ON SUMS AND PRODUCTS IN A FIELD

GUANG-LIANG ZHOU AND ZHI-WEI SUN

ABSTRACT. In this paper we study sums and products in a field. Let F be a field with $\operatorname{ch}(F) \neq 2$, where $\operatorname{ch}(F)$ is the characteristic of F. For any integer $k \geqslant 4$, we show that each $x \in F$ can be written as $a_1 + \ldots + a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 \ldots a_k = 1$, and that for any $\alpha \in F \setminus \{0\}$ we can write each $x \in F$ as $a_1 \ldots a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 + \ldots + a_k = \alpha$. We also prove that for any $x \in F$ and $k \in \{2, 3, \ldots\}$ there are $a_1, \ldots, a_{2k} \in F$ such that $a_1 + \ldots + a_{2k} = x = a_1 \ldots a_{2k}$.

1. Introduction

Let \mathbb{Q} be the field of rational numbers. In 1749 Euler showed that any $q \in \mathbb{Q}$ can be written as abc(a+b+c) with $a,b,c \in \mathbb{Q}$; equivalently, we can always write $x=-q \in \mathbb{Q}$ as abcd with $a,b,c,d \in \mathbb{Q}$ and a+b+c+d=0. Actually, Euler noted that the equation abc(a+b+c)=q has the following rational parameter solutions:

$$a = \frac{6qst^{3}(qt^{4} - 2s^{4})^{2}}{(4qt^{4} + s^{4})(2q^{2}t^{8} + 10qs^{4}t^{4} - s^{8})},$$

$$b = \frac{3s^{5}(4qt^{4} + s^{4})^{2}}{2t(qt^{4} - 2s^{4})(2q^{2}t^{8} + 10qs^{4}t^{4} - s^{8})},$$

$$c = \frac{2(2q^{2}t^{8} + 10qs^{4}t^{4} - s^{8})}{3s^{3}t(4qt^{4} + s^{4})}.$$

The reader may consult N. D. Elkies's talk [E] for a nice exposition of this curious discovery of Euler and its connection to modern topics like K3 surfaces. Elkies [E] found that abcd = x with a + b + c + d = 0,

Key words and phrases. Fields, rational functions, restricted sums, restricted products.

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary 11D85; Secondary 11P99, 11T99.

This research was supported by the Natural Science Foundation of China (grant 11971222).

where

$$a = \frac{(s^4 + 4x)^2}{2s^3(s^4 - 12x)}, \ b = \frac{2x(3s^4 - 4x)^2}{s^3(s^4 + 4x)(s^4 - 12x)},$$
$$c = \frac{s(s^4 - 12x)}{2(3s^4 - 4x)}, \ d = -\frac{2s^5(s^4 - 12x)}{(s^4 + 4x)(3s^4 - 4x)}.$$

Let F be a field. If $x = a_1 \cdots a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 + \ldots + a_k = 0$, then $a_1 \ldots a_k$ is called a balanced decomposition of x by A. A. Klyachko and A. N. Vassilyev [KV]. Unaware of Euler's above work in 1749, Klyachko and Vassilyev [KV] showed that if $\operatorname{ch}(F)$ (the characteristic of F) is not two then for each $k = 5, 6, \ldots$ every $x \in F$ has a balanced decomposition $a_1 \ldots a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 + \cdots + a_k = 0$. When F is a finite field and k > 1 is an integer, they determined completely when each $x \in F$ can be written as $a_1 \ldots a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 + \cdots + a_k = 0$. In 2016, Klyachko, A. M. Mazhuga and A. N. Ponfilenko [KMP] proved that if $\operatorname{ch}(F) \neq 2, 3$ and $|F| \neq 5$ then each $x \in F$ has a balanced decomposition $a_1a_2a_3a_4$ with $a_1, a_2, a_3, a_4 \in F$ and $a_1 + a_2 + a_3 + a_4 = 0$; in fact, for $x \in F \setminus \{1/4, -1/8\}$ they found that a(x)b(x)c(x)d(x) = x and a(x)+b(x)+c(x)+d(x) = 0, where

$$a(x) = \frac{2(1-4x)^2}{3(1+8x)}, \ b(x) = -\frac{1+8x}{6},$$
$$c(x) = -\frac{1+8x}{2(1-4x)}, \ d(x) = \frac{18x}{(1-4x)(1+8x)}.$$

This is much simpler than Euler's and Elkies' rational parameter solutions to the equation abcd = x with the restriction a + b + c + d = 0. Motivated by the above work, we obtain the following new results.

Theorem 1.1. Let F be any field with $\operatorname{ch}(F) \neq 2$, and let $\alpha \in F \setminus \{0\}$ and $k \in \{4, 5, \ldots\}$. Then each $x \in F$ can be written as $a_1 \ldots a_k$ with $a_1, \ldots, a_k \in F$ with $a_1 + \ldots + a_k = \alpha$.

Remark 1.1. This theorem with $\alpha = 1$ implies that for any $x \in \mathbb{Q}$ and $k \in \{4, 5, ...\}$ there are $a_1 ... a_k \in \mathbb{Q}$ such that $a_1 ... a_k (a_1 + ... + a_k) = x$, this extension of Euler's work was asked by D. van der Zypen [Z].

Theorem 1.2. Let F be a filed with $ch(F) \neq 2$, and let $k \geq 4$ be an integer.

- (i) If $ch(F) \neq 3$, then any $x \in F$ can be written as $a_1 + \ldots + a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 \ldots a_k = -1$.
- (ii) Any $x \in F$ can be written as $a_1 + \ldots + a_k$ with $a_1, \ldots, a_k \in F$ and $a_1 \ldots a_k = 1$.

Remark 1.2. It seems that there are no $a, b, c \in \mathbb{Q}$ with a+b+c=1=abc.

Let F be any field and k be a positive integer. Clearly, any $x \in F$ can be written as $a_1 + \ldots + a_{2k+1}$ with $a_1, \ldots, a_{2k+1} \in F$ and $a_1 \ldots a_{2k+1} = (-1)^k x$; in fact, x + k(1-1) = x and $x \times 1^k \times (-1)^k = (-1)^k x$. If $a^2 = -1$ for some $a \in F$, then any $x \in F$ can be written as $a_1 + \ldots + a_{2k+1}$ with $a_1, \ldots, a_{2k+1} \in F$ and $a_1 \ldots a_{2k+1} = (-1)^{k-1} x$; in fact, x + (a-a) + (k-1)(1-1) = x and

$$x \times a \times (-a) \times 1^{k-1} \times (-1)^{k-1} = (-1)^{k-1}x.$$

Theorem 1.3. Let F be a field with $ch(F) \neq 2$, and let $k \geq 2$ be an integer. Then, for any $x \in F$ there are $a_1, \ldots, a_{2k} \in F$ such that $a_1 + \ldots + a_{2k} = x = a_1 \ldots a_{2k}$.

Remark 1.3. If F is a field with $ch(F) \neq 2$, and $k \geq 2$ is an integer, then for any $x \in F$, by Theorem 1.3 there are $a_1, \ldots, a_{2k} \in F$ with $a_1 + \ldots + a_{2k} = -x = a_1 \ldots a_{2k}$, hence

$$(-a_1) + \ldots + (-a_{2k}) = x$$
 and $(-a_1) \ldots (-a_{2k}) = -x$.

Motivated by Theorem 1.3 and Remark 1.3, we propose the following conjecture based on our computation.

Conjecture 1.1. Let F be any field with $\operatorname{ch}(F) \neq 2, 3$. Then, for any $x \in F$ there are $a, b, c, d \in F$ such that a + b + c + d - 1 = x = abcd.

For example, in any field F with $ch(F) \neq 2, 3$, we have

$$-2 + \frac{9}{2} - \frac{2}{3} + \frac{1}{6} - 1 = 1 = (-2) \times \frac{9}{2} \times \left(-\frac{2}{3}\right) \times \frac{1}{6}.$$

Motivated by our proof of Theorem 1.2(ii), we obtain the following result.

Theorem 1.4. Let F be a field with $ch(F) \neq 2$, and let m be any nonzero integer. Then any $x \in F \setminus \{0\}$ can be written as a+b+c+d with $a,b,c,d \in F$ and $abcd = x^m$.

2. Proofs of Theorems 1.1-1.4

Proof of Theorem 1.1. We distinguish three cases. Case 1. k = 4.

If each $q \in F$ can be written as abcd with $a, b, c, d \in F$ and a + b + c + d = 1, then for any $x \in F$ we can write $x/\alpha^4 = abcd$ with $a, b, c, d \in F$ and a + b + c + d = 1 and hence $x = (a\alpha)(b\alpha)(c\alpha)(d\alpha)$ with $a\alpha + b\alpha + c\alpha + d\alpha = \alpha$. So, it suffices to work with $\alpha = 1$.

Let $x \in F$ with $x \neq \pm 1$. Define

$$a(x) = -\frac{(1-x)^2}{2(1+x)}, \ b(x) = \frac{1+x}{2}, \ c(x) = \frac{1+x}{1-x}, \ d(x) = \frac{4x}{x^2-1}.$$

It is easy to verify that

$$a(x)b(x)c(x)d(x) = x$$
 and $a(x) + b(x) + c(x) + d(x) = 1$.

For x = -1, we note that

$$-1 = \frac{1}{2} \times \frac{1}{2} \times 2 \times (-2)$$
 with $\frac{1}{2} + \frac{1}{2} + 2 - 2 = 1$.

For x = 1, if ch(F) = 3 then

$$1 = 1 \times 1 \times 1 \times 1$$
 with $1 + 1 + 1 + 1 = 1$,

if $ch(F) \neq 3$ then

$$1 = \frac{3}{2} \times \left(-\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) \times \frac{4}{3} \quad \text{with } \frac{3}{2} - \frac{3}{2} - \frac{1}{3} + \frac{4}{3} = 1.$$

This proved Theorem 1.1 for k = 4.

Case 2. k = 5.

As $\operatorname{ch}(F) \neq 2$, we have $\alpha - \varepsilon \neq 0$ for some $\varepsilon \in \{\pm 1\}$. Let $x \in F$. By Theorem 1.1 for k = 4, we can write εx as abcd with $a, b, c, d \in F$ and $a + b + c + d = \alpha - \varepsilon$. Hence $x = abcd\varepsilon$ with $a + b + c + d + \varepsilon = \alpha$. So Theorem 1.1 also holds for k = 5.

Case 3. $k \geqslant 6$.

Let $x \in F$. If k is even, then by Theorem 1.1 for k=4 there are $a,b,c,d \in F$ with $a+b+c+d=\alpha$ such that $abcd=(-1)^{(k-4)/2}x$, hence

$$x = abcd \times 1^{(k-4)/2} \times (-1)^{(k-4)/2}$$

with

$$a + b + c + d + \frac{k-4}{2}(1-1) = \alpha.$$

When k is odd, by Theorem 1.1 for k=5 there are $a,b,c,d,e\in F$ with $a+b+c+d+e=\alpha$ such that $abcde=(-1)^{(k-5)/2}x$, hence

$$x = abcde \times 1^{(k-5)/2} \times (-1)^{(k-5)/2}$$

with

$$a + b + c + d + e + \frac{k-5}{2}(1-1) = \alpha.$$

Combining the above, we have completed the proof of Theorem 1.1.

Proof of Theorem 1.2. For any $m \in \mathbb{Z}$, if each $x \in F$ can be written as a+b+c+d with $a,b,c,d \in F$ and abcd=m, then for any $x \in F$ and $k \in \{4,5,\ldots\}$ there are $a_1,a_2,a_3,a_4 \in F$ such that $a_1+a_2+a_3+a_4=$

x-(k-4) and $a_1a_2a_3a_4=m$, hence $a_1+\ldots+a_k=x$ and $a_1\ldots a_k=m$, where $a_j=1$ for $4< j \leq k$. Thus it suffices to show parts (i) and (ii) in the case k=4.

(i) For $x \in F \setminus \{-1, -3\}$, we define

$$a(x) = \frac{(x+1)^2}{2(x+3)}, \ b(x) = \frac{x+3}{2}, \ c(x) = -\frac{x+3}{x+1}, \ d(x) = \frac{4}{(x+1)(x+3)},$$

and it is easy to verify that

$$a(x)b(x)c(x)d(x) = -1$$
 and $a(x) + b(x) + c(x) + d(x) = x$.

Observe that

$$-1 = 2 - 2 - \frac{1}{2} - \frac{1}{2}$$
 with $2 \times (-2) \times \left(-\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) = -1$.

If $ch(F) \neq 3$, then

$$-3 = \frac{2}{3} - \frac{2}{3} - \frac{3}{2} - \frac{3}{2}$$
 with $\frac{2}{3} \times \left(-\frac{2}{3}\right) \times \left(-\frac{3}{2}\right) \times \left(-\frac{3}{2}\right) = -1$.

This concludes the proof of Theorem 1.2(i).

(ii) If $x \in F \setminus \{0, \pm 1\}$, then it is easy to verify that

$$\frac{1-x^2}{x^2} + \frac{x^2-1}{x^2} + \frac{x}{1-x^2} + \frac{x^3}{x^2-1} = x$$

and

$$\frac{1-x^2}{x^2} \times \frac{x^2-1}{x^2} \times \frac{x}{1-x^2} \times \frac{x^3}{x^2-1} = 1.$$

Note that 0 = 1 + 1 - 1 - 1 and $1 \times 1 \times (-1) \times (-1) = 1$. If $\operatorname{ch}(F) = 3$, then 1 + 1 + 1 + 1 = 1 and $1 \times 1 \times 1 \times 1 = 1$, and also -1 - 1 - 1 = -1 and (-1)(-1)(-1) = 1. If $\operatorname{ch}(F) \neq 3$, then

$$\frac{3}{2} - \frac{3}{2} - \frac{1}{3} + \frac{4}{3} = 1$$
 and $\frac{3}{2} \times \left(-\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) \times \frac{4}{3} = 1$,

and also

$$\frac{3}{2} - \frac{3}{2} + \frac{1}{3} - \frac{4}{3} = -1 \text{ and } \frac{3}{2} \times \left(-\frac{3}{2} \right) \times \frac{1}{3} \times \left(-\frac{4}{3} \right) = 1.$$

So Theorem 1.2(ii) also holds.

In view of the above, the proof of Theorem 1.2 is now complete. \square *Proof of Theorem* 1.3. We first handle the case k = 2. For $x \in F \setminus \{\pm 1\}$, we define

$$a(x) = \frac{(x+1)^2}{2(x-1)}, \ b(x) = \frac{x-1}{2}, \ c(x) = \frac{1-x}{1+x}, \ d(x) = \frac{4x}{1-x^2},$$

and it is easy to verify that

$$a(x)b(x)c(x)d(x) = x = a(x) + b(x) + c(x) + d(x).$$

Clearly,

$$-1 = -\frac{1}{2} - \frac{1}{2} + 2 - 2$$
 with $-\frac{1}{2} \times \left(-\frac{1}{2}\right) \times 2 \times (-2) = -1$.

If $ch(F) \neq 3$, then

$$1 = \frac{3}{2} - \frac{3}{2} - \frac{1}{3} + \frac{4}{3}$$
 with $\frac{3}{2} \times \left(-\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) \times \frac{4}{3} = 1$.

When ch(F) = 3, we have

$$1 = 1 + 1 + 1 + 1$$
 with $1 \times 1 \times 1 \times 1 = 1$.

This proves Theorem 1.3 for k = 2.

Now we consider the case $k \ge 3$. By Theorem 1.3 for k = 2, there are $a, b, c, d \in F$ such that $a + b + c + d = (-1)^k x = abcd$. Thus

$$(-1)^k a + (-1)^k b + (-1)^k c + (-1)^k d + (k-2)(1-1) = x$$

and

$$(-1)^k a \times (-1)^k b \times (-1)^k c \times (-1)^k d \times 1^{k-2} \times (-1)^{k-2} = abcd(-1)^k = x.$$

This proves Theorem 1.3 for $k \ge 3$.

By the above, we have completed the proof of Theorem 1.3. \Box

Proof of Theorem 1.4. If m is odd and $x \in F \setminus \{0,1\}$, then, for n = (3-m)/2 we have

$$\frac{1-x}{x^n} + \frac{x-1}{x^n} + \frac{x}{1-x} + \frac{x^2}{x-1} = x$$

and

$$\frac{1-x}{x^n} \times \frac{x-1}{x^n} \times \frac{x}{1-x} \times \frac{x^2}{x-1} = x^{3-2n} = x^m.$$

If m is even and $x \in F \setminus \{0, \pm 1\}$, then, for n = (4 - m)/2 we have

$$\frac{1-x^2}{x^n} + \frac{x^2-1}{x^n} + \frac{x}{1-x^2} + \frac{x^3}{x^2-1} = x$$

and

$$\frac{1-x^2}{x^n} \times \frac{x^2-1}{x^n} \times \frac{x}{1-x^2} \times \frac{x^3}{x^2-1} = x^{4-2n} = x^m.$$

As in the proof of Theorem 1.2(ii), any $x \in \{\pm 1\}$ can be written as a+b+c+d with $a,b,c,d \in F$ and abcd=1. So we have the desired result.

References

- [E] N. D. Elkies, On the areas of rational triangles or how did Euler (and how can we) solve xyz(x+y+z) = a?, a Talk given at NCTS (Taiwan), 2014. Available from http://www.math.harvard.edu/~elkies/euler_14t.pdf
- [KMP] A. A. Klyachko, A. M. Mazhuga and A. N. Ponfilenko, *Balanced factorisations in some algebras*, preprint, arXiv:1607.01957, 2016.
- [KV] A. A. Klyachko and A. N. Vassilyev, *Balanced factorisations*, preprint, arXiv:1506.01571, 2015.
- [Z] D. van der Zypen, Question on a generalisation of a theorem by Euler, Question 302933 at MathOverflow, June 16, 2018. Available from http://mathoverflow.net/questions/302933.

(Guang-Liang Zhou) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

 ${\it E\text{-}mail~address:}\ {\tt guangliangzhou@126.com}$

(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn