Czechoslovak Math. J. 12 (2022), 817-823.

ON SUMS AND PRODUCTS IN A FIELD

GUANG-LIANG ZHOU AND ZHI-WEI SUN

Abstract

In this paper we study sums and products in a field. Let F be a field with $\operatorname{ch}(F) \neq 2$, where $\operatorname{ch}(F)$ is the characteristic of F. For any integer $k \geqslant 4$, we show that each $x \in F$ can be written as $a_{1}+\ldots+a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1} \ldots a_{k}=1$, and that for any $\alpha \in F \backslash\{0\}$ we can write each $x \in F$ as $a_{1} \ldots a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1}+\ldots+a_{k}=\alpha$. We also prove that for any $x \in F$ and $k \in\{2,3, \ldots\}$ there are $a_{1}, \ldots, a_{2 k} \in F$ such that $a_{1}+\ldots+a_{2 k}=x=a_{1} \ldots a_{2 k}$.

1. Introduction

Let \mathbb{Q} be the field of rational numbers. In 1749 Euler showed that any $q \in \mathbb{Q}$ can be written as $a b c(a+b+c)$ with $a, b, c \in \mathbb{Q}$; equivalently, we can always write $x=-q \in \mathbb{Q}$ as abcd with $a, b, c, d \in \mathbb{Q}$ and $a+b+c+d=0$. Actually, Euler noted that the equation $a b c(a+b+c)=$ q has the following rational parameter solutions:

$$
\begin{aligned}
& a=\frac{6 q s t^{3}\left(q t^{4}-2 s^{4}\right)^{2}}{\left(4 q t^{4}+s^{4}\right)\left(2 q^{2} t^{8}+10 q s^{4} t^{4}-s^{8}\right)} \\
& b=\frac{3 s^{5}\left(4 q t^{4}+s^{4}\right)^{2}}{2 t\left(q t^{4}-2 s^{4}\right)\left(2 q^{2} t^{8}+10 q s^{4} t^{4}-s^{8}\right)} \\
& c=\frac{2\left(2 q^{2} t^{8}+10 q s^{4} t^{4}-s^{8}\right)}{3 s^{3} t\left(4 q t^{4}+s^{4}\right)}
\end{aligned}
$$

The reader may consult N. D. Elkies's talk [E] for a nice exposition of this curious discovery of Euler and its connection to modern topics like $K 3$ surfaces. Elkies [E] found that $a b c d=x$ with $a+b+c+d=0$,

Key words and phrases. Fields, rational functions, restricted sums, restricted products.

2020 Mathematics Subject Classification. Primary 11D85; Secondary 11P99, 11 T 99.

This research was supported by the Natural Science Foundation of China (grant 11971222).
where

$$
\begin{gathered}
a=\frac{\left(s^{4}+4 x\right)^{2}}{2 s^{3}\left(s^{4}-12 x\right)}, b=\frac{2 x\left(3 s^{4}-4 x\right)^{2}}{s^{3}\left(s^{4}+4 x\right)\left(s^{4}-12 x\right)}, \\
c=\frac{s\left(s^{4}-12 x\right)}{2\left(3 s^{4}-4 x\right)}, d=-\frac{2 s^{5}\left(s^{4}-12 x\right)}{\left(s^{4}+4 x\right)\left(3 s^{4}-4 x\right)} .
\end{gathered}
$$

Let F be a field. If $x=a_{1} \cdots a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1}+$ $\ldots+a_{k}=0$, then $a_{1} \ldots a_{k}$ is called a balanced decomposition of x by A. A. Klyachko and A. N. Vassilyev [KV]. Unaware of Euler's above work in 1749, Klyachko and Vassilyev [KV] showed that if $\operatorname{ch}(F)$ (the characteristic of F) is not two then for each $k=5,6, \ldots$ every $x \in F$ has a balanced decomposition $a_{1} \ldots a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1}+\cdots+a_{k}=0$. When F is a finite field and $k>1$ is an integer, they determined completely when each $x \in F$ can be written as $a_{1} \ldots a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1}+\cdots+a_{k}=0$. In 2016, Klyachko, A. M. Mazhuga and A. N. Ponfilenko [KMP] proved that if $\operatorname{ch}(F) \neq 2,3$ and $|F| \neq 5$ then each $x \in F$ has a balanced decomposition $a_{1} a_{2} a_{3} a_{4}$ with $a_{1}, a_{2}, a_{3}, a_{4} \in F$ and $a_{1}+a_{2}+a_{3}+a_{4}=0$; in fact, for $x \in F \backslash\{1 / 4,-1 / 8\}$ they found that $a(x) b(x) c(x) d(x)=x$ and $a(x)+b(x)+c(x)+d(x)=0$, where

$$
\begin{gathered}
a(x)=\frac{2(1-4 x)^{2}}{3(1+8 x)}, b(x)=-\frac{1+8 x}{6}, \\
c(x)=-\frac{1+8 x}{2(1-4 x)}, d(x)=\frac{18 x}{(1-4 x)(1+8 x)} .
\end{gathered}
$$

This is much simpler than Euler's and Elkies' rational parameter solutions to the equation $a b c d=x$ with the restriction $a+b+c+d=0$.

Motivated by the above work, we obtain the following new results.
Theorem 1.1. Let F be any field with $\operatorname{ch}(F) \neq 2$, and let $\alpha \in F \backslash\{0\}$ and $k \in\{4,5, \ldots\}$. Then each $x \in F$ can be written as $a_{1} \ldots a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ with $a_{1}+\ldots+a_{k}=\alpha$.

Remark 1.1. This theorem with $\alpha=1$ implies that for any $x \in \mathbb{Q}$ and $k \in\{4,5, \ldots\}$ there are $a_{1} \ldots a_{k} \in \mathbb{Q}$ such that $a_{1} \ldots a_{k}\left(a_{1}+\ldots+a_{k}\right)=$ x, this extension of Euler's work was asked by D. van der Zypen [Z].

Theorem 1.2. Let F be a filed with $\operatorname{ch}(F) \neq 2$, and let $k \geqslant 4$ be an integer.
(i) If $\operatorname{ch}(F) \neq 3$, then any $x \in F$ can be written as $a_{1}+\ldots+a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1} \ldots a_{k}=-1$.
(ii) Any $x \in F$ can be written as $a_{1}+\ldots+a_{k}$ with $a_{1}, \ldots, a_{k} \in F$ and $a_{1} \ldots a_{k}=1$.

Remark 1.2. It seems that there are no $a, b, c \in \mathbb{Q}$ with $a+b+c=1=$ $a b c$.

Let F be any field and k be a positive integer. Clearly, any $x \in F$ can be written as $a_{1}+\ldots+a_{2 k+1}$ with $a_{1}, \ldots, a_{2 k+1} \in F$ and $a_{1} \ldots a_{2 k+1}=$ $(-1)^{k} x$; in fact, $x+k(1-1)=x$ and $x \times 1^{k} \times(-1)^{k}=(-1)^{k} x$. If $a^{2}=-1$ for some $a \in F$, then any $x \in F$ can be written as $a_{1}+$ $\ldots+a_{2 k+1}$ with $a_{1}, \ldots, a_{2 k+1} \in F$ and $a_{1} \ldots a_{2 k+1}=(-1)^{k-1} x$; in fact, $x+(a-a)+(k-1)(1-1)=x$ and

$$
x \times a \times(-a) \times 1^{k-1} \times(-1)^{k-1}=(-1)^{k-1} x .
$$

Theorem 1.3. Let F be a field with $\operatorname{ch}(F) \neq 2$, and let $k \geqslant 2$ be an integer. Then, for any $x \in F$ there are $a_{1}, \ldots, a_{2 k} \in F$ such that $a_{1}+\ldots+a_{2 k}=x=a_{1} \ldots a_{2 k}$.

Remark 1.3. If F is a field with $\operatorname{ch}(F) \neq 2$, and $k \geqslant 2$ is an integer, then for any $x \in F$, by Theorem 1.3 there are $a_{1}, \ldots, a_{2 k} \in F$ with $a_{1}+\ldots+a_{2 k}=-x=a_{1} \ldots a_{2 k}$, hence

$$
\left(-a_{1}\right)+\ldots+\left(-a_{2 k}\right)=x \quad \text { and } \quad\left(-a_{1}\right) \ldots\left(-a_{2 k}\right)=-x
$$

Motivated by Theorem 1.3 and Remark 1.3, we propose the following conjecture based on our computation.
Conjecture 1.1. Let F be any field with $\operatorname{ch}(F) \neq 2,3$. Then, for any $x \in F$ there are $a, b, c, d \in F$ such that $a+b+c+d-1=x=a b c d$.

For example, in any field F with $\operatorname{ch}(F) \neq 2,3$, we have

$$
-2+\frac{9}{2}-\frac{2}{3}+\frac{1}{6}-1=1=(-2) \times \frac{9}{2} \times\left(-\frac{2}{3}\right) \times \frac{1}{6} .
$$

Motivated by our proof of Theorem 1.2(ii), we obtain the following result.

Theorem 1.4. Let F be a field with $\operatorname{ch}(F) \neq 2$, and let m be any nonzero integer. Then any $x \in F \backslash\{0\}$ can be written as $a+b+c+d$ with $a, b, c, d \in F$ and $a b c d=x^{m}$.

2. Proofs of Theorems 1.1-1.4

Proof of Theorem 1.1. We distinguish three cases.
Case 1. $k=4$.
If each $q \in F$ can be written as abcd with $a, b, c, d \in F$ and $a+$ $b+c+d=1$, then for any $x \in F$ we can write $x / \alpha^{4}=a b c d$ with $a, b, c, d \in F$ and $a+b+c+d=1$ and hence $x=(a \alpha)(b \alpha)(c \alpha)(d \alpha)$ with $a \alpha+b \alpha+c \alpha+d \alpha=\alpha$. So, it suffices to work with $\alpha=1$.

Let $x \in F$ with $x \neq \pm 1$. Define

$$
a(x)=-\frac{(1-x)^{2}}{2(1+x)}, b(x)=\frac{1+x}{2}, c(x)=\frac{1+x}{1-x}, d(x)=\frac{4 x}{x^{2}-1} .
$$

It is easy to verify that

$$
a(x) b(x) c(x) d(x)=x \text { and } a(x)+b(x)+c(x)+d(x)=1
$$

For $x=-1$, we note that

$$
-1=\frac{1}{2} \times \frac{1}{2} \times 2 \times(-2) \quad \text { with } \frac{1}{2}+\frac{1}{2}+2-2=1
$$

For $x=1$, if $\operatorname{ch}(F)=3$ then

$$
1=1 \times 1 \times 1 \times 1 \quad \text { with } 1+1+1+1=1
$$

if $\operatorname{ch}(F) \neq 3$ then

$$
1=\frac{3}{2} \times\left(-\frac{3}{2}\right) \times\left(-\frac{1}{3}\right) \times \frac{4}{3} \quad \text { with } \frac{3}{2}-\frac{3}{2}-\frac{1}{3}+\frac{4}{3}=1 .
$$

This proved Theorem 1.1 for $k=4$.
Case 2. $k=5$.
As $\operatorname{ch}(F) \neq 2$, we have $\alpha-\varepsilon \neq 0$ for some $\varepsilon \in\{ \pm 1\}$. Let $x \in F$. By Theorem 1.1 for $k=4$, we can write εx as $a b c d$ with $a, b, c, d \in F$ and $a+b+c+d=\alpha-\varepsilon$. Hence $x=a b c d \varepsilon$ with $a+b+c+d+\varepsilon=\alpha$. So Theorem 1.1 also holds for $k=5$.

Case 3. $k \geqslant 6$.
Let $x \in F$. If k is even, then by Theorem 1.1 for $k=4$ there are $a, b, c, d \in F$ with $a+b+c+d=\alpha$ such that $a b c d=(-1)^{(k-4) / 2} x$, hence

$$
x=a b c d \times 1^{(k-4) / 2} \times(-1)^{(k-4) / 2}
$$

with

$$
a+b+c+d+\frac{k-4}{2}(1-1)=\alpha .
$$

When k is odd, by Theorem 1.1 for $k=5$ there are $a, b, c, d, e \in F$ with $a+b+c+d+e=\alpha$ such that $a b c d e=(-1)^{(k-5) / 2} x$, hence

$$
x=a b c d e \times 1^{(k-5) / 2} \times(-1)^{(k-5) / 2}
$$

with

$$
a+b+c+d+e+\frac{k-5}{2}(1-1)=\alpha
$$

Combining the above, we have completed the proof of Theorem 1.1.

Proof of Theorem 1.2. For any $m \in \mathbb{Z}$, if each $x \in F$ can be written as $a+b+c+d$ with $a, b, c, d \in F$ and $a b c d=m$, then for any $x \in F$ and $k \in\{4,5, \ldots\}$ there are $a_{1}, a_{2}, a_{3}, a_{4} \in F$ such that $a_{1}+a_{2}+a_{3}+a_{4}=$
$x-(k-4)$ and $a_{1} a_{2} a_{3} a_{4}=m$, hence $a_{1}+\ldots+a_{k}=x$ and $a_{1} \ldots a_{k}=m$, where $a_{j}=1$ for $4<j \leqslant k$. Thus it suffices to show parts (i) and (ii) in the case $k=4$.
(i) For $x \in F \backslash\{-1,-3\}$, we define

$$
a(x)=\frac{(x+1)^{2}}{2(x+3)}, b(x)=\frac{x+3}{2}, c(x)=-\frac{x+3}{x+1}, d(x)=\frac{4}{(x+1)(x+3)},
$$

and it is easy to verify that

$$
a(x) b(x) c(x) d(x)=-1 \quad \text { and } \quad a(x)+b(x)+c(x)+d(x)=x
$$

Observe that

$$
-1=2-2-\frac{1}{2}-\frac{1}{2} \quad \text { with } 2 \times(-2) \times\left(-\frac{1}{2}\right) \times\left(-\frac{1}{2}\right)=-1 .
$$

If $\operatorname{ch}(F) \neq 3$, then

$$
-3=\frac{2}{3}-\frac{2}{3}-\frac{3}{2}-\frac{3}{2} \quad \text { with } \frac{2}{3} \times\left(-\frac{2}{3}\right) \times\left(-\frac{3}{2}\right) \times\left(-\frac{3}{2}\right)=-1
$$

This concludes the proof of Theorem 1.2(i).
(ii) If $x \in F \backslash\{0, \pm 1\}$, then it is easy to verify that

$$
\frac{1-x^{2}}{x^{2}}+\frac{x^{2}-1}{x^{2}}+\frac{x}{1-x^{2}}+\frac{x^{3}}{x^{2}-1}=x
$$

and

$$
\frac{1-x^{2}}{x^{2}} \times \frac{x^{2}-1}{x^{2}} \times \frac{x}{1-x^{2}} \times \frac{x^{3}}{x^{2}-1}=1
$$

Note that $0=1+1-1-1$ and $1 \times 1 \times(-1) \times(-1)=1$. If $\operatorname{ch}(F)=3$, then $1+1+1+1=1$ and $1 \times 1 \times 1 \times 1=1$, and also $-1-1-1-1=-1$ and $(-1)(-1)(-1)(-1)=1$. If $\operatorname{ch}(F) \neq 3$, then

$$
\frac{3}{2}-\frac{3}{2}-\frac{1}{3}+\frac{4}{3}=1 \text { and } \frac{3}{2} \times\left(-\frac{3}{2}\right) \times\left(-\frac{1}{3}\right) \times \frac{4}{3}=1
$$

and also

$$
\frac{3}{2}-\frac{3}{2}+\frac{1}{3}-\frac{4}{3}=-1 \text { and } \frac{3}{2} \times\left(-\frac{3}{2}\right) \times \frac{1}{3} \times\left(-\frac{4}{3}\right)=1 .
$$

So Theorem 1.2(ii) also holds.
In view of the above, the proof of Theorem 1.2 is now complete.
Proof of Theorem 1.3. We first handle the case $k=2$. For $x \in F \backslash\{ \pm 1\}$, we define

$$
a(x)=\frac{(x+1)^{2}}{2(x-1)}, b(x)=\frac{x-1}{2}, c(x)=\frac{1-x}{1+x}, d(x)=\frac{4 x}{1-x^{2}}
$$

and it is easy to verify that

$$
a(x) b(x) c(x) d(x)=x=a(x)+b(x)+c(x)+d(x) .
$$

Clearly,

$$
-1=-\frac{1}{2}-\frac{1}{2}+2-2 \quad \text { with }-\frac{1}{2} \times\left(-\frac{1}{2}\right) \times 2 \times(-2)=-1 .
$$

If $\operatorname{ch}(F) \neq 3$, then

$$
1=\frac{3}{2}-\frac{3}{2}-\frac{1}{3}+\frac{4}{3} \quad \text { with } \frac{3}{2} \times\left(-\frac{3}{2}\right) \times\left(-\frac{1}{3}\right) \times \frac{4}{3}=1 .
$$

When $\operatorname{ch}(F)=3$, we have

$$
1=1+1+1+1 \quad \text { with } 1 \times 1 \times 1 \times 1=1
$$

This proves Theorem 1.3 for $k=2$.
Now we consider the case $k \geqslant 3$. By Theorem 1.3 for $k=2$, there are $a, b, c, d \in F$ such that $a+b+c+d=(-1)^{k} x=a b c d$. Thus

$$
(-1)^{k} a+(-1)^{k} b+(-1)^{k} c+(-1)^{k} d+(k-2)(1-1)=x
$$

and
$(-1)^{k} a \times(-1)^{k} b \times(-1)^{k} c \times(-1)^{k} d \times 1^{k-2} \times(-1)^{k-2}=a b c d(-1)^{k}=x$.
This proves Theorem 1.3 for $k \geqslant 3$.
By the above, we have completed the proof of Theorem 1.3.
Proof of Theorem 1.4. If m is odd and $x \in F \backslash\{0,1\}$, then, for $n=$ $(3-m) / 2$ we have

$$
\frac{1-x}{x^{n}}+\frac{x-1}{x^{n}}+\frac{x}{1-x}+\frac{x^{2}}{x-1}=x
$$

and

$$
\frac{1-x}{x^{n}} \times \frac{x-1}{x^{n}} \times \frac{x}{1-x} \times \frac{x^{2}}{x-1}=x^{3-2 n}=x^{m} .
$$

If m is even and $x \in F \backslash\{0, \pm 1\}$, then, for $n=(4-m) / 2$ we have

$$
\frac{1-x^{2}}{x^{n}}+\frac{x^{2}-1}{x^{n}}+\frac{x}{1-x^{2}}+\frac{x^{3}}{x^{2}-1}=x
$$

and

$$
\frac{1-x^{2}}{x^{n}} \times \frac{x^{2}-1}{x^{n}} \times \frac{x}{1-x^{2}} \times \frac{x^{3}}{x^{2}-1}=x^{4-2 n}=x^{m}
$$

As in the proof of Theorem 1.2(ii), any $x \in\{ \pm 1\}$ can be written as $a+b+c+d$ with $a, b, c, d \in F$ and $a b c d=1$. So we have the desired result.

References

[E] N. D. Elkies, On the areas of rational triangles or how did Euler (and how can we) solve $x y z(x+y+z)=a$?, a Talk given at NCTS (Taiwan), 2014. Available from http://www.math.harvard.edu/~elkies/euler_14t.pdf
[KMP] A. A. Klyachko, A. M. Mazhuga and A. N. Ponfilenko, Balanced factorisations in some algebras, preprint, arXiv:1607.01957, 2016.
[KV] A. A. Klyachko and A. N. Vassilyev, Balanced factorisations, preprint, arXiv:1506.01571, 2015.
[Z] D. van der Zypen, Question on a generalisation of a theorem by Euler, Question 302933 at MathOverflow, June 16, 2018. Available from http://mathoverflow.net/questions/302933.
(Guang-Liang Zhou) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: guangliangzhou@126.com
(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

