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¢-ANALOGUES OF SOME SERIES FOR POWERS OF r

QING-HU HOU AND ZHI-WEI SUN

ABSTRACT. We obtain g-analogues of several series for powers of 7. For
example, the identity
0 (71)k 3

Z(21g+1)3 T 32

k=0
has the following g-analogue:

(1— g5~ (¢*)s
where ¢ is any complex number with |¢| < 1. We also give g-analogues
of four new series for powers of 7 found by the second author.

i(_l)k i i DR Ut A U |8

k=0

1. INTRODUCTION

The Riemann zeta function is given by

1
= — for R > 1.
()= 3 5 forRels)
Obviously,
i; =(1- 1 ((s) for Re(s) > 1.
(2k +1)° 28
k=0
As Euler proved (cf. [12, pp. 231-232]), for each m = 1,2,3, ... we have
22m—1,n_2m
om) = (-1)" 'Y By,
where the Bernoulli numbers By, By, ... are given by By = 1 and
. 1
3 ("Z )Bk —0 (n=1,2,3,...).

k=0
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As usual, for n € N={0,1,2,...}, the g-analogue of n is given by

[n]qzl_qn: Z ¢

]_ _
q 0<k<n

For complex numbers a and g with |¢| < 1, we adopt the standard notation

oo

(a;: )00 = [ [(1 — ag").

k=0
Recently, Z.-W. Sun [14] obtained the following g-analogues of Euler’s for-
mulae ¢(2) = 7%/6 and ((4) = 7*/90:

A+ (%)
Z (1—¢+1)2  (g¢*)%

and

¢ (1 + A" + ¢ (%)%
Z — 2T - (28,
Where q is any complex number with |¢| < 1. Note that lim, ,; 1_1q+§+1 =

2k+1 and also
oo 9 2
lim (1 — q)% = lim H 2nl, _ (1.1)

ﬁl‘_;ll ( 7q2)oo |‘31‘_211 n=1 [Zn - 1]‘1[2” + 1]11 2

with the help of Wallis’ formula

ﬁ 4n? T
dn2 —1 2

n=1

Motivated by Sun’s work [14], A. Goswami [7] got g-analogues of Euler’s
general formula for ((2m) with m a positive integer, and M. L. Dawsey and

K. Ono [5] gave further applications.

Let x be a Dirichlet character modulo a positive integer m. The Dirichlet
L-function associated with the character y is given by

= =~ for R 1
) ngl o or Re(s) >
The Dirichlet beta function is defined by
SV
B(s) (s, ( : )) ,;:0 e or Re(s) > 0,

where (—) denotes the Kronecker symbol. As Euler observed,

B(2n+1) = gﬂ%w%“ (1.2)
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forallm =0,1,2,... (cf. (3.63) of [6, p. 112]), where Ey, Ey, Es, ... are Euler
numbers defined by

Ey=1, and Z(Z)En_kzo forn=1,2,3,....
k=0

20k

In particular,
m us 5m°

=32 70 = 5360

In view of (1.1), we may view Ramanujan’s formula

3 (—q) (¢*q")2

L= (i) (jal <1)

k=0
(equivalent to Example (iv) in [2, p. 139]) as a g-analogue of Leibniz’s iden-
tity 5(1) = w/4. Recently, Q.-H. Hou, C. Krattenthaler and Z.-W. Sun [11]
obtained the following new g-analogue of Leibniz’s identity:

i (_1)qu(k+3)/2 _ (q2;q2)oo(q8;q8)oo for ] < 1.
= 1— g (¢ ¢*)oo (4% ¢*) oo

Motivated by the above work, we seek a g-analogue of the identity

g =3 LU (1.3)
o (2k+ 17 32 '

This leads to our following result.

Theorem 1.1. For |q| < 1 we have

— R N o [ (-4

Remark 1.1. (1.4) is a g-analogue of (1.3) because
lim (1 — q)g(q2; q0*)%(q" ¢")%

i(—Uk P+ ) ()% (ah ah)s

o (¢;4%)*
2. 2\4 1— a2 4. ,4)\2
o (:0°)% ot 1+a (¢%¢Y)%
7T2 m 7T3
= X — = —
474716

in view of (1.1).

How to give g-analogues of (1.2) for n = 2,3,4,...7 This problem looks
sophisticated.
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We will prove Theorem 1.1 in the next section and present more similar

results in Section 3.

Recently, Z.-W. Sun [15] established the following new identities:

Eak -1 1 (5)

(2k —1)2(—64)F 7’

NE

k=0
= 4k-1®)" 2
kzzo (2k — 1)3(j64)k s (16)
= (1282 - 1))’ 2
; (2k — 1)225k6k S (1.7)
=~ (Bk+116" a?-38
; e 2 (1.8)

They are (1.1), (1.2), (1.3) and (1.77) of Sun [15] respectively. In our second
theorem we give g-analogues of these four identities.

Theorem 1.2. For |q| < 1 we have

e 2Ke(ER) =) (6] (46%)(d’ ¢P)s

2V g e e 0
ko R —1 0 (6] (66Y)(0% 67w
2V o e w0
S Pi(q)q™ (6@ a )k _ (4% 4")oo(@% 4"
D (TS P A v e A vy
(1.11)

where Py(q) denotes

q12k+1 . 3q10k+2 4 3(2q2 - 1)q8k+1 - (3q4 . 1>q6k 4 3q4k+1 - 3q2k+2 4 2q3 —q,

and also
i Bk +4]y (@ Di(-G Dk rwrsy2 (1— )2(612;612); 1
q 2k 3 (¢%; 2)3 = q —( 2! q.
k:O + q 7(] k qu [e'e)
(1.12)

We will prove Theorem 1.2 in Section 4 via the difference operator and

some known g-identities.



¢-ANALOGUES OF SOME SERIES FOR POWERS OF 7 5

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let x be any Dirichlet character. For |q| < 1 we have

e}

> in & Z(ZX( )a )m (2.1

= dlm

Proof. For any positive integer n, we have
e ()= )
k=0

Thus

This concludes the proof of (2.1). |

Proof of Theorem 1.1. For n =1,2,3,... let x(n) be the Kronecker symbol
(=*). With the help of Lemma 2.1,

o0 1+q2k+1) o qn 1 1+q 0 2 -
S ) S ) - S (S () )
k=0 n=1 =1 N dm

On the other hand, we have

5 (5 (2) ) [

m=1 n=1
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by Carlitz [4, 4.1] (or [1, Theorem 2.5]). Therefore

i(_l)quk(l + q2k+1) _ 0 (1 o q2n)2(1 o q4n)4
— (1 _ q2k'+1)3 (1 _ q2n—1)4

n=1

ﬁ q4n 2) (1 q4n)6
11 (1 — g2 1)
(@ a)5(dh a5
(4 ¢%)5%
This concludes the proof of (1.4). ]

3. OTHER RESULTS SIMILAR TO THEOREM 1.1

For any positive integers d and m with (—1)"d = 0, 1 (mod 4), it is known
(cf. [16]) that

(5w e e

where Q is the field of rational numbers.

Let ¢ be any complex number with |¢| < 1. By Carlitz [4, (2.1)] (or [1,
Theorem 2.3)),

Combining this with Lemma 2.1 we obtain that

i (Q) " tA+q") _ (@ d%)% (3.1)
= \3/) (1—gq")} (0%
which is a g-analogue of the identity
= /ny 1 473
() 5=7 (3.2)
o (3) n® 813

Similar to Lemma 2.1, for any Dirichlet character y, we have

DRTIERIEEE OO

1 N q dlm
(3.3)

n=1

Combining this with Ramanujan’s identity

ERPS

m=1 n=1
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we recover Ramanujan’s result

n—1

(7 (4 ¢°)%
> () e = o

— (¢ @)oo

(cf. [3, p.107]), which can be viewed as a g-analogue of the identity

> ()5~ mv o

n=1

Ramanujan used (3.4) to deduce his famous congruence p(5n+4) = 0 (mod 5),
where n is any nonnegative integer and p(-) is the well-known partition func-

tion.

By [1, Theorems 3.5 and 3.7],

5 (S () ) = T o=

m=1 n=1

and

Combining this with (3.3) we obtain

i": K(41))2 1_q;’“k+l) _ (e (C(Jq Z)) (% ¢%)% (3.6)
e 1%
and
( B q6k+4 )
=\ (1~ q"”““) (1 — goht2)2 (3.7)

2

_(@* )3 (¢%

)2 (0" ¢")oo (0% ¢"%) oo
(¢:9)2%

Y

which are g-analogues of the identities

o0 E(k+1)/2 2 2

s > 3 1 s
Z 2k+1 = g5 nd kz:% (2k+1> C Y SR

k=0
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We are unable to find g-analogues of many identities including the fol-

lowing ones:

i k(k+3)/2 373

o 2k: +1% T 64v2
> k(k+1)/2 1174
kz_; 2k: +DT T 768V2

i( 3 > 1 237
2 \2k+1) (2k+ 1) 12963

(n> I 475
—\3/n% 7293

3
—_

4. PROOF OF THEOREM 1.2

Proof of Theorem 1.2. For k € N let
(4:4)3

(g2 %)

ar(q) = (—1)F ¢ [4k + 1]

W

It is known that (see, e.g., [8, Eq. (1 5])

Z“ %) oo (4 4%)

(q,q)oo

which is the q—analogue of Bauer’s formula

S (2k)3 B

Let o -
2k, ([4k], — 1 ;
bk(Q) _ (_ )k k2[ ]Q([ ]q . ) . <q27q2)k3’
(2K, =1 (g% ¢%);
be the summand on the left hand side of (1.9). By the ¢-Gosper algorithm
(implemented in Maple by the first author [10] or Koepf [13]), we find that

- 1 — g?+)3 (q: )}
b — A _ 1)k k2—-1 ( ) ; k
ak(Q) + k(Q) k <( ) 4q (1 _ q2k_1)2(1 _ q> (qQ; q2)i
for all k € N, where Ay is the difference operator defined by

Arf(k) = f(k+1) = f(k).

Hence

z::bk(Q> = alg) = _(q;q(;;x;ég);q oo
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This proves (1.9).

Similarly, we set

[4k], — 1 (4:4°)}

en(q) = (—1)FgF+2k _

{0 = U o, 1 )

be the summand on the left hand side of (1.10) and note that
L=~ ™) (60} )

T=@ -0 @)

“ () + exlg) = A ((—1>’fq’f2-2

for all £ € N. Hence

> alo) = Yokl (@ q(ql;éi)gf )

This proves (1.10).

For k € N let
wlq) = — Pila)a @
(1—q)3([2k], — 1)? (q*: q%);
and
(@ ®)ila® q*)x
te(q) = [6k + 1], (q4k. % ) =
47 )y
Then

o2 (o (L=g")3" ()%
sk(q) — 2¢°tk(q) = Ay, <<1 — 201 = g) @ )2 ) .

for all £ € N. Therefore,

SRS SANEERTT L

k=0
with the aid of [9, Theorem 1.1]. This proves (1.11).

Finally, let us consider (1.12). It is easy to verify that

>3k + 4], (g; q)i(—q;Q)kqukH)/z_ 3+ 2] (¢ Di(=g; q)qu<k+1)/z
2k + 32 (¢ )3 (ke

N ((1 + g (1 — g2 . (;0)3(—¢;

1—gq (% %)

for all £ € N. Therefore,

o0 o0

Bk + 4l (GON-GDr kiers)o (6 DM =G Dk rrr1))2
q — S8k + 2]~ LD Dk pk(k1)/
,; 2k+37 (6%} ,;[ k (¢% )7
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coincides with —1 — ¢. By [11, (1.9)],

iigﬂ;+2}ﬁ@ﬁﬁl:ﬂﬂ@ﬁqmbuvzzz“__qy(qaqaéﬁ
k=0 ! (¢% qz)z (¢: )L

So we have (1.12).

In view of the above, we have completed the proof of Theorem 1.2. 1
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