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Abstract. The Motzkin numbers Mn =
∑n

k=0

( n
2k

)(2k
k

)
/(k + 1) (n = 0, 1, 2, . . . )

and the central trinomial coefficients Tn (n = 0, 1, 2, . . . ) given by the constant term

of (1+x+x−1)n, have many combinatorial interpretations. In this paper we establish

the following surprising arithmetic properties of them with n any positive integer:

2

n

n∑
k=1

(2k + 1)M2
k ∈ Z,

n2(n2 − 1)

6

∣∣∣∣ n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1,

and also

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)M2
k3n−1−k = n(n+ 1)(n+ 2)MnMn−1.

1. Introduction

In combinatorics, the Motzkin number Mn with n ∈ N = {0, 1, 2, . . . } is the
number of lattice paths from the point (0, 0) to the point (n, 0) which never dip
below the line y = 0 and are made up only of the allowed steps (1, 0) (east), (1, 1)
(northeast) and (1,−1) (southeast). It is well known that

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck

where Ck denotes the Catalan number
(
2k
k

)
−
(

2k
k+1

)
=
(
2k
k

)
/(k + 1).
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For n ∈ N, the central trinomial coefficient Tn is the constant term in the
expansion of (1 + x+ x−1)n. By the multi-nomial theorem, we see that

Tn =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
=

n∑
k=0

(
n

k

)(
n− k
k

)
.

It is known that Tn coincides with the number of lattice paths from the point
(0, 0) to (n, 0) with only allowed steps (1, 0) (east), (1, 1) (northeast) and (1,−1)
(southeast).

The Motzkin numbers, the Catalan numbers and the central trinomial coeffi-
cients arise naturally in enumerative combinatorics. As the Fibonacci numbers
arising from combinatorics have rich number-theoretic properties, we think that
important combinatorial quantities like Mn and Tn with n ∈ N should also have
nice arithmetic properties. For example, in [S14a] we conjectured that for any
n ∈ Z+ = {1, 2, 3, . . . } the arithmetic mean of the n numbers (8k + 5)T 2

k (k =
0, . . . , n − 1) is always an integer, and this was later confirmed by Y.-P. Mu and
the author [MS] via symbolic computation. Motivated by congruence properties
of such numbers, we found in [S14b, S20] many series for 1/π involving central
trinomial coefficients or their extensions. For example, in [S20, Section 10] we
conjectured the combinatorial identity

∞∑
k=1

(105k − 44)Tk−1

k2
(
2k
k

)2
3k−1

=
5π√

3
+ 6 log 3

based on the conjectural congruence

p2
p−1∑
k=1

(105k − 44)Tk−1

k2
(
2k
k

)2
3k−1

≡ 11
(p

3

)
+
p

2

(
13− 35

(p
3

))
(mod p2),

where p is a prime greater than 3 and (−) is the Legendre symbol. Thus it is
interesting to investigate congruence properties of combinatorial quantities like
Mn and Tn with n ∈ N, and the study in turn may stimulate us to find some new
combinatorial identities.

Let p > 3 be a prime. In [S14a, Conjecture 1.1(ii)] we conjectured

p−1∑
k=0

M2
k ≡ (2− 6p)

(p
3

)
(mod p2),

p−1∑
k=0

kM2
k ≡ (9p− 1)

(p
3

)
(mod p2),

and
p−1∑
k=0

TkMk ≡
4

3

(p
3

)
+
p

6

(
1− 9

(p
3

))
(mod p2).

The three supercongruences look curious and challenging.
Motivated by the above conjectures, we establish the following new results.
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Theorem 1.1. (i) For any n ∈ Z+, we have

s(n) :=
2

n

n∑
k=1

(2k + 1)M2
k ∈ Z. (1.1)

(ii) For any prime p > 3, we have

p−1∑
k=0

(2k + 1)M2
k ≡ 12p

(p
3

)
(mod p2). (1.2)

Remark 1.1. The values of s(1), . . . , s(10) are as follows:

6, 23, 90, 432, 2286, 13176, 80418, 513764, 3400518, 23167311.

Theorem 1.2. For any integer n > 2, we have

n2(n2 − 1)

6

∣∣∣∣ n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1. (1.3)

Remark 1.2. If we define

t(n) :=
6

n2(n2 − 1)

n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1 (n = 2, 3, . . . ),

then the values of t(2), t(3), . . . , t(10) are as follows:

51, 271, 1398, 8505, 54387, 367551, 2570931, 18510739, 136282347.

Let b, c ∈ Z and n ∈ N. The generalized central trinomial coefficient Tn(b, c)
denotes the coefficient of xn in the expansion of (x2 + bx + c)n (cf. [S14a] and
[S14b]). By the multi-nomial theorem, we see that

Tn(b, c) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck.

The generalized Motzkin number Mn(b, c) introduced in [S14a] is given by

Mn(b, c) =

bn/2c∑
k=0

(
n

2k

)
Ckb

n−2kck.
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Note that Tn(1, 1) = Tn, Mn(1, 1) = Mn, Tn(2, 1) =
(
2n
n

)
and Mn(2, 1) = Cn+1.

Also, Tn(3, 2) coincides with the (central) Delannoy number

Dn =
n∑
k=0

(
n

k

)(
n+ k

k

)
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
,

which counts lattice paths from (0, 0) to (n, n) in which only east (1, 0), north
(0, 1), and northeast (1, 1) steps are allowed (cf. R. P. Stanley [St99, p. 185]). And
Mn(3, 2) equals the little Schröder number

sn+1 =

n+1∑
k=1

N(n+ 1, k)2n+1−k

with the Narayana number N(m, k) (m > k > 1) given by

N(m, k) :=
1

m

(
m

k

)(
m

k − 1

)
∈ Z.

The little Schröder numbers and the Narayana numbers also have many combina-
torial interpretations (cf. [St97] and [Gr, pp. 268–281]). See also [S11, S18b] for
some congruences involving the Delannoy numbers or the little Schröder numbers.

Theorem 1.3. Let b, c ∈ Z with b 6= 0 and d = b2− 4c 6= 0, and let n ∈ Z+. Then

b
n(n+ 1)

2

∣∣∣∣ n∑
k=1

kTk(b, c)Tk−1(b, c)dn−k (1.4)

and

b
n2(n+ 1)2

4

∣∣∣∣ 3 n∑
k=1

k3Tk(b, c)Tk−1(b, c)dn−k. (1.5)

Also,

(2, n)

n(n+ 1)(n+ 2)

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)Mk(b, c)2dn−1−k ∈ Z (1.6)

and

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)

n(n+ 1)(n+ 2)
Mk(b, c)2(−d)n−1−k =

Mn(b, c)Mn−1(b, c)

b
∈ Z, (1.7)

where (m,n) denotes the greatest common divisor of two integers m and n.

Remark 1.3. For each n ∈ Z+, (1.7) with b = c = 1 gives the curious identity

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)M2
k3n−1−k = n(n+ 1)(n+ 2)MnMn−1. (1.8)

In the case b = 3 and c = 2, Theorem 1.3 yields the following consequence.
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Corollary 1.1. For any n ∈ Z+ we have

3
n(n+ 1)

2

∣∣∣∣ n∑
k=1

kDkDk−1,
n2(n+ 1)2

4

∣∣∣∣ n∑
k=1

k3DkDk−1, (1.9)

n(n+ 1)(n+ 2)

(2, n)

∣∣∣∣ n∑
k=1

k(k + 1)(2k + 1)s2k, (1.10)

and

1

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(2k + 1)(−1)n−ks2k =
snsn+1

3
∈ Z. (1.11)

Theorems 1.1-1.3 are quite sophisticated and their proofs need various tech-
niques. We will prove Theorems 1.1-1.3 in Sections 2-4 respectively. In Section 5
we are going to pose some related conjectures for further research.

2. Proof of Theorem 1.1

For n ∈ Z+, in [S18b] we introduced the polynomial

sn(x) :=

n∑
k=1

N(n, k)xk−1(x+ 1)n−k (2.1)

for which sn(1) is just the little Schróder number sn. For n ∈ N, define

Sn(x) =
n∑
k=0

(
n

k

)(
n+ k

k

)
xk

k + 1
=

n∑
k=0

(
n+ k

2k

)
Ckx

k. (2.2)

Then Sn(1) equals the large Schröder number Sn which counts the lattice paths
from the point (0, 0) to (n, n) with steps (1, 0), (0, 1) and (1, 1) that never rise above
the line y = x. As proved in [S18b], we have

Sn(x) = (x+ 1)sn(x) for all n ∈ Z+. (2.3)

Lemma 2.1. (i) For any n ∈ Z+ we have

n(n+ 1)sn(x)2 =
n∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
(x(x+ 1))k−1. (2.4)

(ii) Let b, c ∈ Z with d = b2 − 4c 6= 0. For any n ∈ N we have

Mn(b, c) = (
√
d)nsn+1

(
b/
√
d− 1

2

)
. (2.5)
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Proof. As (x + 1)sn(x) = Sn(x) by (2.3), the identity (2.4) has the equivalent
version

n(n+ 1)Sn(x)2 =
n∑
k=1

(
n+ k

2k

)(
2k

k

)(
2k

k + 1

)
xk−1(x+ 1)k+1

which appeared as [S12a, (2.1)]. So (2.4) holds. The identity (2.5) was proved in
[S18b, Lemma 3.1]. �

Remark 2.1. For n ∈ N and b, c ∈ Z with b2 6= 4c, by combining the two parts of
Lemma 2.1 we obtain that

Mn(b, c)2 =
1

(n+ 1)(n+ 2)

n+1∑
k=1

(
n+ k + 1

2k

)(
2k

k

)(
2k

k + 1

)
ck−1(b2 − 4c)n+1−k.

(2.6)

Lemma 2.2. For any n ∈ Z+ we have

n∑
k=1

(2k + 1)M2
k

=

n+1∑
k=0

(4n− 2k + 3)(n+ k + 2)

n+ 2

(
n+ k + 1

2k

)(
2k

k

)(
2k + 1

k

)
(−3)n+1−k.

(2.7)

Proof. In view of (2.6), we have

n∑
k=0

(2k + 1)M2
k =

n∑
k=0

2k + 1

(k + 1)(k + 2)

k+1∑
j=1

(
k + j + 1

2j

)(
2j

j

)(
2j

j + 1

)
(−3)k+1−j

=
n∑
k=0

2k + 1

(k + 1)(k + 2)

k∑
l=0

(
k + l + 2

2l + 2

)(
2l + 2

l + 1

)(
2l + 2

l

)
(−3)k−l

=
n∑
k=0

n∑
l=0

F (k, l),

where

F (k, l) :=
2k + 1

(k + 1)(k + 2)

(
k + l + 2

2l + 2

)(
2l + 2

l + 1

)(
2l + 2

l

)
(−3)k−l.

By the telescoping method developed by Chen, Hou and Mu [CHM] and applied
by Mu and Sun [MS], the double sum can be reduced to a single sum:

n∑
k=0

n∑
l=0

F (k, l) = 1+(4n+3)(−3)n+1+
n∑
j=0

(−3)n−j
(4n− 2j + 1)(n+ j + 3)!(2j + 3)!

(n+ 2)(n− j)!(j + 2)(j + 1)!4
.

(2.8)
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Therefore

n∑
k=1

(2k + 1)M2
k

=
n∑

j=−1
(−3)n−j

(4n− 2j + 1)(n+ j + 3)!(2j + 3)!

(n+ 2)(n− j)!(j + 2)(j + 1)!4

=
n+1∑
k=0

(−3)n+1−k (4n− 2k + 3)(n+ k + 2)!(2k + 1)!

(n+ 2)(n+ 1− k)!(k + 1)k!4

=

n+1∑
k=0

(4n− 2k + 3)(n+ k + 2)

n+ 2

(
n+ k + 1

2k

)(
2k

k

)(
2k + 1

k

)
(−3)n+1−k

and this concludes the proof. �
For each integer n we set

[n]q =
1− qn

1− q
,

which is the usual q-analogue of n. For any n ∈ Z, we define

[
n

0

]
q

= 1 and

[
n

k

]
q

=

∏k−1
j=0 [n− j]q∏k
j=1[j]q

for k = 1, 2, 3, . . . .

Obviously limq→1

[
n
k

]
q

=
(
n
k

)
for all k ∈ N and n ∈ Z. It is easy to see that

[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

for all k, n = 1, 2, 3, . . . .

By this recursion,
[
n
k

]
q
∈ Z[q] for all k, n ∈ N. For any integers a, b and n > 0,

clearly
a ≡ b (mod n) =⇒ [a]q ≡ [b]q (mod [n]q).

Let n be a positive integer. The cyclotomic polynomial

Φn(q) :=

n∏
a=1

(a,n)=1

(
q − e2πia/n

)
∈ Z[q]

is irreducible in the ring Z[q]. It is well-known that

qn − 1 =
∏
d|n

Φd(q).

Note that Φ1(q) = q − 1.
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Lemma 2.3. For any a, b ∈ N and n ∈ Z+, we have

n−1∑
k=0

[
n+ 1

k

]a
q

[
n+ k

k

]b
q

[
2k

k

]
q

[k + 2]q(−[3]q)
n−1−k ≡ 0 (mod [n]q). (2.9)

Proof. (2.9) is trivial in the case n = 1. Below we assume n > 1. As

[n]q =
∏

1<d|n

Φd(q)

and Φ2(q),Φ3(q), . . . are pairwise coprime, it suffices to show that the sum in (2.9)
is divisible by Φd(q) for any given divisor d > 1 of n.

A well-known q-Lucas theorem (see, e.g., [O]) states that if a, b, d, s, t ∈ N with
s < d and t < d then [

ad+ s

bd+ t

]
q

≡
(
a

b

)[
s

t

]
q

(mod Φd(q)).

Let S denote the sum in (2.9) and write n = dm with m ∈ Z+. Then

S =
m−1∑
j=0

d−1∑
r=0

[
md+ 1

jd+ r

]a
q

[
md+ jd+ r

jd+ r

]b
q

[
2jd+ 2r

jd+ r

]
q

[jd+ r + 2]q(−[3]q)
md−1−(jd+r)

≡
m−1∑
j=0

d−1∑
r=0

(
m

j

)a[
1

r

]a
q

(
m+ j

j

)b[
r

r

]b
q

[
2jd+ 2r

jd+ r

]
q

[r + 2]q(−[3]q)
(m−j)d−(r+1)

≡
m−1∑
j=0

(
m

j

)a(
m+ j

j

)b 1∑
r=0

[
2jd+ 2r

jd+ r

]
q

[r + 2]q(−[3]q)
(m−j)d−(r+1)

≡
m−1∑
j=0

(
m

j

)a(
m+ j

j

)b(
2j

j

)[
0

0

]
q

[2]q(−[3]q)
(m−j)d−1

+

m−1∑
j=0

(
m

j

)a(
m+ j

j

)b
[1 + 2]q(−[3]q)

(m−j)d−2 ×

{ (2j+1
j

)[
0
1

]
q

if d = 2,(
2j
j

)[
2
1

]
q

if d > 2,

≡0 (mod Φd(q)).

(Note that [2]q = 1 + q = Φ2(q).) This concludes the proof. �

Lemma 2.4. For any prime p > 3 we have

p−1∑
k=1

(
2k
k

)
k3k

≡ 3p−1 − 1

p
(mod p). (2.10)
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Proof. Let un = (n3 ) for n ∈ N. Then u0 = 0, u1 = 1 and un+1 = −un − un−1 for
all n = 1, 2, 3, . . . . Applying [S12b, Lemma 3.5] with m = 1, we obtain

p−1∑
k=1

(
2k
k

)
k3k

≡ (−3)p−1 − 1

p
− 1

2

(
−3

p

) up−(−3
p )

p
(mod p).

Note that up−(−3
p ) = 0 since p ≡ (−3p ) (mod 3). So (2.10) holds. �

Proof of Theorem 1.1. (i) Observe that

4

n+ 2
≡
{

4/2 = 2 (mod n) if 2 - n,
2/(n/2 + 1) ≡ 2 (mod n) if 2 | n.

Thus, for each k ∈ {1, . . . , n+ 1}, we have

2×
(
2k
k

)
n+ 2

=
4

n+ 2

(
2k − 1

k

)
≡ 2

(
2k − 1

k

)
=

(
2k

k

)
(mod n).

Combining this with (2.7) we see that

2
n∑
k=1

(2k + 1)M2
k

≡2(4n+ 3)(−3)n+1

+

n+1∑
k=1

(4n− 2k + 3)(n+ k + 2)

(
n+ k + 1

2k

)(
2k

k

)(
2k + 1

k

)
(−3)n+1−k

≡−
n+1∑
k=0

(2k − 3)(k + 2)

(
n+ k + 1

n+ 1

)(
n+ 1

k

)(
2k + 1

k

)
(−3)n+1−k

≡−
n+1∑
k=0

(2k − 3)(k + 2)
n+ k + 1

n+ 1

(
n+ k

k

)(
n+ 1

k

)
(2k + 1)Ck(−3)n+1−k

≡−
n+1∑
k=0

(2k − 3)(k + 2)(k + 1)

(
n+ k

k

)(
n+ 1

k

)
(2k + 1)Ck(−3)n+1−k (mod n).

For each k = 0, . . . , n+ 1, clearly

k(k − 1)

(
n+ 1

k

)
= n(n+ 1)

(
n− 1

n+ 1− k

)
≡ 0 (mod n).

Since (2k − 3)(2k + 1) = 4k(k − 1)− 3, by the above we have

2
n∑
k=1

(2k + 1)M2
k ≡ −

n+1∑
k=0

(
n+ 1

k

)(
n+ k

k

)(
2k

k

)
(k + 2)(−3)n+2−k (mod n).
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Note that

n+1∑
k=n

(
n+ 1

k

)(
n+ k

k

)(
2k

k

)
(k + 2)(−3)n+2−k

=

(
n+ 1

n

)(
2n

n

)2

(n+ 2)(−3)2 +

(
2n+ 1

n+ 1

)(
2n+ 2

n+ 1

)
(n+ 3)(−3)

≡18

(
2n

n

)2

− 18

(
2n+ 1

n+ 1

(
2n

n

))2

≡ 0 (mod n).

Therefore

2

n∑
k=1

(2k + 1)M2
k ≡ 27

n−1∑
k=0

(
n+ 1

k

)(
n+ k

k

)(
2k

k

)
(k + 2)(−3)n−1−k (mod n).

(2.11)

By (2.9) with a = b = 1 and q = 1, we have

n−1∑
k=0

(
n+ 1

k

)(
n+ k

k

)(
2k

k

)
(k + 2)(−3)n−1−k ≡ 0 (mod n).

Combining this with (2.11) we immediately obtain the desired (1.1).

(ii) Applying (2.7) with n = p− 1, we get

p−1∑
k=1

(2k + 1)M2
k =

p∑
k=0

(4p− 2k − 1)(p+ k + 1)

p+ 1

(
p+ k

2k

)(
2k

k

)(
2k + 1

k

)
(−3)p−k

=

p−1∑
k=1

(4p− 2k − 1)(p+ k + 1)

p+ 1

(
p

k

)(
p+ k

k

)
2k + 1

k + 1

(
2k

k

)
(−3)p−k

+ (4p− 1)(−3)p +
(2p− 1)(2p+ 1)

p+ 1

(
2p

p

)
2p+ 1

p+ 1

(
2p

p

)
≡3

p−1∑
k=1

p

k

(
p− 1

k − 1

)
(2k + 1)2

(
2k
k

)
(−3)k

+ (3− 12p)3p−1 −
(

2

(
2p− 1

p− 1

))2

≡− 3p

p−1∑
k=1

(
4k + 4 +

1

k

) (2k
k

)
3k

+ 3p − 12p− 4 (mod p2)

with the aid of Wolstenholme’s congruence
(
2p−1
p−1

)
≡ 1 (mod p3) (cf. [W]). Com-
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bining this with (2.10) and noting that
(−1/2

k

)
=
(
2k
k

)
/(−4)k for k ∈ N, we obtain

− 1

12p

p−1∑
k=0

(2k + 1)M2
k ≡1 +

p−1∑
k=1

(k + 1)

(
−1/2

k

)
(−4)k

3k

≡
(p−1)/2∑
k=0

(
(p− 1)/2

k

)(
−4

3

)k
+

(p−1)/2∑
k=1

k

(
(p− 1)/2

k

)(
−4

3

)k

≡
(

1− 4

3

)(p−1)/2

− 4

3
· p− 1

2

(p−1)/2∑
k=1

(
(p− 3)/2

k − 1

)(
−4

3

)k−1
≡
(
−3

p

)
+

2

3

(
1− 4

3

)(p−3)/2

≡
(
−3

p

)
− 2

(
−3

p

)
= −

(p
3

)
(mod p).

This proves (1.2).

The proof of Theorem 1.1 is now complete. �

3. Proof of Theorem 1.2

Lemma 3.1. Let b, c ∈ Z and d = b2 − 4c. Then

b

n−1∑
k=0

(2k + 1)Tk(b, c)2(−d)n−1−k = nTn(b, c)Tn−1(b, c) for any n ∈ Z+, (3.1)

and

Tk(b, c)2 =

k∑
j=0

(
k + j

2j

)(
2j

j

)2

cjdk−j for all k ∈ N. (3.2)

Remark 3.1. For (3.1) and (3.2), see [S14a, (1.19) and (4.1)].

Lemma 3.2. For any n ∈ Z+, we have

n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1 =
(−1)nn

6

n−1∑
k=0

(
n− 1

k

)(
−n− 1

k

)
Ck3n−1−ka(n, k),

(3.3)
where

a(n, k) = 4k2n2−8kn3−14k2n−14kn2−4n3 +13k2−11kn−26n2 +39k+4n+26.
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Proof. In light of (3.1) with b = c = 1,

n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1

=
n∑
k=1

k(k − 1)(8k + 1)TkTk−1

=
n∑
k=1

(k − 1)(8k + 1)
k−1∑
j=0

(2j + 1)T 2
j 3k−1−j

=

n−1∑
j=0

(2j + 1)T 2
j

n∑
k=j+1

(k − 1)(8k + 1)3k−1−j .

By induction, for each j ∈ N we have
m∑

k=j+1

(k − 1)(8k + 1)3k−1−j =
1

4

(
3m−j(16m2 − 30m+ 21)− (16j2 − 30j + 21)

)
for all m = j + 1, j + 2, . . . . Thus, in view of the above and (3.2) with b = c = 1,
we get

4
n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1

=
n∑
k=0

(2k + 1)T 2
k

(
3n−k(16n2 − 30n+ 21)− (16k2 − 30k + 21)

)
=

n∑
k=0

n∑
l=0

F (k, l),

where F (k, l) denotes

(2k + 1)

(
k + l

2l

)(
2l

l

)2

(−3)k−l
(
3n−k(16n2 − 30n+ 21)− (16k2 − 30k + 21)

)
.

Via the telescoping method stated in [CHM, MS], the double sum can be reduced
to a single sum:

n∑
k=0

n∑
l=0

F (k, l) =
2

9

n−1∑
k=0

a(n, k)(−3)n−k(n+ k)!(2k)!

(n− k − 1)!k!4(k + 1)
. (3.4)

Therefore
n−1∑
k=0

k(k + 1)(8k + 9)TkTk+1

=
1

18

n−1∑
k=0

(
n

k + 1

)(
n+ k

k

)(
2k

k

)
(−3)n−ka(n, k)

=
(−1)n

6

n−1∑
k=0

n

k + 1

(
n− 1

k

)(
−n− 1

k

)(
2k

k

)
3n−1−ka(n, k)

and hence (3.3) holds. �
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Lemma 3.3. For any n ∈ Z+, we have

n2 − 1

∣∣∣∣ n−1∑
k=0

(
n− 1

k

)(
−n− 1

k

)
Ck3n−1−ka(n, k) (3.5)

with a(n, k) given in Lemma 3.2.

Proof. It suffices to show that n2 − 1 divides
(
n−1
k

)(−n−1
k

)
a(n, k) for any fixed

k ∈ {0, . . . , n− 1}. Clearly,

a(n, k) ≡4k2 − 8kn− 14k2n− 14k − 4n+ 13k2 − 11kn− 26 + 39k + 4n+ 26

=k2(17− 14n) + k(25− 19n) (mod n2 − 1),

and (±n− 1) | k
(±n−1

k

)
since k

(±n−1
k

)
= (±n− 1)

(±n−2
k−1

)
if k > 0. So(

n− 1

k

)(
−n− 1

k

)
a(n, k) ≡

(
n− 1

k

)(
−n− 1

k

)
k(25− 19n) (mod n2 − 1).

If 2 - n, then n ± 1 and 25 − 19n are all even, hence both 2(n − 1) and 2(n + 1)
divide

(
n−1
k

)(−n−1
k

)
a(n, k). If n is even, then (n − 1, n + 1) = (n − 1, 2) = 1 and

hence n2 − 1 coincides with the least common multiple [n− 1, n+ 1] of n− 1 and
n+ 1. Note that when n is odd we have (2, n− 1) = 2 and

[2(n− 1), 2(n+ 1)] =
2(n− 1)2(n+ 1)

(2(n− 1), 2(n+ 1))
=

4(n2 − 1)

2(n− 1, 2)
= n2 − 1.

Therefore n2 − 1 |
(
n−1
k

)(−n−1
k

)
a(n, k) no matter n is odd or even. This concludes

the proof. �

Lemma 3.4. Let a, b ∈ N with a+ b even, and let n ∈ Z+. Then

2n
∣∣ n−1∑
k=0

(
n− 1

k

)a(−n− 1

k

)b(
2k

k

)
(k + 2)3n−1−k. (3.6)

Proof. Let f(k) = k
(
2k−1
k

)
3n−k for k = 0, . . . , n. For each k = 0, . . . , n − 1, we

clearly have

∆f(k) =f(k + 1)− f(k) = (k + 1)

(
2k + 1

k + 1

)
3n−k−1 − k

(
2k − 1

k

)
3n−k

=(2k + 1)

(
2k

k

)
3n−k−1 − 3k

(
2k − 1

k

)
3n−1−k =

k + 2

2

(
2k

k

)
3n−1−k.

Thus, by [S18a, Theorem 4.1] we get

n−1∑
k=0

(
n− 1

k

)a(−n− 1

k

)b
k + 2

2

(
2k

k

)
3n−1−k

=
n−1∑
k=0

(
n− 1

k

)a(−n− 1

k

)b
∆f(k) ≡ 0 (mod n)
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and hence (3.6) holds. �

Proof of Theorem 1.2. Since (n, n2 − 1) = 1, by Lemmas 3.2 and 3.3 it suffices to
show that

n−1∑
k=0

(
n− 1

k

)(
−n− 1

k

)
Ck3n−1−ka(n, k) ≡ 0 (mod n).

For each k = 0, . . . , n− 1, clearly

a(n, k) ≡ 13k2 + 39k + 26 = 13(k + 1)(k + 2) (mod n).

So

n−1∑
k=0

(
n− 1

k

)(
−n− 1

k

)
Ck3n−1−ka(n, k)

≡13

n−1∑
k=0

(
n− 1

k

)(
−n− 1

k

)(
2k

k

)
(k + 2)3n−1−k ≡ 0 (mod n).

with the help of Lemma 3.4. This completes the proof. �

4. Proof of Theorem 1.3

Lemma 4.1. Let b, c ∈ Z and d = b2 − 4c. For any n ∈ Z+ we have

nTn(b, c)Tn−1(b, c) = b

n−1∑
j=0

(n− j)
(
n+ j

2j

)(
2j

j

)2

cjdn−1−j . (4.1)

Proof. In view of Lemma 3.1,

nTn(b, c)Tn−1(b, c) =b
n−1∑
k=0

(2k + 1)
k∑
j=0

(
k + j

2j

)(
2j

j

)2

cjdk−j(−d)n−1−k

=b

n−1∑
j=0

(
2j

j

)2

cjdn−1−j
n−1∑
k=j

(−1)n−1−k(2k + 1)

(
k + j

2j

)
.

For each j ∈ N, by induction we have

m−1∑
k=j

(−1)m−1−k(2k + 1)

(
k + j

2j

)
= (m− j)

(
m+ j

2j

)
for all m = j + 1, j + 2, . . . .

(4.2)
Thus

nTn(b, c)Tn−1(b, c) = b
n−1∑
j=0

(
2j

j

)2

cjdn−1−j(n− j)
(
n+ j

2j

)
and hence (4.1) holds. �
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Lemma 4.2. For any k, n ∈ Z+ with k 6 n, we have

n(n+ 1)(n+ 2)

(2, n)

∣∣∣∣ (n+ k + 1)

(
n+ k

k

)(
n+ 1

k + 1

)(
2k

k + 1

)
. (4.3)

Proof. Clearly,

(n+ k + 1)

(
n+ k

k

)(
n+ 1

k + 1

)(
2k

k + 1

)
=(n+ k + 1)

(
n+ k

k

)
n+ 1

k + 1

(
n

k

)
kCk

=(n+ 1)

(
n+ k + 1

k + 1

)
n

(
n− 1

n− k

)
Ck,

and also

(n+ k + 1)

(
n+ k

k

)(
2k

k + 1

)
≡ (k − 1)(−1)k

(
−n− 1

k

)
kCk ≡ 0 (mod n+ 2)

since

k(k − 1)

(
−n− 1

k

)
= (−n− 1)(−n− 2)

(
−n− 3

k − 2

)
if k > 1.

Thus

[n(n+ 1), n+ 2]
∣∣ (n+ k + 1)

(
n+ k

k

)(
n+ 1

k + 1

)(
2k

k + 1

)
.

Note that

[n(n+ 1), n+ 2] =
n(n+ 1)(n+ 2)

(n(n+ 1), n+ 2)
=
n(n+ 1)(n+ 2)

(2, n)
.

So we have (4.3). �

Lemma 4.3. For any n ∈ N we have

6

(
2n

n

)
≡ 0 (mod n+ 2). (4.4)

Proof. Observe that(
2n+ 2

n+ 1

)
= 2

(
2n+ 1

n

)
=

2(2n+ 1)

n+ 1

(
2n

n

)
and hence

2(2n+ 1)

(
2n

n

)
= (n+ 1)

(
2n+ 2

n+ 1

)
= (n+ 1)(n+ 2)Cn+1.
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Thus
n+ 2

(n+ 2, 2n+ 1)

∣∣ 2n+ 1

(n+ 2, 2n+ 1)
2

(
2n

n

)
and hence

n+ 2

(n+ 2, 2n+ 1)

∣∣ 2(2n

n

)
. (4.5)

Since (n+ 2, 2n+ 1) = (n+ 2, 2(n+ 2)− 3) = (n+ 2, 3) divides 3, we obtain (4.4)
from (4.5). �

As in [S18b], for n ∈ Z+ we define

wn(x) :=
n∑
k=1

w(n, k)xk−1 with w(n, k) =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
∈ Z.

Lemma 4.4. For any integers n > k > 1, we have

w(n, k) =

k∑
j=1

(
n− j
k − j

)
N(n, j) (4.6)

and

N(n, k) =

k∑
j=1

(
n− j
k − j

)
(−1)k−jw(n, j). (4.7)

Proof. We first prove (4.7). Observe that

k∑
j=1

(
n− j
k − 1

)
(−1)k−jw(n, j) =

k∑
j=1

(
n− j
k − j

)
(−1)k−j

n

(
n

j

)(
n+ j

j − 1

)

=
(−1)k−1

n

(
n

k

) k∑
j=1

(
k

k − j

)(
−n− 2

j − 1

)
.

Thus, with the help of the Chu-Vandermonde identity (cf. [G, (3.1)]), we get

k∑
j=1

(
n− j
k − 1

)
(−1)k−jw(n, j) =

(−1)k−1

n

(
n

k

)(
k − n− 2

k − 1

)
= N(n, k).

This proves (4.7).
In view of (4.7), we have

k∑
j=1

(
n− j
k − j

)
N(n, j) =

k∑
j=1

(
n− j
k − j

) j∑
i=1

(
n− i
j − i

)
(−1)j−iw(n, i)

=
k∑
i=1

w(n, i)

(
n− i
k − i

) k∑
j=i

(
k − i
j − i

)
(−1)j−i = w(n, k).

So (4.6) also holds. This ends the proof. �
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Lemma 4.5. For any n ∈ Z+ we have

wn(x) = sn(x). (4.8)

Proof. With the aid of (4.7), we get

sn(x) =

n∑
k=1

N(n, k)xk−1(x+ 1)n−k

=

n∑
k=1

k∑
j=1

(
n− j
k − j

)
(−1)k−jw(n, j)xk−1(x+ 1)n−k

=
n∑
j=1

w(n, j)xn−1
n∑
k=j

(
n− j
k − j

)
(−1)k−j

(
1 +

1

x

)n−j−(k−j)

=

n∑
j=1

w(n, j)xn−1
(

1 +
1

x
− 1

)n−j
= wn(x).

This concludes the proof. �

Lemma 4.6. For any n ∈ Z+ we have the new identity

(2x+1)
n∑
k=1

k(k+1)(2k+1)(−1)n−kwk(x)2 = n(n+1)(n+2)wn(x)wn+1(x). (4.9)

Proof. In the case n = 1, both sides of (4.9) are equal to 6(2x+ 1).
Now assume that (4.9) holds for a fixed positive integer n. Applying the Zeil-

berger algorithm (cf. [PWZ, pp. 101-119]) via Mathematica 9 we find that

(n+ 3)wn+2(x) = (2x+ 1)(2n+ 3)wn+1(x)− nwn(x).

Thus

(2x+ 1)

n+1∑
k=1

k(k + 1)(2k + 1)(−1)n+1−kwk(x)2

=(2x+ 1)(n+ 1)(n+ 2)(2n+ 3)wn+1(x)2 − (2x+ 1)

n∑
k=1

k(k + 1)(2k + 1)(−1)n−kwk(x)2

=(2x+ 1)(n+ 1)(n+ 2)(2n+ 3)wn+1(x)2 − n(n+ 1)(n+ 2)wn(x)wn+1(x)

=(n+ 1)(n+ 2)wn+1(x)((2x+ 1)(2n+ 3)wn+1(x)− nwn(x))

=(n+ 1)(n+ 2)(n+ 3)wn+1(x)wn+2(x).

In view of the above, by induction, (4.9) holds for each n ∈ Z+. �
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Proof of Theorem 1.3. (i) Let δ ∈ {0, 1}. In light of Lemma 4.1,

n∑
k=1

k2δ+1Tk(b, c)Tk−1(b, c)dn−k

=
n∑
k=1

k2δb
k−1∑
j=0

(k − j)
(
k + j

2j

)(
2j

j

)2

cjdk−1−jdn−k

=b

n−1∑
j=0

(
2j

j

)2

cjdn−1−j
n∑

k=j+1

k2δ(k − j)
(
k + j

2j

)
.

By induction, for each j ∈ N, we have

m∑
k=j+1

k2δ(k − j)
(
k + j

2j

)
=
mδ(m+ 1)δ

2
· (m− j)(m+ j + 1)

j + δ + 1

(
m+ j

2j

)
(4.10)

for every m = j + 1, j + 2, . . . . Therefore,

n∑
k=1

k2δ+1Tk(b, c)Tk−1(b, c)dn−k

=b
nδ(n+ 1)δ

2

n−1∑
j=0

(
2j

j

)2

cjdn−1−j
(n− j)(n+ j + 1)

j + δ + 1

(
n+ j

2j

)

=
b

2
(n(n+ 1))δ

n−1∑
j=0

(
2j
j

)
j + δ + 1

cjdn−1−j(n− j)(n+ j + 1)

(
n

j

)(
n+ j

j

)

and hence

n∑
k=1

k2δ+1Tk(b, c)Tk−1(b, c)dn−k

=
b

2
(n(n+ 1))δ+1

n−1∑
j=0

(
n− 1

j

)(
n+ j + 1

j

) (
2j
j

)
j + δ + 1

cjdn−1−j .

(4.11)

In the case δ = 0, (4.11) yields (1.4) since
(
2j
j

)
/(j + 1) = Cj ∈ Z. By Lemma

4.3 and (4.11) with δ = 1, we immediately obtain (1.5).
(ii) By induction, for each j ∈ N we have

m∑
k=j

(2k + 1)

(
k + j

2j

)
=

(m+ 1)(m+ j + 1)

j + 1

(
m+ j

2j

)
for all m = j, j + 1, . . . .

(4.12)
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In view of this and (2.4), we have

n∑
k=1

k(k + 1)(2k + 1)sk(x)2

=

n∑
k=1

(2k + 1)

k∑
j=1

(
k + j

2j

)(
2j

j

)(
2j

j + 1

)
(x(x+ 1))j−1

=
n∑
j=1

(
2j

j

)(
2j

j + 1

)
(x(x+ 1))j−1

n∑
k=j

(2k + 1)

(
k + j

2j

)

=
n∑
j=1

(
2j

j

)(
2j

j + 1

)
(x(x+ 1))j−1

(n+ 1)(n+ j + 1)

j + 1

(
n+ j

2j

)

=

n∑
j=1

(
2j

j + 1

)
(x(x+ 1))j−1

(n+ 1)(n+ j + 1)

j + 1

(
n

j

)(
n+ j

j

)

and hence

n∑
k=1

k(k+1)(2k+1)sk(x)2 =

n∑
k=1

(n+k+1)

(
n+ 1

k + 1

)(
n+ k

k

)(
2k

k + 1

)
(x(x+1))k−1.

(4.13)

Let x = (b/
√
d − 1)/2. Then x(x + 1) = c/d. In view of Lemma 2.1(ii) and

(4.13), we have

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)Mk(b, c)2dn−1−k

=

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)dksk+1(x)2dn−1−k

=dn−1
n∑
k=1

k(k + 1)(2k + 1)sk(x)2

=
n∑
k=1

(n+ k + 1)

(
n+ 1

k + 1

)(
n+ k

k

)(
2k

k + 1

)
ck−1dn−k.

Combining this with Lemma 4.2, we get the desired (1.6).
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In light of Lemma 2.1(ii) and Lemmas 4.5-4.6, we have

n−1∑
k=0

(k + 1)(k + 2)(2k + 3)Mk(b, c)2(−d)n−1−k

=
n−1∑
k=0

(k + 1)(k + 2)(2k + 3)dksk+1(x)2(−d)n−1−k

=dn−1
n∑
k=1

k(k + 1)(2k + 1)(−1)n−kwk(x)2

=n(n+ 1)(n+ 2)dn−1
sn(x)sn+1(x)

2x+ 1

=n(n+ 1)(n+ 2)dn−1
Mn−1(b, c)
√
d
n−1 · Mn(b, c)

√
d
n ·

√
d

b

=n(n+ 1)(n+ 2)
Mn(b, c)Mn−1(b, c)

b
.

If 2 - n then b | Mn(b, c); if 2 | n then 2 - n − 1 and b | Mn−1(b, c). So b divides
Mn(b, c)Mn−1(b, c). Therefore (1.7) holds.

The proof of Theorem 1.3 is now complete. �

5. Some open problems

Clearly, (
2k
k

)
2k − 1

=
2

2k − 1

(
2k − 1

k

)
=

2

k

(
2k − 2

k − 1

)
= 2Ck−1 for k ∈ Z+,

and thus 2k − 1 |
(
2k
k

)
for all k ∈ N. Motivated by this we introduce a new kind of

numbers

Wn :=

bn/2c∑
k=0

(
n

2k

) (
2k
k

)
2k − 1

(n = 0, 1, 2, . . . ) (5.1)

which are analogues of the Motzkin numbers. The values of W0,W1, . . . ,W12 are
as follows:

−1, −1, 1, 5, 13, 29, 63, 139, 317, 749, 1827, 4575, 11699.

Applying the Zeilberger algorithm (cf. [PWZ, pp. 101-119]) via Mathematica 9,
we obtain the recurrence

(n+ 3)Wn+3 = (3n+ 7)Wn+2 + (n− 5)Wn+1 − 3(n+ 1)Wn (n = 0, 1, 2, . . . ).

For this new kind of numbers, we have the following conjecture similar to Theorem
1.1.
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Conjecture 5.1. (i) For any n ∈ Z+ we have
n−1∑
k=0

(8k + 9)W 2
k ≡ n (mod 2n). (5.2)

Also, for any odd prime p we have

1

p

p−1∑
k=0

(8k + 9)W 2
k ≡ 24 + 10

(
−1

p

)
− 9

(p
3

)
− 18

(
3

p

)
(mod p). (5.3)

(ii) For any prime p > 3 and positive integer n, the number∑pn−1
k=0 W 2

k − 2(
∑n−1
k=0 Tk)2

pn

is always a p-adic integer.

Remark 5.1. We also guess that the sequence (Wn+1/Wn)n>5 is strictly increasing

to the limit 3 and the sequence (n+1
√
Wn+1/

n
√
Wn)n>9 is strictly decreasing to the

limit 1.

For h, n ∈ Z+, we define

w(h)
n (x) :=

n∑
k=1

w(n, k)hxk−1.

Conjecture 5.2. Let h,m, n ∈ Z+. Then

(2, n)

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(2k + 1)w
(h)
k (x)m ∈ Z[x]. (5.4)

Also,

(2,m− 1, n)

n(n+ 1)(n+ 2)

n∑
k=1

(−1)kk(k + 1)(2k + 1)wk(x)m ∈ Z[x], (5.5)

and

1

n(n+ 1)(n+ 2)

n∑
k=1

(−1)kk(k + 1)(2k + 1)w
(h)
k (x)m ∈ Z[x] for h > 1. (5.6)

Remark 5.2. Fix n ∈ Z+. By combining (4.13) with Lemma 4.2, we obtain

(2, n)

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(2k + 1)sk(x)2 ∈ Z[x(x+ 1)]. (5.7)

As sk(x) = wk(x) for all k ∈ Z+ (by Lemma 4.5), this implies (5.4) with h = 1 and
m = 2. Since w2j(x)/(2x + 1) ∈ Z[x] for all j ∈ Z+ (cf. [S18b, Section 4]), (5.5)
with m = 2 follows from (4.9).

For h ∈ Z+ and n ∈ N, we define

D(h)
n (x) :=

n∑
k=0

(
n

k

)h(
n+ k

k

)h
xk and S(h)

n (x) :=
n∑
k=0

(
n+ k

2k

)h
Chkx

k.

Note that S
(1)
n (x) = Sn(x) for all n ∈ N.
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Conjecture 5.3. Let h,m, n ∈ Z+.
(i) We have

(2, n)

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(2k + 1)S
(h)
k (x)m ∈ Z[x] (5.8)

and
(2,m− 1, n)

n(n+ 1)(n+ 2)

n∑
k=1

(−1)kk(k + 1)(2k + 1)S
(h)
k (x)m ∈ Z[x]. (5.9)

(ii) We have

(2, n)

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(2k + 1)D
(h)
k (x)m ∈ Z[x]

and
(2, hm− 1, n)

n(n+ 1)(n+ 2)

n∑
k=1

(−1)kk(k + 1)(2k + 1)D
(h)
k (x)m ∈ Z[x].

Remark 5.3. Fix n ∈ Z+. As Sk(x) = (x+ 1)sk(x) = (x+ 1)wk(x) for all k ∈ Z+,
(5.8) and (5.9) with h = 1 and m = 2 do hold in view of Remark 5.2. We also
conjecture that

2

3n(n+ 1)

n∑
k=1

(−1)n−kk2DkDk−1 and
1

n

n∑
k=1

(−1)n−k(4k2 + 2k − 1)Dk−1sk

are positive odd integers.

Conjecture 5.4. (i) For any h,m, n ∈ Z+ we have

2(2, n)

n(n+ 1)(n+ 2)

n∑
k=1

k(k + 1)(k + 2)(w
(h)
k (x)w

(h)
k+1(x))m ∈ Z[x] (5.10)

(ii) For any m,n ∈ Z+ we have

2(2, n)

n(n+ 1)(n+ 2)(2x+ 1)m

n∑
k=1

k(k + 1)(k + 2)(wk(x)wk+1(x))m ∈ Z[x]. (5.11)

If n ∈ Z+ is even, then

4

n(n+ 1)(n+ 2)(2x+ 1)3

n∑
k=1

k(k + 1)(k + 2)wk(x)wk+1(x) ∈ Z[x]. (5.12)

Remark 5.4. Recall that w2j(x)/(2x + 1) ∈ Z[x] for all j ∈ Z+ (by [S18b, Section
4]).
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