$\mathbb{Q} \setminus \mathbb{Z}$ IS DIOPHANTINE OVER \mathbb{Q} WITH 32 UNKNOWNS

GENG-RUI ZHANG AND ZHI-WEI SUN*

ABSTRACT. In 2016 J. Koenigsmann refined a celebrated theorem of J. Robinson by proving that $\mathbb{Q} \setminus \mathbb{Z}$ is diophantine over \mathbb{Q} , i.e., there is a polynomial $P(t, x_1, \ldots, x_n) \in \mathbb{Z}[t, x_1, \ldots, x_n]$ such that for any rational number t we have

$$t \notin \mathbb{Z} \iff \exists x_1 \cdots \exists x_n [P(t, x_1, \dots, x_n) = 0]$$

where variables range over \mathbb{Q} , equivalently

 $t \in \mathbb{Z} \iff \forall x_1 \cdots \forall x_n [P(t, x_1, \dots, x_n) \neq 0].$

In this paper we prove that we may take n = 32. Combining this with a result of Z.-W. Sun, we show that there is no algorithm to decide for any $f(x_1, \ldots, x_{41}) \in \mathbb{Z}[x_1, \ldots, x_{41}]$ whether

 $\forall x_1 \cdots \forall x_9 \exists y_1 \cdots \exists y_{32} [f(x_1, \dots, x_9, y_1, \dots, y_{32}) = 0],$

where variables range over \mathbb{Q} .

1. INTRODUCTION

Hilbert's Tenth Problem (HTP) asks for an algorithm to determine for any given polynomial $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ whether the diophantine equation $P(x_1, \ldots, x_n) = 0$ has solutions $x_1, \ldots, x_n \in \mathbb{Z}$. This was solved negatively by Yu. Matiyasevich [8] in 1970, on the basis of the important work of M. Davis, H. Putnam and J. Robinson [5]; see also Davis [4] for a nice introduction. Z.-W. Sun [15] proved his 11 unknowns theorem which states that there is no algorithm to determine for any $P(x_1, \ldots, x_{11}) \in \mathbb{Z}[x_1, \ldots, x_{11}]$ whether the equation $P(x_1, \ldots, x_{11}) = 0$ has solutions over \mathbb{Z} .

It remains open whether HTP over \mathbb{Q} is undecidable. However, Robinson [14] used the theory of quadratic forms to prove that one can characterize \mathbb{Z} by using the language of \mathbb{Q} in the following way: For any $t \in \mathbb{Q}$ we have

$$t \in \mathbb{Z} \iff \forall x_1 \forall x_2 \exists y_1 \cdots \exists y_7 \forall z_1 \cdots \forall z_6 [f(t, x_1, x_2, y_1, \dots, y_7, z_1, \dots, z_6) = 0],$$

where f is a polynomial with integer coefficients. (Throughout this paper, variables always range over \mathbb{Q} .) In 2009 B. Poonen [13] improved this by finding a polynomial $F(t, x_1, x_2, y_1, \ldots, y_7)$ with integer coefficients such that

Key words and phrases. Undecidability, definability, diophantine sets, Hilbert's tenth problem over \mathbb{Q} , mixed quantifiers.

²⁰²⁰ Mathematics Subject Classification. Primary 03D35, 11U05; Secondary 03D25, 11D99, 11S99.

^{*} Corresponding author, supported by the National Natural Science Foundation of China (grant no. 11971222).

for any $t \in \mathbb{Q}$ we have

 $t \in \mathbb{Z} \iff \forall x_1 \forall x_2 \exists y_1 \cdots \exists y_7 [F(t, x_1, x_2, y_1, \dots, y_7) = 0].$

In 2016 J. Koenigsmann [7] improved Poonen's result by proving that the set $\mathbb{Q} \setminus \mathbb{Z}$ is diophantine over \mathbb{Q} , i.e., there is a polynomial $P(t, x_1, \ldots, x_n) \in \mathbb{Q}[t, x_1, \ldots, x_n]$ such that for any $t \in \mathbb{Q}$ we have

$$t \notin \mathbb{Z} \iff \exists x_1 \cdots \exists x_n [P(t, x_1, \dots, x_n) = 0],$$

i.e.,

$$t \in \mathbb{Z} \iff \forall x_1 \cdots \forall x_n [P(t, x_1, \dots, x_n) \neq 0]$$

The number n of unknowns in Koenigsmann's diophantine representation of $\mathbb{Q} \setminus \mathbb{Z}$ over \mathbb{Q} is over 400 but below 500. In 2018 N. Daans [2] significantly simplified Koenigsmann's approach and proved that $\mathbb{Q} \setminus \mathbb{Z}$ has a diophantine representation over \mathbb{Q} with 50 unknowns. The number 50 could be reduced to 38 by applying a recent result [3, Theorem 1.4] obtained by model theory.

In this paper we establish the following new result.

Theorem 1.1. $\mathbb{Q} \setminus \mathbb{Z}$ has a diophantine representation over \mathbb{Q} with 32 unknowns, i.e., there is a polynomial $P(t, x_1, \ldots, x_{32}) \in \mathbb{Z}[t, x_1, \ldots, x_{32}]$ such that for any $t \in \mathbb{Q}$ we have

$$t \notin \mathbb{Z} \iff \exists x_1 \cdots \exists x_{32} [P(t, x_1, \dots, x_{32}) = 0].$$
(1.1)

Furthermore, the polynomial P can be constructed explicitly with deg $P < 2.1 \times 10^{11}$.

To obtain this theorem, we start from Daans' work [2], and mainly use a new relation-combining theorem on diophantine representations over \mathbb{Q} (which is an analogue of Matiyasevich and Robinson's relation-combining theorem [9, Theorem 1]) as an auxiliary tool. Now we state our relationcombining theorem for diophantine representations over \mathbb{Q} .

Theorem 1.2. Let $\mathcal{J}_k(x_1, \ldots, x_k, x)$ denote the expression

$$\prod_{s=1}^{k} x_s^{(k-1)2^{k+1}} \times \prod_{\varepsilon_1,\dots,\varepsilon_k \in \{\pm 1\}} \left(x + \sum_{s=1}^{k} \varepsilon_s \sqrt{x_s} W(x_1,\dots,x_k)^{s-1} \right),$$

where

$$W(x_1, \dots, x_k) = \left(k + \sum_{s=1}^k x_s^2\right) \left(1 + \sum_{s=1}^k x_s^{-2}\right)$$

Then $\mathcal{J}_k(x_1, \ldots, x_k, x)$ is a polynomial with integer coefficients. Moreover, for any $A_1, \ldots, A_k \in \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$, we have

$$A_1, \dots, A_k \in \Box \iff \exists x [\mathcal{J}_k(A_1, \dots, A_k, x) = 0], \tag{1.2}$$

where $\Box = \{r^2 : r \in \mathbb{Q}\}.$

Remark 1.1. In view of its proof, Theorem 1.2 can be generalized by replacing \mathbb{Q} with any subfield of the real field \mathbb{R} or any ordered field.

When $\rho_s \in \{\forall, \exists\}$ for all s = 1, ..., k, we say that $\rho_1 \cdots \rho_k$ over \mathbb{Q} is undecidable if there is no algorithm to decide for any polynomial $P(x_1, ..., x_k)$ over \mathbb{Q} whether

$$\rho_1 x_1 \cdots \rho_k x_k [P(x_1, \dots, x_k) = 0]$$

or not. For convenience we adopt certain abbreviation, for example, $\forall^2 \exists^3$ denotes $\forall \forall \exists \exists \exists$.

Combining Theorem 1.1 and its proof with a result of Sun [15, Theorem 1.1], we obtain the following theorem.

Theorem 1.3. $\forall^9 \exists^{32} \text{ over } \mathbb{Q} \text{ is undecidable, i.e., there is no algorithm to determine for any <math>P(x_1, \ldots, x_{41}) \in \mathbb{Z}[x_1, \ldots, x_{41}]$ whether

$$\forall x_1 \cdots \forall x_9 \exists y_1 \cdots \exists y_{32} [P(x_1, \dots, x_9, y_1, \dots, y_{32}) = 0].$$

Also, $\exists^9 \forall^{32} \exists \text{ over } \mathbb{Q} \text{ and } \exists^{10} \forall^{31} \exists \text{ over } \mathbb{Q} \text{ are undecidable.}$

We remark that Sun [16] obtained some undecidability results on mixed quantifier prefixes over diophantine equations with integer variables; for example, he proved that $\forall^2 \exists^4$ over \mathbb{Z} is undecidable.

In the next section we will prove Theorem 1.2. Sections 3 and 4 are devoted to our proofs of Theorems 1.1 and 1.3 respectively.

2. Proof of Theorem 1.2

Proof of Theorem 1.2. Clearly,

$$I_k(x_1,\ldots,x_k,x,y) = \prod_{\varepsilon_1,\ldots,\varepsilon_k \in \{\pm 1\}} (x + \varepsilon_1 x_1 + \varepsilon_2 x_2 y + \cdots + \varepsilon_k x_k y^{k-1}).$$

is a polynomial with integer coefficients. As

$$I_k(x_1,\ldots,x_k,x,y) = \prod_{\substack{\varepsilon_i \in \{\pm 1\} \text{ for } i \neq t}} \left(\left(x + \sum_{\substack{s=1\\s \neq t}}^k \varepsilon_s x_s y^{s-1} \right)^2 - x_t^2 y^{2(t-1)} \right)$$

for all $t = 1, \ldots, k$, we see that

$$I_k(x_1, \dots, x_k, x, y) = I_k^*(x_1^2, \dots, x_k^2, x, y)$$

for some polynomial I_k^\ast with integer coefficients. Note that

$$\mathcal{J}_k(x_1, \dots, x_k, x) = \prod_{s=1}^k x_s^{(k-1)2^{k+1}} \times I_k^* \left(x_1, \dots, x_k, x, \left(k + \sum_{j=1}^k x_j^2 \right) \left(1 + \sum_{j=1}^k x_j^{-2} \right) \right)$$

is a polynomial with integer coefficients.

Now let $A_1, \ldots, A_k \in \mathbb{Q}^*$. We claim that for any rational number

$$W_k \ge \frac{1 + \sum_{s=1}^k |\sqrt{A_s}|}{\min\{|\sqrt{A_1}|, \dots, |\sqrt{A_k}|\}},$$
(2.1)

we have

 $A_1, \dots, A_k \in \Box \iff \exists x [I_k^*(A_1, \dots, A_k, x, W_k) = 0].$

The " \Rightarrow " direction is easy. If $A_1 = a_1^2, \ldots, A_k = a_k^2$ for some $a_1, \ldots, a_k \in \mathbb{Q}$, then, for $x = a_1 + a_2 W_k + \cdots + a_k W_k^{k-1} \in \mathbb{Q}$ we have $I_k^*(A_1, \ldots, A_k, x, W_k) = 0$.

We use induction on k to prove the " \Leftarrow " direction of the claim. In the case k = 1, if $I_1^*(A_1, x, W_1) = x^2 - A_1$ is zero for some $x \in \mathbb{Q}$ then we obviously have $A_1 \in \square$.

Now let k > 1 and assume that the " \Leftarrow " direction of the claim holds for all smaller values of k. Let W_k be any rational number satisfying the inequality (2.1). Suppose that $I_k^*(A_1, \ldots, A_k, x, W_k) = 0$ for some $x \in \mathbb{Q}$. Then there are $\varepsilon_1, \ldots, \varepsilon_k \in \{\pm 1\}$ such that

$$x + \sum_{s=1}^{k} \varepsilon_s \sqrt{A_s} W_k^{s-1} = 0.$$

If $A_k = a_k^2$ for some $a_k \in \mathbb{Q}$, then, for $x' = x + \varepsilon_k |a_k| W_k^{k-1}$ we have

$$x' + \varepsilon_1 \sqrt{A_1} + \varepsilon_2 \sqrt{A_2} W_k + \dots + \varepsilon_{k-1} \sqrt{A_{k-1}} W_k^{k-2} = 0$$

and hence $I_{k-1}^*(A_1, ..., A_{k-1}, x', W_k) = 0$. Note that

$$|\sqrt{A_t}|W_k \ge 1 + \sum_{s=1}^k |\sqrt{A_s}| \ge 1 + \sum_{s=1}^{k-1} |\sqrt{A_s}|$$

for each t = 1, ..., k - 1. So, in the case $A_k \in \Box$, we get $A_1, ..., A_{k-1} \in \Box$ by the induction hypothesis.

To finish the induction step, it remains to prove $A_k \in \Box$. As the characteristic of \mathbb{Q} is zero, $\mathbb{Q}(\sqrt{A_s})$ is a Galois extension of \mathbb{Q} for any $s = 1, \ldots, k$. Thus

$$\mathbb{Q}(\sqrt{A_1},\ldots,\sqrt{A_k}) = \mathbb{Q}(\sqrt{A_1})\cdots\mathbb{Q}(\sqrt{A_k})$$

is also a Galois extension of \mathbb{Q} in view of [10, p. 50, Problem 10(d)]. Suppose that $A_k \notin \square$. Then $\sqrt{A_k} \notin \mathbb{Q}$, and hence there is an automorphism $\sigma \in$ $\operatorname{Gal}(K/\mathbb{Q})$ with $\sigma(\sqrt{A_k}) \neq \sqrt{A_k}$, where $K = \mathbb{Q}(\sqrt{A_1}, \ldots, \sqrt{A_k})$. Recall that

$$0 = x + \sum_{s=1}^{k} \varepsilon_s \sqrt{A_s} W_k^{s-1}.$$

Hence

$$0 = 0 - \sigma(0) = \sum_{s=1}^{k} \varepsilon_s (\sqrt{A_s} - \sigma(\sqrt{A_s})) W_k^{s-1}.$$
 (2.2)

Note that $\sigma(\sqrt{A_k}) = -\sqrt{A_k}$, and $\sigma(\sqrt{A_s}) \in \{\pm \sqrt{A_s}\}$ for all $s = 1, \ldots, k-1$. Thus, by (2.2) we have

$$2|\sqrt{A_k}|W_k^{k-1} = |2\varepsilon_k\sqrt{A_k}W_k^{k-1}| \le \sum_{s=1}^{k-1} 2|\sqrt{A_s}|W_k^{s-1}.$$

On the other hand,

$$\begin{split} |\sqrt{A_k}|W_k^{k-1} \ge & W_k^{k-2} \left(1 + \sum_{s=1}^k |\sqrt{A_s}|\right) \\ > & W_k^{k-2} \sum_{s=1}^{k-1} |\sqrt{A_s}| \ge \sum_{s=1}^{k-1} |\sqrt{A_s}|W_k^{s-1}. \end{split}$$

So we get a contradiction and this concludes our proof of the claim. Note that

$$W := \left(\sum_{s=1}^{k} (1+A_s^2)\right) \left(1+\sum_{s=1}^{k} A_s^{-2}\right)$$
$$= \sum_{s=1}^{k} (1+A_s^2) + \sum_{r=1}^{k} \sum_{s=1}^{k} A_r^{-2} (1+A_s^2).$$

For $0 \leq \alpha \leq 1$ clearly $1 + \alpha^4 \geq 1 \geq \alpha$; if $\alpha \geq 1$ then $1 + \alpha^4 \geq \alpha^4 \geq \alpha$. So $1 + \alpha^4 \geq \alpha$ for all $\alpha \geq 0$, and hence $1 + A_s^2 \geq |\sqrt{A_s}|$ for all $s = 1, \ldots, k$. Therefore,

$$W \ge \sum_{s=1}^{k} (1 + A_s^2) + 1 \ge 1 + \sum_{s=1}^{k} |\sqrt{A_s}|.$$

If $t \in \{1, \ldots, k\}$ and $|A_t| \ge 1$, then

$$|\sqrt{A_t}|W \ge W \ge 1 + \sum_{s=1}^k |\sqrt{A_s}|.$$

If $1 \le t \le k$ and $|A_t| < 1$, then $|\sqrt{A_t}| = |A_t|^{1/2} > A_t^2$ and hence

$$\begin{split} |\sqrt{A_t}|W \ge |\sqrt{A_t}| \left(1 + \sum_{s=1}^k A_t^{-2} (1 + A_s^2)\right) \\ \ge |\sqrt{A_t}| + \sum_{s=1}^k (1 + A_s^2) = |\sqrt{A_t}| + (1 + A_t^2) + \sum_{\substack{s=1\\s \neq t}}^k (1 + A_s^2) \\ \ge 1 + \sum_{s=1}^k |\sqrt{A_s}|. \end{split}$$

Therefore the inequality (2.1) holds if we take $W_k = W$. Applying the proved claim we immediately obtain the desired result. This concludes our proof of Theorem 1.2.

3. Proof of Theorem 1.1

Let p be any prime. As usual, we let \mathbb{Q}_p and \mathbb{Z}_p denote the p-adic field and the ring of p-adic integers respectively. We also define

$$\mathbb{Z}_{(p)} = \mathbb{Q} \cap \mathbb{Z}_p = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ and } p \nmid b \right\}.$$

D. Flath and S. Wagon [6] attributed the following lemma as an observation of J. Robinson, but we cannot find it in any of Robinson's papers.

Lemma 3.1. Let r be any rational number. Then

$$r \in \mathbb{Z}_{(2)} \iff \exists x \exists y \exists z [7r^2 + 2 = x^2 + y^2 + z^2].$$

$$(3.1)$$

Proof. The Gauss-Legendre theorem on sums of three squares (cf. [11, pp. 17-23])) states that $n \in \mathbb{N} = \{0, 1, \ldots\}$ is a sum of three integer squares if and only if $n \notin \{4^k(8m+7): k, m \in \mathbb{N}\}$.

If r = a/b with $a, b \in \mathbb{Z}$ and $2 \nmid b$, then $7a^2 + 2b^2 \equiv 2 - a^2 \equiv 1, 2 \pmod{4}$ and hence $7a^2 + 2b^2$ is a sum of three squares, thus $7r^2 + 2 = (7a^2 + 2b^2)/b^2$ can be expressed as $x^2 + y^2 + z^2$ with $x, y, z \in \mathbb{Q}$.

Suppose that r = a/b with $a, b \in \mathbb{Z}$, $2 \nmid a, b \neq 0$ and $2 \mid b$. If $7r^2 + 2 = x^2 + y^2 + z^2$ for some $x, y, z \in \mathbb{Q}$, then there is a nonzero integer c such that $c^2(7r^2 + 2)$ is a sum of three integer squares and hence $c^2(7r^2 + 2) \notin \{4^k(8m + 7) : k, m \in \mathbb{N}\}$. Note that any odd square is congruent to 1 modulo 8 and $7a^2 + 2b^2 \equiv 7 \pmod{8}$ as $2 \nmid a$ and $2 \mid b$. Thus the integer $c^2(7r^2 + 2) = (c/b)^2(7a^2 + 2b^2)$ has the form $(2^k)^2(8m + 7)$ with $k, m \in \mathbb{N}$ which leads to a contradiction.

In view of the above, we have completed the proof of Lemma 3.1.

For any prime p and $t \in \mathbb{Q}$, as usual we denote the p-adic valuation of t by $\nu_p(t)$. For $A \subseteq \mathbb{Q}$ we define $A^{\times} = \{a \in A \setminus \{0\} : a^{-1} \in A\}$.

Lemma 3.2. Let p be a prime, and let $t \in \mathbb{Q}$. Then

$$t \in \mathbb{Z}_{(p)}^{\times} \iff t \neq 0 \land (t + t^{-1} \in \mathbb{Z}_{(p)}).$$
(3.2)

Proof. For $t \in \mathbb{Q}^*$, we have $\nu_p(t^{-1}) = -\nu_p(t)$. So the desired result follows.

Remark 3.1. This easy lemma was used by Daans [2].

For first-order formulas ψ_1, \ldots, ψ_k , we simply write

 $\psi_1 \lor \cdots \lor \psi_k$ and $\psi_1 \land \cdots \land \psi_k$

as $\bigvee_{s=1}^{k} \psi_s$ and $\bigwedge_{s=1}^{k} \psi_s$ respectively.

Definition 3.1. We set $\Box^* = \{x^2 : x \in \mathbb{Q}^*\}$. A subset T of \mathbb{Q} is said to be *m*-good if there are polynomials

 $f_s(t, x_1, \dots, x_m), \ g_{s1}(t, x_1, \dots, x_m), \dots, g_{s\ell_s}(t, x_1, \dots, x_m) \ (s = 1, \dots, k)$

with integer coefficients such that a rational number t belongs to T if and only if

$$\exists x_1 \cdots \exists x_m \bigg[\bigvee_{s=1}^k \bigg(f_s(t, x_1, \dots, x_m) = 0 \land \bigwedge_{j=1}^{\ell_s} (g_{sj}(t, x_1, \dots, x_m) \in \Box^*) \bigg) \bigg].$$

Remark 3.2. (i) Clearly a rational number t is nonzero if and only if $t^2 \in \square^*$. For any polynomial $P(x) \in \mathbb{Z}[x]$ of degree d, we have $x^{2d}P(x^{-1}) \in \mathbb{Z}[x]$, and

$$t^{2d}P(t^{-1}) \in \Box^* \iff P(t^{-1}) \in \Box^*$$

for all $t \in \mathbb{Q}^*$.

(ii) For any $a, b \in \mathbb{Q}$, clearly $(a = 0 \land b = 0) \iff a^2 + b^2 = 0$. In view of this and the distributive law concerning disjunction and conjunction, if $S \subseteq \mathbb{Q}$ is *m*-good and $T \subseteq \mathbb{Q}$ is *n*-good then $S \cap T$ is (m + n)-good.

Lemma 3.3. Both $\mathbb{Z}_{(2)}$ and $\mathbb{Z}_{(2)}^{\times}$ are 2-good.

Proof. For any $t \in \mathbb{Q}$, by Lemma 3.1 we have

$$t \in \mathbb{Z}_{(2)} \iff \exists x \exists y [7t^2 + 2 - x^2 - y^2 \in \Box].$$

Note also that

$$t \in \mathbb{Z}_{(2)}^{\times} \iff t \neq 0 \land (t + t^{-1} \in \mathbb{Z}_{(2)})$$

by Lemma 3.2. Combining these with Remark 3.2 we immediately get the desired result. $\hfill \Box$

Let $a, b \in \mathbb{Q}^*$. As in Poonen [13], we define

$$S_{a,b} = \{2x_1 \in \mathbb{Q} : \exists x_2 \exists x_3 \exists x_4 [x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1]\}$$
(3.3)

and

$$T_{a,b} = \{x + y : x, y \in S_{a,b}\}.$$
(3.4)

Lemma 3.4. Let $a, b \in \mathbb{Q}^*$ with a > 0 or b > 0. Then $T_{a,b}$ and $T_{a,b}^{\times}$ are 5-good.

Proof. Let
$$r \in \mathbb{Q}$$
. Note that $\left(\frac{r}{2}\right)^2 - a\left(\frac{x}{2}\right)^2 - b\left(\frac{y}{2}\right)^2 + ab\left(\frac{z}{2}\right)^2 = 1 \iff ab(4 - r^2 + ax^2 + by^2) = (abz)^2$. So

$$r \in S_{a,b} \iff \exists x \exists y [ab(4 - r^2 + ax^2 + by^2) \in \Box]$$
$$\iff \exists x \exists y [ab(4 - r^2 + ax^2 + by^2) = 0 \lor ab(4 - r^2 + ax^2 + by^2) \in \Box^*]$$

and hence $S_{a,b}$ is 2-good.

For $t \in \mathbb{Q}$, we obviously have

$$t \in T_{a,b} \iff \exists r (r \in S_{a,b} \land t - r \in S_{a,b}).$$

As $S_{a,b}$ is 2-good, $T_{a,b}$ is 5-good by Remark 3.2(ii).

By Koenigsmann [7, Proposition 6],

$$T_{a,b}^{\times} = \bigcap_{p \in \Delta_{a,b}} \mathbb{Z}_{(p)}^{\times},$$

where

$$\Delta_{a,b} = \{p : p \text{ is prime and } (a,b)_p = -1\}$$

with $(a, b)_p$ the Hilbert symbol. (We view an empty intersection of subsets of \mathbb{Q} as \mathbb{Q} , thus $T_{a,b}^{\times} = \mathbb{Q}$ if $\Delta_{a,b} = \emptyset$.) Let $t \in \mathbb{Q}^*$. By Lemma 3.2, we have

$$t \in T_{a,b}^{\times} \iff \forall p \in \Delta_{a,b}(t+t^{-1} \in \mathbb{Z}_{(p)}) \iff t+t^{-1} \in T_{a,b}.$$

In view of Remark 3.2, from the above we see that $T_{a,b}^{\times}$ is 5-good.

The proof of Lemma 3.4 is now complete.

For $S, T \subseteq \mathbb{Q}$ we set

$$ST = \{st : s \in S \text{ and } t \in T\}.$$

For $a, b, c \in \mathbb{Q}^*$ with a > 0 or b > 0, we define

$$J_{a,b}^{c} = T_{a,b} \{ cy^{2} : y \in \mathbb{Q} \text{ and } 1 - cy^{2} \in \Box T_{a,b}^{\times} \}.$$
 (3.5)

By Koenigsmann [7, Proposition 6] and Daans [2, Lemma 5.4],

$$J_{a,b}^{c} = \bigcap_{\substack{p \in \Delta_{a,b} \\ 2 \nmid \nu_{p}(c)}} p \mathbb{Z}_{(p)}.$$
(3.6)

Lemma 3.5. Let $a, b, c \in \mathbb{Q}^*$ with a > 0 or b > 0. Then $J_{a,b}^c$ is 12-good.

Proof. As $0 \in J_{a,b}^c$ by (3.6), we have $T_{a,b}^{\times} \neq \emptyset$. For any $x \in \mathbb{Q}$, clearly

$$x \in \Box T_{a,b}^{\times} \iff x = 0 \lor \exists y (xy^2 \in T_{a,b}^{\times}).$$

So $\Box T_{a,b}^{\times}$ is 6-good in light of Lemma 3.4. As $\pm 2 \in S_{a,b}$, both $T_{a,b}$ and $J_{a,b}^c$ contain 0. Let $x \in \mathbb{Q}$. Note that

$$x \in J_{a,b}^c \iff x = 0 \lor \exists y \neq 0 \left[\frac{x}{cy^2} \in T_{a,b} \land (1 - cy^2 \in \Box T_{a,b}^{\times}) \right]$$

Thus, with the aid of Remark 3.2 and Lemma 3.4, we see that $J_{a,b}^c$ is 12-good.

Proof of Theorem 1.1. Let $t \in \mathbb{Q}$. Clearly,

$$t \in \mathbb{Q} \setminus \mathbb{Z} \iff t \neq 0 \wedge t^{-1} \in \bigcup_{p \in \mathbb{P}} p\mathbb{Z}_{(p)},$$

where \mathbb{P} is the set of all primes. By Daans [2, (1)], we have

$$\bigcup_{p \in \mathbb{P}} p\mathbb{Z}_{(p)} = 2\mathbb{Z}_{(2)} \cup \bigcup_{(a,b) \in \Phi} (J^a_{a,b} \cap J^{2b}_{a,b}),$$
(3.7)

where

$$\Phi = \{ (1 + 4u^2, 2v) : u, v \in \mathbb{Z}_{(2)}^{\times} \}.$$
(3.8)

In view of this and Lemma 3.1, when $t \neq 0$ we have

$$\begin{split} t \not\in \mathbb{Z} &\iff \frac{1}{2t} \in \mathbb{Z}_{(2)} \lor \exists u \exists v \left[u, v \in \mathbb{Z}_{(2)}^{\times} \land \frac{1}{t} \in J_{1+4u^{2}, 2v}^{1+4u^{2}} \cap J_{1+4u^{2}, 2v}^{4v} \right] \\ &\iff \exists u \exists v \left(\frac{7}{4t^{2}} + 2 - u^{2} - v^{2} \in \Box \right) \\ &\lor \exists u \exists v \left[u, v \in \mathbb{Z}_{(2)}^{\times} \land \frac{1}{t} \in J_{1+4u^{2}, 2v}^{1+4u^{2}} \cap J_{1+4u^{2}, 2v}^{4v} \right] \\ &\iff \exists u \exists v \left[8t^{2} + 7 - u^{2} - v^{2} \in \Box \right] \\ &\lor \left(u, v \in \mathbb{Z}_{(2)}^{\times} \land t^{-1} \in J_{1+4u^{2}, 2v}^{1+4u^{2}} \land t^{-1} \in J_{1+4u^{2}, 2v}^{4v} \right) \right]. \end{split}$$

Combining this with Lemmas 3.3 and 3.5, we obtain that $\mathbb{Q} \setminus \mathbb{Z}$ is 30-good in view of Remark 3.2.

By the above, there are polynomials

 $f_s(t, x_1, \dots, x_{30}), g_{s1}(t, x_1, \dots, x_{30}), \dots, g_{s\ell_s}(t, x_1, \dots, x_{30}) \ (s = 1, \dots, k)$

with integer coefficients such that a rational number t is not an integer if and only if

$$\exists x_1 \cdots \exists x_{30} \bigg[\bigvee_{s=1}^k \bigg(f_s(t, x_1, \dots, x_{30}) = 0 \land \bigwedge_{j=1}^{\ell_s} (g_{sj}(t, x_1, \dots, x_{30}) \in \Box^*) \bigg) \bigg].$$

Note that

$$g_{sj}(t, x_1, \dots, x_{30}) \neq 0$$
 for all $j = 1, \dots, \ell_s$

if and only if

$$x_{31} \prod_{j=1}^{\ell_s} g_{sj}(t, x_1, \dots, x_{30}) - 1 = 0$$

for some $x_{31} \in \mathbb{Q}$. By Theorem 1.2, when $\prod_{j=1}^{\ell_s} g_{sj}(t, x_1, \ldots, x_{30}) \neq 0$, we have

 $g_{sj}(t, x_1, \dots, x_{30}) \in \Box$ for all $j = 1, \dots, \ell_s$

if and only if

$$\mathcal{J}_{\ell_s}\left(g_{s1}(t, x_1, \dots, x_{30}), \dots, g_{s\ell_s}(t, x_1, \dots, x_{30}), x_{32}\right) = 0$$

for some $x_{32} \in \mathbb{Q}$. Combining these we see that $t \notin \mathbb{Z}$ if and only if there are $x_1, \ldots, x_{32} \in \mathbb{Q}$ such that the product of all those

$$f_s(t, x_1, \dots, x_{30})^2 + \left(x_{31} \prod_{j=1}^{\ell_s} g_{sj}(t, x_1, \dots, x_{30}) - 1\right)^2 + \mathcal{J}_{\ell_s}(g_{s1}(t, x_1, \dots, x_{30}), \dots, g_{s\ell_s}(t, x_1, \dots, x_{30}), x_{32})^2$$

 $(s=1,\ldots,k)$ is zero.

In the spirit of the above proof, we can actually construct an explicit polynomial $P(t, x_1, \ldots, x_{32})$ with integer coefficients satisfying (1.1) with the total degree of P smaller than 2.1×10^{11} . This concludes our proof of Theorem 1.1.

4. Proof of Theorem 1.3

It is known that each nonnegative integer can be written as a sum of four squares of rational numbers. This result due to Euler (cf. [12]) is weaker than Lagrange's four-square theorem (cf. [11, pp. 5-7]). Clearly, any nonnegative rational number can be written as $a/b = (ab)/b^2$ with $a, b \in \mathbb{N}$ and b > 0. So we have the following lemma.

Lemma 4.1. Let $r \in \mathbb{Q}$. Then

$$r \ge 0 \iff \exists w \exists x \exists y \exists z [r = w^2 + x^2 + y^2 + z^2].$$

$$(4.1)$$

We also need a known result of Sun [15, Theorem 1.1].

Lemma 4.2 (Sun [15]). Let $\mathcal{A} \subseteq \mathbb{N}$ be an r.e. (recursively enumerable) set.

(i) There is a polynomial $P_{\mathcal{A}}(x_0, x_1, \ldots, x_9)$ with integer coefficients such that for any $a \in \mathbb{N}$ we have $a \in \mathcal{A}$ if and only if $P_{\mathcal{A}}(a, x_1, \ldots, x_9) = 0$ for some $x_1, \ldots, x_9 \in \mathbb{Z}$ with $x_9 \geq 0$.

(ii) There is a polynomial $Q_{\mathcal{A}}(x_0, x_1, \ldots, x_{10})$ with integer coefficients such that for any $a \in \mathbb{N}$ we have $a \in \mathcal{A}$ if and only if $Q_{\mathcal{A}}(a, x_1, \ldots, x_{10}) = 0$ for some $x_1, \ldots, x_{10} \in \mathbb{Z}$ with $x_{10} \neq 0$.

Proof of Theorem 1.3. It is well known that there are nonrecursive r.e. sets (see, e.g., [1, pp. 140-141]). Let us take any nonrecursive r.e. set $\mathcal{A} \subseteq \mathbb{N}$.

(i) Let $P_{\mathcal{A}}$ and P be polynomials as in Lemma 4.2 and Theorem 1.1. In view of Lemmas 4.1-4.2 and Theorem 1.1, for any $a \in \mathbb{N}$ we have

$$a \notin \mathcal{A} \iff \forall x_1 \cdots \forall x_9 [\neg (x_1, \dots, x_9 \in \mathbb{Z} \land x_9 \ge 0) \lor P_{\mathcal{A}}(a, x_1, \dots, x_9) \neq 0]$$

$$\iff \forall x_1 \cdots \forall x_9 \left[\bigvee_{t=1}^9 (x_t \notin \mathbb{Z}) \lor x_9 < 0 \lor P_{\mathcal{A}}(a, x_1, \dots, x_9) \neq 0 \right]$$

$$\iff \forall x_1 \cdots \forall x_9 \left[\bigvee_{t=1}^9 \exists y_1 \cdots \exists y_{32} (P(x_t, y_1, \dots, y_{32}) = 0) \\ \lor -x_9 > 0 \lor \exists y_1 (y_1 P_{\mathcal{A}}(a, x_1, \dots, x_9) - 1 = 0) \right]$$

$$\iff \forall x_1 \cdots \forall x_9 \exists y_1 \cdots \exists y_{32} [P_0(a, x_1, \dots, x_9, y_1, \dots, y_{32}) = 0],$$

where

$$P_0(a, x_1, \dots, x_9, y_1, \dots, y_{32})$$

= $(y_1 P_A(a, x_1, \dots, x_9) - 1) \prod_{t=1}^9 P(x_t, y_1, \dots, y_{32})$
 $\times ((x_9 y_1 - 1)^2 + (x_9 + y_2^2 + y_3^2 + y_4^2 + y_5^2)^2).$

It follows that for any $a \in \mathbb{N}$ we have

$$a \in \mathcal{A} \iff \exists x_1 \cdots \exists x_9 \forall y_1 \cdots \forall y_{32} \exists y_{33} [y_{33} P_0(a, x_1, \dots, x_9, y_1, \dots, y_{32}) - 1 = 0]$$

As both \mathcal{A} and $\mathbb{N} \setminus \mathcal{A}$ are nonrecursive, by the above we get that $\forall^9 \exists^{32}$ over \mathbb{Q} and $\exists^9 \forall^{32} \exists$ over \mathbb{Q} are undecidable. (ii) Let \mathcal{Q}_4 be the polynomial in Lemma 4 2(ii). For any $a \in \mathbb{N}$ we have

(ii) Let
$$Q_{\mathcal{A}}$$
 be the polynomial in Lemma 4.2(ii). For any $a \in \mathbb{N}$, we have
 $a \notin \mathcal{A} \iff \forall x_1 \cdots \forall x_{10} [\neg (x_1, \dots, x_{10} \in \mathbb{Z} \land x_{10} \neq 0) \lor Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) \neq 0]$
 $\iff \forall x_1 \cdots \forall x_{10} \left[\bigvee_{t=1}^{10} (x_t \notin \mathbb{Z}) \lor x_{10} = 0 \lor Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) \neq 0 \right].$

By the proof of Theorem 1.1, $\mathbb{Q} \setminus \mathbb{Z}$ is 30-good. Thus, in view of Theorem 1.2, there are polynomials

$$f_s(x, y_1, \dots, y_{31})$$
 and $g_s(x, y_1, \dots, y_{31})$ $(s = 1, \dots, k)$

with integer coefficients such that for any $x\in \mathbb{Q}$ we have

$$x \notin \mathbb{Z} \iff \exists y_1 \cdots \exists y_{31} \bigg[\bigvee_{s=1}^k (f_s(x, y_1, \dots, y_{31}) = 0 \land g_s(x, y_1, \dots, y_{31}) \neq 0) \bigg]$$

Thus, for any $a \in \mathbb{N}$, we have

$$a \notin \mathcal{A} \iff \forall x_1 \cdots \forall x_{10} \exists y_1 \cdots \exists y_{31}$$
$$\left[\bigvee_{t=1}^{10} \left(\bigvee_{s=1}^k (f_s(x_t, y_1, \dots, y_{31}) = 0 \land g_s(x_t, y_1, \dots, y_{31}) \neq 0) \\ \lor x_{10} = 0 \lor Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) \neq 0 \right) \right]$$

and hence

$$a \in \mathcal{A} \iff \exists x_1 \cdots \exists x_{10} \forall y_1 \cdots \forall y_{31}$$
$$\left[\bigwedge_{t=1}^{10} \left(\bigwedge_{s=1}^k (f_s(x_t, y_1, \dots, y_{31}) \neq 0 \lor g_s(x_t, y_1, \dots, y_{31}) = 0 \right) \land x_{10} \neq 0 \land Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) = 0 \right) \right].$$

Let $\Gamma = \{1, \ldots, k\} \times \{1, \ldots, 10\}$. By the distributive law concerning disjunction and conjunction,

$$\bigwedge_{t=1}^{10} \bigwedge_{s=1}^{k} (f_s(x_t, y_1, \dots, y_{31}) \neq 0 \lor g_s(x_t, y_1, \dots, y_{31}) = 0)$$

is equivalent to

$$\bigvee_{\Delta \subseteq \Gamma} \bigg(\bigwedge_{(s,t) \in \Delta} (f_s(x_t, y_1, \dots, y_{31}) \neq 0) \land \bigwedge_{(s',t') \in \Gamma \setminus \Delta} (g_{s'}(x_{t'}, y_1, \dots, y_{31}) = 0) \bigg).$$

Thus, for any $a \in \mathbb{N}$, we have

$$\begin{aligned} a \in \mathcal{A} \iff \exists x_1 \cdots \exists x_{10} \forall y_1 \cdots \forall y_{31} \\ & \left[\bigvee_{\Delta \subseteq \Gamma} \left(x_{10} \prod_{(s,t) \in \Delta} f_s(x_t, y_1, \dots, y_{31}) \neq 0 \right. \\ & \wedge \bigwedge_{(s',t') \in \Gamma \setminus \Delta} (g_{s'}(x_{t'}, y_1, \dots, y_{31}) = 0) \wedge Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) = 0 \right) \right] \\ \iff \exists x_1 \cdots \exists x_{10} \forall y_1 \cdots \forall y_{31} \exists z \\ & \left[\bigvee_{\Delta \subseteq \Gamma} \left(1 - z x_{10} \prod_{(s,t) \in \Delta} f_s(x_t, y_1, \dots, y_{31}) = 0 \right. \\ & \wedge \bigwedge_{(s',t') \in \Gamma \setminus \Delta} (g_{s'}(x_{t'}, y_1, \dots, y_{31}) = 0) \wedge Q_{\mathcal{A}}(a, x_1, \dots, x_{10}) = 0 \right) \right] \end{aligned}$$

and hence

 $a \in \mathcal{A} \iff \exists x_1 \cdots \exists x_{10} \forall y_1 \cdots \forall y_{31} \exists z [P_1(a, x_1, \dots, x_{10}, y_1, \dots, y_{31}, z) = 0],$

where we view an empty product as 1, and $P_1(a, x_1, \ldots, x_{10}, y_1, \ldots, y_{31}, z)$ stands for the product of

$$\left(1 - zx_{10} \prod_{(s,t)\in\Delta} f_s(x_t, y_1, \dots, y_{31})\right)^2 + \sum_{(s',t')\in\Gamma\setminus\Delta} g_{s'}(x_{t'}, y_1, \dots, y_{31})^2 + Q_{\mathcal{A}}(a, x_1, \dots, x_{10})^2$$

over $\Delta \subseteq \Gamma$. As \mathcal{A} is nonrecursive, we obtain that $\exists^{10} \forall^{31} \exists$ over \mathbb{Q} is undecidable.

In view of the above, we have completed the proof of Theorem 1.3. \Box

Acknowledgment. The authors would like to thank the referee for helpful comments.

References

- [1] N. Cutland, Computability, Cambridge Univ. Press, Cambridge, 1980.
- [2] N. Daans, Universally defining finite generated subrings of global fields, Doc. Math. 26 (2021), 1851–1869.
- [3] N. Daans, P. Dittmann and A. Fehm, Existential rank and essential dimension of Diophantine sets, preprint, arXiv:2102.06941, 2021.
- M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
- [5] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math. 74 (1961), 425–436.
- [6] D. Flath and S. Wagon, How to pick out the integers in the rationals: an application of number theory to logic? Amer. Math. Monthly 98 (1991), 812–823.
- [7] J. Koenigsmann, Defining \mathbb{Z} in \mathbb{Q} , Annals of Math. 183 (2016), 73–93.
- [8] Yu. Matiyasevich, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279–282; English translation with addendum, Soviet Math. Doklady 11 (1970), 354–357.
- [9] Yu. Matiyasevich and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521–553.
- [10] P. Morandi, Fields and Galois Theory, Grad. Texts in Math. 167, Springer, New York, 1996.
- [11] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
- [12] H. Pieper, On Euler's contributions to the four-squares theorem, Historia Math. 20 (1993), 12–18.
- [13] B. Poonen, Characterizing integers among rational numbers with a universalexistential formula, Amer. J. Math. 131 (2009), 675–682.
- [14] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98–114.
- [15] Z.-W. Sun, Further results on Hilbert's Tenth Problem, Sci. China Math. 64 (2021), 281–306.
- [16] Z.-W. Sun, Mixed quantifier prefixes over Diophantine equations with integer variables, preprint, arXiv:2103.08302, 2021.

12

(GENG-RUI ZHANG) SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEI-JING 100871, PEOPLE'S REPUBLIC OF CHINA *E-mail address*: grzhang@stu.pku.edu.cn

(ZHI-WEI SUN, CORRESPONDING AUTHOR) DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, PEOPLE'S REPUBLIC OF CHINA *E-mail address:* zwsun@nju.edu.cn