2 \\ p \nmid 4i^2 + j^2}} \left(\frac{4i^2 + j^2}{p} \right) = \begin{cases} 1 & \text{if } p \equiv 1, 7, 9, 19 \pmod{20}, \\ -1 & \text{otherwise}. \end{cases}$$

Conjecture 7.6. Let p > 3 be a prime. Then

$$(-1)^{|\{1 \leqslant k < p/3: \ (\frac{k}{p}) = -1\}|} \prod_{\substack{i,j=1\\p\nmid 3i+j}}^{(p-1)/2} \left(\frac{3i+j}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12},\\ (-1)^{\lfloor p/12 \rfloor} & \text{if } p \equiv \pm 5 \pmod{12}, \end{cases}$$

and

$$\prod_{\stackrel{i,j=1}{p\nmid 3i-j}}^{(p-1)/2} \left(\frac{3i-j}{p}\right) = \begin{cases} (-1)^{|\{1\leqslant k < p/3: \ (\frac{k}{p})=-1\}|+(p-1)/12} & \textit{if } p \equiv 1 \pmod{12}, \\ (-1)^{|\{1\leqslant k < p/3: \ (\frac{k}{p})=-1\}|-1} & \textit{if } p \equiv 5 \pmod{12}, \\ (-1)^{|\{1\leqslant k < p/6: \ (\frac{k}{p})=1\}|+(p+1)/4} & \textit{if } p \equiv 7 \pmod{12}, \\ -1 & \textit{if } p \equiv 11 \pmod{12}. \end{cases}$$

Conjecture 7.7. Let p > 3 be a prime. Then

$$\prod_{\substack{i,j=1\\p\nmid 4i+j}}^{(p-1)/2} \left(\frac{4i+j}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{(h(-p)-1)/2 + \lfloor p/8 \rfloor} & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{|\{1 \leqslant k < p/4: \ (\frac{k}{p}) = -1\}|} & \text{if } p \equiv 7 \pmod{8}, \end{cases}$$

and

$$\prod_{\substack{i,j=1\\p\nmid 4i-j}}^{(p-1)/2} \left(\frac{4i-j}{p}\right) = \begin{cases} (-1)^{(p-1)/4} & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{\lfloor p/8 \rfloor} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Conjecture 7.8. Let p > 5 be a prime. Then

$$(-1)^{|\{1 \leqslant k < p/10: \ (\frac{k}{p}) = -1\}|} \prod_{\substack{i,j = 1 \\ p \nmid 5i + j}}^{(p-1)/2} \left(\frac{5i + j}{p}\right)$$

$$= \begin{cases} (-1)^{\lfloor (p+1)/10 \rfloor} & \text{if } p \equiv \pm 1, \pm 3 \pmod{20}, \\ (-1)^{\lfloor p/20 \rfloor} & \text{if } p \equiv \pm 7 \pmod{20}, \\ (-1)^{\lfloor (p+9)/20 \rfloor} & \text{if } p \equiv \pm 9 \pmod{20}, \end{cases}$$

and

$$\prod_{\substack{i,j=1\\p\nmid 5i-j}}^{(p-1)/2} \left(\frac{5i-j}{p}\right) = \begin{cases} (-1)^{(h(-p)+1)/2} & \text{if } p \equiv 3,7 \pmod{20}, \\ (-1)^{(p+9)/20} & \text{if } p \equiv -9 \pmod{20}, \\ (-1)^{|\{1\leqslant k < p/10: \; (\frac{k}{p}) = -1\}| + \lfloor (p+3)/20 \rfloor} & \text{if } p \equiv -1 \pmod{20}, \\ (-1)^{|\{1\leqslant k < p/10: \; (\frac{k}{p}) = -1\}| + \lfloor (p+3)/20 \rfloor} & \text{if } p \equiv 1, -3 \pmod{20}, \\ (-1)^{|\{1\leqslant k < p/10: \; (\frac{k}{p}) = -1\}| + \lfloor (p-3)/10 \rfloor} & \text{if } p \equiv -7,9 \pmod{20}. \end{cases}$$

Conjecture 7.9. For any prime p > 3, we have

$$\prod_{\substack{i,j=1\\p\nmid 6i+j}}^{(p-1)/2} \left(\frac{6i+j}{p}\right) = \begin{cases} (-1)^{|\{1\leqslant k < p/12: \ (\frac{k}{p})=-1\}|} & \text{if } p \equiv 1 \pmod{24}, \\ (-1)^{|\{\frac{p+3}{4}\leqslant k \leqslant \lfloor \frac{p+1}{3}\rfloor: \ (\frac{k}{p})=-1\}|} & \text{if } p \equiv 5, -7, -11 \pmod{24}, \\ (-1)^{(h(-p)+1)/2+\lfloor (p+1)/24\rfloor} & \text{if } p \equiv -1, -5 \pmod{24}, \\ (-1)^{\lfloor p/24\rfloor - 1} & \text{if } p \equiv 7, 11 \pmod{24}, \end{cases}$$

and

$$\prod_{\substack{i,j=1\\p\nmid 6i-j}}^{(p-1)/2} \left(\frac{6i-j}{p}\right) = (-1)^{|\{\frac{p+2}{4} < k < \frac{p}{3}: \ (\frac{k}{p}) = 1\}|}.$$

Conjecture 7.10. Let p > 3 be a prime. Then

$$(-1)^{|\{1 \leqslant k < p/4: \ (\frac{k}{p}) = -1\}|} \prod_{\substack{i,j = 1 \\ p \nmid 8i + j}}^{(p-1)/2} \left(\frac{8i + j}{p}\right) = \begin{cases} (-1)^{(p+1)/8} & \textit{if } p \equiv -1 \ (\text{mod } 8), \\ 1 & \textit{otherwise}, \end{cases}$$

and

$$\prod_{\substack{i,j=1\\p\nmid 8i-j}}^{(p-1)/2} \left(\frac{8i-j}{p}\right) = \begin{cases} (-1)^{|\{1\leqslant k < p/4: \ (\frac{k}{p})=1\}|} & \text{if } p \equiv 1 \pmod 4, \\ (-1)^{(h(-p)+1)/2+(p-3)/8} & \text{if } p \equiv 3 \pmod 8, \\ -1 & \text{if } p \equiv 7 \pmod 8. \end{cases}$$

Acknowledgments. The research is supported by the Natural Science Foundation of China (Grant No. 11971222). The author would like to thank the the referee for helpful comments.

References

- B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, 1998.
- [2] K. Burde, Eine Verteilungseigenschaft der Legendresymbole, J. Number Theory 12 (1980), 273–277.
- [3] S. Chowla, B. Dwork and R. J. Evans, On the mod p^2 determination of $\binom{(p-1)/2}{(p-1)/4}$, J. Number Theory **24** (1986), 188–196.
- [4] L. E. Dickson, History of the Theory of Numbers, Vol. III, AMS Chelsea Publ., 1999.
- [5] R. H. Hudson and K. S. Williams, Class number formulae of Dirichlet type, Math. Comp. 39 (1982), 725-732.
- [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Graduate Texts in Math., 84, Springer, New York, 1990.
- [7] M. Jenkins, Proof of an Arithmetical Theorem leading, by means of Gauss fourth demonstration of Legendres law of reciprocity, to the extension of that law, Proc. London Math. Soc. 2 (1867) 29–32.
- [8] L. J. Mordell, The congruence $((p-1)/2)! \equiv \pm 1 \pmod{p}$, Amer. Math. Monthly **68** (1961) 145–146.
- [9] H. Rademacher, Lectures on Elementary Number Theory, Blaisdell Publishing Company, New York, 1964.
- [10] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1980.
- [11] Z.-H. Sun, Values of Lucas sequences modulo primes, Rocky Mountain J. Math. 33 (2013) 1123–1145.
- [12] Z.-H. Sun and Z.-W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992) 371–388.
- [13] Z.-W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010) 2473–3488.
- [14] Z.-W. Sun, On some determinants with Legendre symbol entries, Finite Fields Appl. 56 (2019) 285–307.
- [15] Z.-W. Sun, Quadratic residues and related permutations and identities, Finite Fields Appl. 59 (2019) 246–283.
- [16] K. S. Williams, On the quadratic residues (mod p) in the interval (0, p/4), Canad. Math. Bull. 26 (1983) 123–124.
- [17] K. S. Williams and J. D. Currie, Class numbers and biquadratic reciprocity, Canad. J. Math. 34 (1982) 969–988.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn