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q-ANALOGUES OF SOME SERIES FOR POWERS OF π

QING-HU HOU AND ZHI-WEI SUN

Abstract. We obtain q-analogues of several series for powers of π. For
example, the identity

∞∑
k=0

(−1)k

(2k + 1)3
=
π3

32

has the following q-analogue:
∞∑
k=0

(−1)k
q2k(1 + q2k+1)

(1− q2k+1)3
=

(q2; q4)2∞(q4; q4)6∞
(q; q2)4∞

,

where q is any complex number with |q| < 1. We also give q-analogues
of four new series for powers of π found by the second author.

1. Introduction

The Riemann zeta function is given by

ζ(s) :=
∞∑
n=1

1

ns
for Re(s) > 1.

Obviously,

∞∑
k=0

1

(2k + 1)s
=

(
1− 1

2s

)
ζ(s) for Re(s) > 1.

As Euler proved (cf. [12, pp. 231–232]), for each m = 1, 2, 3, . . . we have

ζ(2m) = (−1)m−1
22m−1π2m

(2m)!
B2m,

where the Bernoulli numbers B0, B1, . . . are given by B0 = 1 and

n∑
k=0

(
n+ 1

k

)
Bk = 0 (n = 1, 2, 3, . . .).
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As usual, for n ∈ N = {0, 1, 2, . . .}, the q-analogue of n is given by

[n]q =
1− qn

1− q
=
∑

06k<n

qk.

For complex numbers a and q with |q| < 1, we adopt the standard notation

(a; q)∞ =
∞∏
k=0

(1− aqk).

Recently, Z.-W. Sun [14] obtained the following q-analogues of Euler’s for-

mulae ζ(2) = π2/6 and ζ(4) = π4/90:
∞∑
k=0

qk(1 + q2k+1)

(1− q2k+1)2
=

(q2; q2)4∞
(q; q2)4∞

and
∞∑
k=0

q2k(1 + 4q2k+1 + q4k+2)

(1− q2k+1)4
=

(q2; q2)8∞
(q; q2)8∞

,

where q is any complex number with |q| < 1. Note that limq→1
1−q

1−q2k+1 =
1

2k+1
and also

lim
q→1
|q|<1

(1− q)(q2; q2)2∞
(q; q2)2∞

= lim
q→1
|q|<1

∞∏
n=1

[2n]2q
[2n− 1]q[2n+ 1]q

=
π

2
(1.1)

with the help of Wallis’ formula
∞∏
n=1

4n2

4n2 − 1
=
π

2
.

Motivated by Sun’s work [14], A. Goswami [7] got q-analogues of Euler’s

general formula for ζ(2m) with m a positive integer, and M. L. Dawsey and

K. Ono [5] gave further applications.

Let χ be a Dirichlet character modulo a positive integer m. The Dirichlet

L-function associated with the character χ is given by

L(s, χ) :=
∞∑
n=1

χ(n)

ns
for Re(s) > 1.

The Dirichlet beta function is defined by

β(s) = L

(
s,

(
−4

·

))
=
∞∑
k=0

(−1)k

(2k + 1)s
for Re(s) > 0,

where (−) denotes the Kronecker symbol. As Euler observed,

β(2n+ 1) =
(−1)nE2n

4n+1(2n)!
π2n+1 (1.2)
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for all n = 0, 1, 2, . . . (cf. (3.63) of [6, p. 112]), where E0, E1, E2, . . . are Euler

numbers defined by

E0 = 1, and
n∑

k=0
2|k

(
n

k

)
En−k = 0 for n = 1, 2, 3, . . . .

In particular,

β(1) =
π

4
, β(3) =

π3

32
, β(5) =

5π5

1536
.

In view of (1.1), we may view Ramanujan’s formula
∞∑
k=0

(−q)k

1− q2k+1
=

(q4; q4)2∞
(q2; q4)2∞

(|q| < 1)

(equivalent to Example (iv) in [2, p. 139]) as a q-analogue of Leibniz’s iden-

tity β(1) = π/4. Recently, Q.-H. Hou, C. Krattenthaler and Z.-W. Sun [11]

obtained the following new q-analogue of Leibniz’s identity:
∞∑
k=0

(−1)kqk(k+3)/2

1− q2k+1
=

(q2; q2)∞(q8; q8)∞
(q; q2)∞(q4; q8)∞

for |q| < 1.

Motivated by the above work, we seek a q-analogue of the identity

β(3) =
∞∑
k=0

(−1)k

(2k + 1)3
=
π3

32
. (1.3)

This leads to our following result.

Theorem 1.1. For |q| < 1 we have
∞∑
k=0

(−1)k
q2k(1 + q2k+1)

(1− q2k+1)3
=

(q2; q4)2∞(q4; q4)6∞
(q; q2)4∞

. (1.4)

Remark 1.1. (1.4) is a q-analogue of (1.3) because

lim
q→1
|q|<1

(1− q)3 (q2; q4)2∞(q4; q4)6∞
(q; q2)4

= lim
q→1
|q|<1

(1− q)2 (q2; q2)4∞
(q; q2)4∞

× lim
q→1
|q|<1

1− q2

1 + q
· (q4; q4)2∞

(q2; q4)2∞

=
π2

4
× π

4
=
π3

16

in view of (1.1).

How to give q-analogues of (1.2) for n = 2, 3, 4, . . .? This problem looks

sophisticated.
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We will prove Theorem 1.1 in the next section and present more similar

results in Section 3.

Recently, Z.-W. Sun [15] established the following new identities:

∞∑
k=0

k(4k − 1)
(
2k
k

)3
(2k − 1)2(−64)k

=− 1

π
, (1.5)

∞∑
k=0

(4k − 1)
(
2k
k

)3
(2k − 1)3(−64)k

=
2

π
, (1.6)

∞∑
k=0

(12k2 − 1)
(
2k
k

)3
(2k − 1)2256k

=− 2

π
, (1.7)

∞∑
k=1

(3k + 1)16k

(2k + 1)2k3
(
2k
k

)3 =
π2 − 8

2
. (1.8)

They are (1.1), (1.2), (1.3) and (1.77) of Sun [15] respectively. In our second

theorem we give q-analogues of these four identities.

Theorem 1.2. For |q| < 1 we have

∞∑
k=0

(−1)kqk
2 [2k]q([4k]q − 1)

([2k]q − 1)2
· (q; q2)3k

(q2; q2)3k
= −(q; q2)∞(q3; q2)∞

(q2; q2)2∞
, (1.9)

∞∑
k=0

(−1)kqk
2+2k [4k]q − 1

([2k]q − 1)3q
· (q; q2)3k

(q2; q2)3k
=

(q; q2)∞(q3; q2)∞
(q2; q2)2∞

, (1.10)

∞∑
k=0

Pk(q)qk
2

(1− q)3([2k]q − 1)2
· (q; q2)2k(q2; q4)k

(q4; q4)3k
= 2q(1 + q)

(q2; q4)∞(q6; q4)∞
(q4; q4)2∞

,

(1.11)

where Pk(q) denotes

q12k+1− 3q10k+2 + 3(2q2− 1)q8k+1− (3q4− 1)q6k + 3q4k+1− 3q2k+2 + 2q3− q,

and also

q
∞∑
k=0

[3k + 4]q
[2k + 3]2q

· (q; q)3k(−q; q)k
(q3; q2)3k

qk(k+5)/2 = (1− q)2 (q2; q2)4∞
(q; q2)4∞

− 1− q.

(1.12)

We will prove Theorem 1.2 in Section 4 via the difference operator and

some known q-identities.
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2. Proof of Theorem 1.1

Lemma 2.1. Let χ be any Dirichlet character. For |q| < 1 we have

∞∑
n=1

χ(n)
qn−1(1 + qn)

(1− qn)3
=

∞∑
m=1

(∑
d|m

χ
(m
d

)
d2
)
qm−1. (2.1)

Proof. For any positive integer n, we have

1

(1− qn)3
=
∞∑
k=0

(
−3

k

)
(−qn)k =

∞∑
k=0

(
k + 2

2

)
qkn.

Thus

∞∑
n=1

χ(n)
qn−1(1 + qn)

(1− qn)3

=
∞∑
n=1

χ(n)qn−1
( ∞∑

k=0

(
k + 2

2

)
qkn +

∞∑
k=0

(
k + 2

2

)
q(k+1)n

)

=
∞∑
n=1

χ(n)qn−1
(

1 +
∞∑
k=1

((
k + 2

2

)
+

(
k + 1

2

))
qkn
)

=
∞∑
n=1

χ(n)qn−1
∞∑
k=0

(k + 1)2qkn =
∞∑
n=1

χ(n)
∞∑
d=1

d2qdn−1

=
∞∑

m=1

(∑
d|m

χ
(m
d

)
d2
)
qm−1.

This concludes the proof of (2.1).

Proof of Theorem 1.1. For n = 1, 2, 3, . . . let χ(n) be the Kronecker symbol

(−4
n

). With the help of Lemma 2.1,

∞∑
k=0

(−1)k
q2k(1 + q2k+1)

(1− q2k+1)3
=
∞∑
n=1

χ(n)
qn−1(1 + qn)

(1− qn)3
=

∞∑
m=1

(∑
d|m

χ
(m
d

)
d2
)
qm−1.

On the other hand, we have

∞∑
m=1

(∑
d|m

(
−4

m/d

)
d2
)
qm−1 =

∞∏
n=1

(1− q2n)6(1− q4n)4

(1− qn)4
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by Carlitz [4, 4.1] (or [1, Theorem 2.5]). Therefore
∞∑
k=0

(−1)k
q2k(1 + q2k+1)

(1− q2k+1)3
=
∞∏
n=1

(1− q2n)2(1− q4n)4

(1− q2n−1)4

=
∞∏
n=1

(1− q4n−2)2(1− q4n)6

(1− q2n−1)4

=
(q2; q4)2∞(q4; q4)6∞

(q; q2)4∞
.

This concludes the proof of (1.4).

3. Other results similar to Theorem 1.1

For any positive integers d and m with (−1)md ≡ 0, 1 (mod 4), it is known

(cf. [16]) that
∞∑
n=1

(
(−1)md

n

)
1

nm
∈ πm

√
d
Q,

where Q is the field of rational numbers.

Let q be any complex number with |q| < 1. By Carlitz [4, (2.1)] (or [1,

Theorem 2.3]),
∞∑

m=1

(∑
d|m

(
−3

m/d

)
d2
)
qm−1 =

∞∏
n=1

(1− q3n)9

(1− qn)3
.

Combining this with Lemma 2.1 we obtain that
∞∑
n=0

(n
3

) qn−1(1 + qn)

(1− qn)3
=

(q3; q3)9∞
(q; q)3∞

, (3.1)

which is a q-analogue of the identity
∞∑
n=1

(n
3

) 1

n3
=

4π3

81
√

3
. (3.2)

Similar to Lemma 2.1, for any Dirichlet character χ, we have
∞∑
n=1

χ(n)qn−1

(1− qn)2
=
∞∑
n=1

χ(n)
∞∑
k=0

(k + 1)q(k+1)n−1 =
∞∑

m=1

(∑
d|m

χ
(m
d

)
d

)
qm−1.

(3.3)

Combining this with Ramanujan’s identity
∞∑

m=1

(∑
d|m

(
5

m/d

)
d

)
qm−1 =

∞∏
n=1

(1− q5n)5

1− qn
,
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we recover Ramanujan’s result

∞∑
n=1

(n
5

) qn−1

(1− qn)2
=

(q5; q5)5∞
(q; q)∞

(3.4)

(cf. [3, p. 107]), which can be viewed as a q-analogue of the identity

∞∑
n=1

(n
5

) 1

n2
=

4π2

25
√

5
. (3.5)

Ramanujan used (3.4) to deduce his famous congruence p(5n+4) ≡ 0 (mod 5),

where n is any nonnegative integer and p(·) is the well-known partition func-

tion.

By [1, Theorems 3.5 and 3.7],

∞∑
m=1

(∑
d|m

(
8

m/d

)
d

)
qm−1 =

∞∏
n=1

(1− q2n)3(1− q4n)(1− q8n)2

(1− qn)2

and

∞∑
m=1

(∑
d|m

(
12

m/d

)
d

)
qm−1 =

∞∏
n=1

(1− q2n)2(1− q3n)2(1− q4n)(1− q12n)

(1− qn)2
.

Combining this with (3.3) we obtain

∞∑
k=0

(−1)k(k+1)/2 q2k

(1− q2k+1)2
=

(q2; q2)3∞(q4; q4)∞(q8; q8)2∞
(q; q)2∞

(3.6)

and

∞∑
k=0

(
q6k

(1− q6k+1)2
− q6k+4

(1− q6k+5)2

)
=

(q2; q2)2∞(q3; q3)2∞(q4; q4)∞(q12; q12)∞
(q; q)2∞

,

(3.7)

which are q-analogues of the identities

∞∑
k=0

(−1)k(k+1)/2

(2k + 1)2
=

π2

8
√

2
and

∞∑
k=0

(
3

2k + 1

)
1

(2k + 1)2
=

π2

6
√

3
. (3.8)
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We are unable to find q-analogues of many identities including the fol-

lowing ones:
∞∑
k=0

(−1)k(k+3)/2

(2k + 1)3
=

3π3

64
√

2
,

∞∑
k=0

(−1)k(k+1)/2

(2k + 1)4
=

11π4

768
√

2
,

∞∑
k=0

(
3

2k + 1

)
1

(2k + 1)4
=

23π4

1296
√

3
,

∞∑
n=1

(n
3

) 1

n5
=

4π5

729
√

3
.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. For k ∈ N let

ak(q) = (−1)kqk
2

[4k + 1]q
(q; q2)3k
(q2; q2)3k

.

It is known that (see, e.g., [8, Eq. (1.5)])
∞∑
k=0

ak(q) =
(q; q2)∞(q3; q2)∞

(q2; q2)2∞
,

which is the q-analogue of Bauer’s formula

∞∑
k=0

(−1)k(4k + 1)

(
2k
k

)3
64k

=
2

π
.

Let

bk(q) = (−1)kqk
2 [2k]q([4k]q − 1)

([2k]q − 1)2
· (q; q2)3k

(q2; q2)3k
,

be the summand on the left hand side of (1.9). By the q-Gosper algorithm

(implemented in Maple by the first author [10] or Koepf [13]), we find that

ak(q) + bk(q) = ∆k

(
(−1)k+1qk

2−1 (1− q2k)3

(1− q2k−1)2(1− q)
· (q; q2)3k

(q2; q2)3k

)
for all k ∈ N, where ∆k is the difference operator defined by

∆kf(k) = f(k + 1)− f(k).

Hence
∞∑
k=0

bk(q) = −
∞∑
k=0

ak(q) = −(q; q2)∞(q3; q2)∞
(q2; q2)2∞

.
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This proves (1.9).

Similarly, we set

ck(q) = (−1)kqk
2+2k [4k]q − 1

([2k]q − 1)3
· (q; q2)3k

(q2; q2)3k

be the summand on the left hand side of (1.10) and note that

−ak(q) + ck(q) = ∆k

(
(−1)kqk

2−2 (1− q2k)3(q2 − q2k)

(1− q2k−1)3(1− q)
· (q; q2)3k

(q2; q2)3k

)
,

for all k ∈ N. Hence
∞∑
k=0

ck(q) =
∞∑
k=0

ak(q) =
(q; q2)∞(q3; q2)∞

(q2; q2)2∞
.

This proves (1.10).

For k ∈ N let

sk(q) =
Pk(q)qk

2+1

(1− q)3([2k]q − 1)2
· (q; q2)2k(q2; q4)k

(q4; q4)3k

and

tk(q) = [6k + 1]q
(q; q2)2k(q2; q4)k

(q4; q4)3k
qk

2

.

Then

sk(q)− 2q2tk(q) = ∆k

(
(1− q4k)3qk

2

(1− q2k−1)2(1− q)
· (q; q2)2k(q2; q4)k

(q4; q4)3k

)
.

for all k ∈ N. Therefore,

∞∑
k=0

sk(q) = 2q2
∞∑
k=0

tk(q) = 2q2(1 + q)
(q2; q4)∞(q6; q4)∞

(q4; q4)2∞

with the aid of [9, Theorem 1.1]. This proves (1.11).

Finally, let us consider (1.12). It is easy to verify that

q2k+1[3k + 4]q
[2k + 3]2q

· (q; q)3k(−q; q)k
(q3; q2)3k

qk(k+1)/2 − [3k + 2]q
(q; q)3k(−q; q)k

(q3; q2)3k
qk(k+1)/2

= ∆k

(
(1 + qk+1)(1− q2k+1)

1− q
· (q; q)3k(−q; q)k

(q3; q2)3k
qk(k+1)/2

)
for all k ∈ N. Therefore,

q
∞∑
k=0

[3k + 4]q
[2k + 3]2q

· (q; q)
3
k(−q; q)k

(q3; q2)3k
qk(k+5)/2−

∞∑
k=0

[3k+ 2]q
(q; q)3k(−q; q)k

(q3; q2)3k
qk(k+1)/2
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coincides with −1− q. By [11, (1.9)],

∞∑
k=0

[3k + 2]q
(q; q)3k(−q; q)k

(q3; q2)3k
qk(k+1)/2 = (1− q)2 (q2; q2)4∞

(q; q2)4∞
.

So we have (1.12).

In view of the above, we have completed the proof of Theorem 1.2.
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