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ON PRACTICAL NUMBERS OF SOME SPECIAL FORMS

LI-YUAN WANG AND ZHI-WEI SUN

Abstract. In this paper we study practical numbers of some special
forms. For any integers b > 0 and c > 0, we show that if n2 + bn +
c is practical for some integer n > 1, then there are infinitely many
nonnegative integers n with n2 + bn + c practical. We also prove that
there are infinitely many practical numbers of the form q4 + 2 with
q practical, and that there are infinitely many practical Pythagorean
triples (a, b, c) with gcd(a, b, c) = 6 (or gcd(a, b, c) = 4).

1. Introduction

A positive integer m is called a practical number if each n = 1, . . . ,m
can be written as the sum of some distinct divisors of n. This concept was
introduced by Srinivasan [4] who noted that any practical number greater
than 2 must be divisible by 4 or 6. In 1954, Stewart [5] obtained the
following structure theorem for practical numbers.

Theorem 1.1. Let p1 < . . . < pk be distinct primes and let a1, . . . , ak ∈
Z+ = {1, 2, 3, . . .}. Then m = pa11 p

a2
2 · · · p

ak
k is practical if and only if p1 = 2

and
pj − 1 6 σ(pa11 p

a2
2 · · · p

aj−1

j−1 ) for all 1 < j 6 k,

where σ(n) denotes the sum of the positive divisors of n.

It is interesting to compare practical numbers with primes. All practical
numbers are even except 1 while all primes are odd except 2. Moreover, if
P (x) denotes the number of practical numbers not exceeding x, then there
is a positive constant c such that

P (x) ∼ cx

log x
as x→∞, (1.1)

which was established in [8]. This is quite similar to the Prime Number
Theorem.

Inspired by the famous Goldbach conjecture and the twin prime conjec-
ture, Margenstern [2] conjectured that every positive even integer is the
sum of two practical numbers and that there are infinitely many practical
numbers m with m − 2 and m + 2 also practical. Both conjectures were
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confirmed by Melfi [3] in 1996. Guo and Weingartner [1] proved in 2018
that for any odd integer a there are infinitely many primes p with p + a
practical. An open conjecture of Sun [7, Conjecture 3.43(i)] states that any
odd integer greater than one can be written as p + q, where p is a Sophie
Germain prime and q is a practical number.

Whether there are infinitely many primes of the form x2 + 1 with x ∈ Z
is a famous unsolved problem in number theory. Motivated by this, in 2017
Sun [6, A294225] conjectured that there are infinitely many positive integers
q such that q, q+2 and q2+2 are all practical, which looks quite challenging.
Thus, it is natural to study for what a, b, c ∈ Z+ there are infinitely many
practical numbers of the form an2 + bn + c. Note that if a ≡ b (mod 2)
and 2 - c then an2 + bn + c is odd for any n ∈ N = {0, 1, 2, . . .} and hence
an2 + bn+ c cannot take practical values for infinitely many n ∈ N.

Based on our computation we formulate the following conjecture.

Conjecture 1.1. Let a, b, c be positive integers with 2 - ab and 2 | c. Then
there are infinitely many n ∈ N with an2 + bn + c practical. Moreover, in
the case a = 1, there is an integer n with 1 < n 6 max{b, c} such that
n2 + bn+ c is practical.

Though we are unable to prove this conjecture fully, we make the following
progress.

Theorem 1.2. Let b ∈ N and c ∈ Z+. If n2 + bn + c is practical for some
integer n > 1, then there are infinitely many n ∈ N with n2+bn+c practical.

If 1 6 b 6 100 and 1 6 c 6 100 with 2 - b and 2 | c, then we can easily
find 1 < n 6 max{b, c} with n2 + bn+ c practical. For example, n2 + n+ 2
with n = 2 is practical. For each positive even number b 6 20 we make the
set

Sb := {1 6 c 6 100 : n2 + bn+ c is practical for some n = 2, . . . , 20000}

explicit:

S0 ={1 6 c 6 100 : c 6≡ 1, 10 (mod 12) and c 6= 43, 67, 93},
S2 ={1 6 c 6 100 : c 6≡ 2, 11 (mod 12) and c 6= 44, 68, 94},
S4 ={1 6 c 6 100 : c 6≡ 2, 5 (mod 12) and c 6= 47, 71, 97},
S6 ={1 6 c 6 100 : c 6≡ 7, 10 (mod 12) and c 6= 52, 76},
S8 ={1 6 c 6 100 : c 6≡ 2, 5 (mod 12) and c 6= 59, 83},
S10 ={1 6 c 6 100 : c 6≡ 2, 11 (mod 12) and c 6= 68, 92},
S12 ={1 6 c 6 100 : c 6≡ 1, 10 (mod 12) and c 6= 79},
S14 ={1 6 c 6 100 : c 6≡ 2, 11 (mod 12) and c 6= 92},
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S16 ={1 6 c 6 100 : c 6≡ 2, 5 (mod 12)},
S18 ={1 6 c 6 100 : c 6≡ 7, 10 (mod 12)},
S20 ={1 6 c 6 100 : c 6≡ 2, 5 (mod 12)}.

For example, applying Theorem 1.2 with b = 20, we see that for any c =
1, . . . , 100 with c 6≡ 2, 5 (mod 12) there are infinitely many n ∈ N with
n2 + 20n + c practical. It is easy to see that if c is congruent to 2 or 5
modulo 12 then n2 + 20n+ c is not practical for any integer n > 2.

By Theorem 1.2 and the fact 2 ∈ S0, there are infinitely many n ∈ N
with n2 + 2 practical. Moreover, we have the following stronger result.

Theorem 1.3. 235×3k+1 + 2 is practical for every k = 0, 1, 2, . . .. Hence
there are infinitely many practical numbers q with q4 + 2 also practical.

We prove Theorem 1.3 by modifying Melfi’s cyclotomic method in [3].
We now turn to Pythagorean triples involving practical numbers, and call

a Pythagorean triple (a, b, c) with a, b, c all practical a practical Pythagorean
triple. Obviously, there are infinitely many practical Pythagorean triples. In
fact, if a2 +b2 = c2 with a, b, c positive integers then (2ka)2 +(2kb)2 = (2kc)2

for all k = 0, 1, 2, . . .. By Theorem 1.1, 2ka, 2kb and 2kc are all practical if
k is large enough.

Our following theorem was originally conjectured by Sun [6, A294112].

Theorem 1.4. Let d be 4 or 6. Then there are infinitely many practical
Pythagorean triples (a, b, c) with gcd(a, b, c) = d.

We are going to show Theorems 1.2-1.4 in the next section.

2. Proofs of Theorems 1.2-1.4

Lemma 2.1. Let m be any practical number. Then mn is practical for every
n = 1, . . . , σ(m) + 1. In particular, mn is practical for every 1 6 n 6 2m.

This lemma follows easily from Theorem 1.1; see [3] for details. Note that
if m > 1 is practical then m− 1 can be written as the sum of some divisors
of m and hence (m− 1) +m 6 σ(m).

Proof of Theorem 1.2. Set f(n) = n2 + bn+ c. It is easy to verify that

f(n+ f(n)) = f(n)(f(n) + 2n+ b+ 1).

Note that

f(n)− (2n+ b+ 1) = n(n− 2) + b(n− 1) + c− 1 > 0.

If n > 2 is an integer with f(n) practical, then f(n+ f(n)) = f(n)(f(n) +
2n+ b+ 1) is also practical by Lemma 2.1 and the inequality

f(n) + 2n+ b+ 1 6 2f(n).

So the desired result follows. �
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For a positive integer m, the cyclotomic polynomial Φm(x) is defined by

Φm(x) :=
m∏
a=1

gcd(a,m)=1

(
x− e2πia/m

)
.

Clearly,

xn − 1 =
∏
d|n

Φd(x) for all n = 1, 2, 3, . . . . (2.2)

Proof of Theorem 1.3. Write mk = 235×3k+1 + 2 for k = 0, 1, 2, . . .. Note
that m2k = q4k + 2 with qk = 2(35×9k+1)/4 practical. So it suffices to prove
that mk is practical for every k = 0, 1, 2, . . ..

Via a computer we find that

m0 = 236 + 2, m1 = 2106 + 2, m2 = 2316 + 2

are all practical.
Now assume that mk is practical for a fixed integer k > 2. For conve-

nience, we write x for 23k . Then

x > 29 = 512, mk = 2(x35 + 1) and mk+1 = 2(x105 + 1).

In view of (2.2),

x210 − 1

x105 − 1
=
x70 − 1

x35 − 1
Φ6(x)Φ30(x)Φ42(x)Φ210(x). (2.3)

Since x > 512, we have

x2

2
< Φ6(x) = x2 − x+ 1 < x2. (2.4)

Clearly,

x7 > x3
x3 − 1

x− 1
= x5 + x4 + x3

and

x8 > 2x7 > x7 + x+ 1.

Thus

x8 < Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1 < 2x8 (2.5)

Similarly, for

Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1

and

Φ210(x) =x48 − x47 + x46 + x43 − x42 + 2x41 − x40 + x39 + x36

− x35 + x34 − x33 + x32 − x31 − x28 − x26 − x24 − x22

− x20 − x17 + x16 − x15 + x14 − x13 + x12 + x9 − x8

+ 2x7 − x6 + x5 + x2 − x+ 1,
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we can prove that

x12 < Φ42(x) < 2x12 and Φ210(x) < x48. (2.6)

Combining (2.4), (2.5) and (2.6), we get

x22

2
< Φ6(x)Φ30(x)Φ42(x) < 4x22 (2.7)

and hence Φ6(x)Φ30(x)Φ42(x) < 4(x35 + 1). Thus, by Lemma 2.1 and the
induction hypothesis we obtain that

2(x35 + 1)Φ6(x)Φ30(x)Φ42(x)

is practical.
By (2.7),

2(x35 + 1)Φ6(x)Φ30(x)Φ42(x) > x57 > x48.

So, applying (2.6) and Lemma 2.1, we conclude that

2(x35 + 1)Φ6(x)Φ30(x)Φ42(x)Φ210(x)

is practical. In view of (2.3), this indicates that mk+1 is practical. This
completes the proof. �

Lemma 2.2. (Melfi [3]) For every k ∈ N, both 2(33k·70−1) and 2(33k·70 +1)
are practical numbers.

Proof of Theorem 1.4. (i) We first consider the case d = 4. For each
k = 0, 1, 2, . . ., define

ak = 2(33k·70 − 1), bk = 4 · 33k·35, and ck = 2(33k·70 + 1).

It is easy to see that a2k + b2k = c2k and gcd(ak, bk, ck) = 4. By Lemma 2.2,
ak and ck are both practical. Theorem 2.1 implies that bk is practical. This
proves Theorem 1.4 for d = 4.

(ii) Now we handle the case d = 6. For any k = 0, 1, 2, . . ., define

xk = 3(33k·70 − 1), yk = 6 · 33k·35, and zk = 3(33k·70 + 1).

Then x2k + y2k = z2k and gcd(xk, yk, zk) = 6. Note that yk is practical for any
k = 0, 1, 2, . . . by Theorem 2.1.

Now it remains to show by induction that xk and zk are practical for
all k = 0, 1, 2, . . .. Via a computer, we see that x0 = 371 − 3 and z0 =
371 + 3 are practical numbers. Suppose that xk and zk are practical for
some nonnegative integer k. Then

xk+1 = 3(33k+1·70 − 1) = xk(3
3k·70 − 33k·35 + 1)(33k·70 + 33k·35 + 1) (2.8)

and

zk+1 = 3(33k+1·70 + 1) = zkΦ12(3
3k)Φ60(3

3k)Φ84(3
3k)Φ420(3

3k). (2.9)
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In view of (2.8), by applying Lemma 2.1 twice, we see that xk+1 is practical.
It is easy to check that

Φ12(3
3k) 6 2zk, Φ60(3

3k) 6 2zkΦ12(3
3k),

Φ84(3
3k) 6 2zkΦ12(3

3k)Φ60(3
3k), Φ420(3

3k) 6 2zkΦ12(3
3k)Φ60(3

3k)Φ84(3
3k).

In light of these and (2.9), by applying Lemma 2.1 four times, we see that
zk+1 is practical. This concludes the induction step.

The proof of Theorem 1.4 is now complete. �
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