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Q \ Z IS DIOPHANTINE OVER Q WITH 32 UNKNOWNS

GENG-RUI ZHANG AND ZHI-WEI SUN?

Abstract. In 2016 J. Koenigsmann refined a celebrated theorem of J.
Robinson by proving that Q \ Z is diophantine over Q, i.e., there is a
polynomial P (t, x1, . . . , xn) ∈ Z[t, x1, . . . , xn] such that for any rational
number t we have

t 6∈ Z ⇐⇒ ∃x1 · · · ∃xn[P (t, x1, . . . , xn) = 0]

where variables range over Q, equivalently

t ∈ Z ⇐⇒ ∀x1 · · · ∀xn[P (t, x1, . . . , xn) 6= 0].

In this paper we prove that we may take n = 32. Combining this with
a result of Z.-W. Sun, we show that there is no algorithm to decide for
any f(x1, . . . , x41) ∈ Z[x1, . . . , x41] whether

∀x1 · · · ∀x9∃y1 · · · ∃y32[f(x1, . . . , x9, y1, . . . , y32) = 0],

where variables range over Q.

1. Introduction

Hilbert’s Tenth Problem (HTP) asks for an algorithm to determine for any
given polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn] whether the diophantine e-
quation P (x1, . . . , xn) = 0 has solutions x1, . . . , xn ∈ Z. This was solved neg-
atively by Yu. Matiyasevich [8] in 1970, on the basis of the important work of
M. Davis, H. Putnam and J. Robinson [5]; see also Davis [4] for a nice intro-
duction. Z.-W. Sun [15] proved his 11 unknowns theorem which states that
there is no algorithm to determine for any P (x1, . . . , x11) ∈ Z[x1, . . . , x11]
whether the equation P (x1, . . . , x11) = 0 has solutions over Z.

It remains open whether HTP over Q is undecidable. However, Robinson
[14] used the theory of quadratic forms to prove that one can characterize Z
by using the language of Q in the following way: For any t ∈ Q we have

t ∈ Z ⇐⇒ ∀x1∀x2∃y1 · · · ∃y7∀z1 · · · ∀z6[f(t, x1, x2, y1, . . . , y7, z1, . . . , z6) = 0],

where f is a polynomial with integer coefficients. (Throughout this paper,
variables always range over Q.) In 2009 B. Poonen [13] improved this by
finding a polynomial F (t, x1, x2, y1, . . . , y7) with integer coefficients such that
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for any t ∈ Q we have

t ∈ Z ⇐⇒ ∀x1∀x2∃y1 · · · ∃y7[F (t, x1, x2, y1, . . . , y7) = 0].

In 2016 J. Koenigsmann [7] improved Poonen’s result by proving that the
set Q \Z is diophantine over Q, i.e., there is a polynomial P (t, x1, . . . , xn) ∈
Q[t, x1, . . . , xn] such that for any t ∈ Q we have

t 6∈ Z ⇐⇒ ∃x1 · · · ∃xn[P (t, x1, . . . , xn) = 0],

i.e.,

t ∈ Z ⇐⇒ ∀x1 · · · ∀xn[P (t, x1, . . . , xn) 6= 0].

The number n of unknowns in Koenigsmann’s diophantine representation of
Q \ Z over Q is over 400 but below 500. In 2018 N. Daans [2] significantly
simplified Koenigsmann’s approach and proved that Q\Z has a diophantine
representation over Q with 50 unknowns. The number 50 could be reduced
to 38 by applying a recent result [3, Theorem 1.4] obtained by model theory.

In this paper we establish the following new result.

Theorem 1.1. Q \ Z has a diophantine representation over Q with 32 un-
knowns, i.e., there is a polynomial P (t, x1, . . . , x32) ∈ Z[t, x1, . . . , x32] such
that for any t ∈ Q we have

t 6∈ Z ⇐⇒ ∃x1 · · · ∃x32[P (t, x1, . . . , x32) = 0]. (1.1)

Furthermore, the polynomial P can be constructed explicitly with degP <
2.1× 1011.

To obtain this theorem, we start from Daans’ work [2], and mainly use
a new relation-combining theorem on diophantine representations over Q
(which is an analogue of Matiyasevich and Robinson’s relation-combining
theorem [9, Theorem 1]) as an auxiliary tool. Now we state our relation-
combining theorem for diophantine representations over Q.

Theorem 1.2. Let Jk(x1, . . . , xk, x) denote the expression

k∏
s=1

x(k−1)2k+1

s ×
∏

ε1,...,εk∈{±1}

(
x+

k∑
s=1

εs
√
xsW (x1, . . . , xk)s−1

)
,

where

W (x1, . . . , xk) =

(
k +

k∑
s=1

x2
s

)(
1 +

k∑
s=1

x−2
s

)
.

Then Jk(x1, . . . , xk, x) is a polynomial with integer coefficients. Moreover,
for any A1, . . . , Ak ∈ Q∗ = Q \ {0}, we have

A1, . . . , Ak ∈ � ⇐⇒ ∃x[Jk(A1, . . . , Ak, x) = 0], (1.2)

where � = {r2 : r ∈ Q}.

Remark 1.1. In view of its proof, Theorem 1.2 can be generalized by re-
placing Q with any subfield of the real field R or any ordered field.
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When ρs ∈ {∀, ∃} for all s = 1, . . . , k, we say that ρ1 · · · ρk over Q is unde-
cidable if there is no algorithm to decide for any polynomial P (x1, . . . , xk)
over Q whether

ρ1x1 · · · ρkxk[P (x1, . . . , xk) = 0]

or not. For convenience we adopt certain abbreviation, for example, ∀2∃3

denotes ∀∀∃∃∃.
Combining Theorem 1.1 and its proof with a result of Sun [15, Theorem

1.1], we obtain the following theorem.

Theorem 1.3. ∀9∃32 over Q is undecidable, i.e., there is no algorithm to
determine for any P (x1, . . . , x41) ∈ Z[x1, . . . , x41] whether

∀x1 · · · ∀x9∃y1 · · · ∃y32[P (x1, . . . , x9, y1, . . . , y32) = 0].

Also, ∃9∀32∃ over Q and ∃10∀31∃ over Q are undecidable.

We remark that Sun [16] obtained some undecidability results on mixed
quantifier prefixes over diophantine equations with integer variables; for ex-
ample, he proved that ∀2∃4 over Z is undecidable.

In the next section we will prove Theorem 1.2. Sections 3 and 4 are
devoted to our proofs of Theorems 1.1 and 1.3 respectively.

2. Proof of Theorem 1.2

Proof of Theorem 1.2. Clearly,

Ik(x1, . . . , xk, x, y) =
∏

ε1,...,εk∈{±1}

(x+ ε1x1 + ε2x2y + · · ·+ εkxky
k−1).

is a polynomial with integer coefficients. As

Ik(x1, . . . , xk, x, y) =
∏

εi∈{±1} for i 6=t

((
x+

k∑
s=1
s 6=t

εsxsy
s−1

)2

− x2
t y

2(t−1)

)
for all t = 1, . . . , k, we see that

Ik(x1, . . . , xk, x, y) = I∗k(x2
1, . . . , x

2
k, x, y)

for some polynomial I∗k with integer coefficients. Note that

Jk(x1, . . . , xk, x) =
k∏

s=1

x(k−1)2k+1

s

× I∗k
(
x1, . . . , xk, x,

(
k +

k∑
j=1

x2
j

)(
1 +

k∑
j=1

x−2
j

))
is a polynomial with integer coefficients.

Now let A1, . . . , Ak ∈ Q∗. We claim that for any rational number

Wk ≥
1 +

∑k
s=1 |
√
As|

min{|
√
A1|, . . . , |

√
Ak|}

, (2.1)
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we have

A1, . . . , Ak ∈ � ⇐⇒ ∃x[I∗k(A1, . . . , Ak, x,Wk) = 0].

The “⇒” direction is easy. If A1 = a2
1, . . . , Ak = a2

k for some a1, . . . , ak ∈
Q, then, for x = a1+a2Wk+· · ·+akW k−1

k ∈ Q we have I∗k(A1, . . . , Ak, x,Wk) =
0.

We use induction on k to prove the “⇐” direction of the claim. In the case
k = 1, if I∗1 (A1, x,W1) = x2 − A1 is zero for some x ∈ Q then we obviously
have A1 ∈ �.

Now let k > 1 and assume that the “⇐” direction of the claim holds for all
smaller values of k. Let Wk be any rational number satisfying the inequality
(2.1). Suppose that I∗k(A1, . . . , Ak, x,Wk) = 0 for some x ∈ Q. Then there
are ε1, . . . , εk ∈ {±1} such that

x+
k∑

s=1

εs
√
AsW

s−1
k = 0.

If Ak = a2
k for some ak ∈ Q, then, for x′ = x+ εk|ak|W k−1

k we have

x′ + ε1

√
A1 + ε2

√
A2Wk + · · ·+ εk−1

√
Ak−1W

k−2
k = 0

and hence I∗k−1(A1, . . . , Ak−1, x
′,Wk) = 0. Note that

|
√
At|Wk ≥ 1 +

k∑
s=1

|
√
As| ≥ 1 +

k−1∑
s=1

|
√
As|

for each t = 1, . . . , k − 1. So, in the case Ak ∈ �, we get A1, . . . , Ak−1 ∈ �
by the induction hypothesis.

To finish the induction step, it remains to prove Ak ∈ �. As the charac-
teristic of Q is zero, Q(

√
As) is a Galois extension of Q for any s = 1, . . . , k.

Thus
Q(
√
A1, . . . ,

√
Ak) = Q(

√
A1) · · ·Q(

√
Ak)

is also a Galois extension of Q in view of [10, p. 50, Problem 10(d)]. Suppose
that Ak 6∈ �. Then

√
Ak 6∈ Q, and hence there is an automorphism σ ∈

Gal(K/Q) with σ(
√
Ak) 6=

√
Ak, where K = Q(

√
A1, . . . ,

√
Ak). Recall that

0 = x+

k∑
s=1

εs
√
AsW

s−1
k .

Hence

0 = 0− σ(0) =

k∑
s=1

εs(
√
As − σ(

√
As))W

s−1
k . (2.2)

Note that σ(
√
Ak) = −

√
Ak, and σ(

√
As) ∈ {±

√
As} for all s = 1, . . . , k−1.

Thus, by (2.2) we have

2|
√
Ak|W k−1

k = |2εk
√
AkW

k−1
k | ≤

k−1∑
s=1

2|
√
As|W s−1

k .
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On the other hand,

|
√
Ak|W k−1

k ≥W k−2
k

(
1 +

k∑
s=1

|
√
As|

)

>W k−2
k

k−1∑
s=1

|
√
As| ≥

k−1∑
s=1

|
√
As|W s−1

k .

So we get a contradiction and this concludes our proof of the claim.
Note that

W :=

(
k∑

s=1

(1 +A2
s)

)(
1 +

k∑
s=1

A−2
s

)

=

k∑
s=1

(1 +A2
s) +

k∑
r=1

k∑
s=1

A−2
r (1 +A2

s).

For 0 ≤ α ≤ 1 clearly 1 + α4 ≥ 1 ≥ α; if α ≥ 1 then 1 + α4 ≥ α4 ≥ α. So
1 + α4 ≥ α for all α ≥ 0, and hence 1 + A2

s ≥ |
√
As| for all s = 1, . . . , k.

Therefore,

W ≥
k∑

s=1

(1 +A2
s) + 1 ≥ 1 +

k∑
s=1

|
√
As|.

If t ∈ {1, . . . , k} and |At| ≥ 1, then

|
√
At|W ≥W ≥ 1 +

k∑
s=1

|
√
As|.

If 1 ≤ t ≤ k and |At| < 1, then |
√
At| = |At|1/2 > A2

t and hence

|
√
At|W ≥|

√
At|

(
1 +

k∑
s=1

A−2
t (1 +A2

s)

)

≥|
√
At|+

k∑
s=1

(1 +A2
s) = |

√
At|+ (1 +A2

t ) +
k∑
s=1
s 6=t

(1 +A2
s)

≥1 +

k∑
s=1

|
√
As|.

Therefore the inequality (2.1) holds if we take Wk = W . Applying the proved
claim we immediately obtain the desired result. This concludes our proof of
Theorem 1.2. �

3. Proof of Theorem 1.1

Let p be any prime. As usual, we let Qp and Zp denote the p-adic field
and the ring of p-adic integers respectively. We also define

Z(p) = Q ∩ Zp =
{a
b

: a, b ∈ Z and p - b
}
.
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D. Flath and S. Wagon [6] attributed the following lemma as an observa-
tion of J. Robinson, but we cannot find it in any of Robinson’s papers.

Lemma 3.1. Let r be any rational number. Then

r ∈ Z(2) ⇐⇒ ∃x∃y∃z[7r2 + 2 = x2 + y2 + z2]. (3.1)

Proof. The Gauss-Legendre theorem on sums of three squares (cf. [11, pp.
17-23])) states that n ∈ N = {0, 1, . . .} is a sum of three integer squares if
and only if n 6∈ {4k(8m+ 7) : k,m ∈ N}.

If r = a/b with a, b ∈ Z and 2 - b, then 7a2 + 2b2 ≡ 2− a2 ≡ 1, 2 (mod 4)
and hence 7a2 + 2b2 is a sum of three squares, thus 7r2 + 2 = (7a2 + 2b2)/b2

can be expressed as x2 + y2 + z2 with x, y, z ∈ Q.
Suppose that r = a/b with a, b ∈ Z, 2 - a, b 6= 0 and 2 | b. If 7r2 + 2 =

x2 + y2 + z2 for some x, y, z ∈ Q, then there is a nonzero integer c such
that c2(7r2 + 2) is a sum of three integer squares and hence c2(7r2 + 2) 6∈
{4k(8m + 7) : k,m ∈ N}. Note that any odd square is congruent to 1
modulo 8 and 7a2 + 2b2 ≡ 7 (mod 8) as 2 - a and 2 | b. Thus the integer
c2(7r2 + 2) = (c/b)2(7a2 + 2b2) has the form (2k)2(8m + 7) with k,m ∈ N
which leads to a contradiction.

In view of the above, we have completed the proof of Lemma 3.1.
For any prime p and t ∈ Q, as usual we denote the p-adic valuation of t

by νp(t). For A ⊆ Q we define A× = {a ∈ A \ {0} : a−1 ∈ A}.
Lemma 3.2. Let p be a prime, and let t ∈ Q. Then

t ∈ Z×(p) ⇐⇒ t 6= 0 ∧ (t+ t−1 ∈ Z(p)). (3.2)

Proof. For t ∈ Q∗, we have νp(t
−1) = −νp(t). So the desired result follows.

�

Remark 3.1. This easy lemma was used by Daans [2].

For first-order formulas ψ1, . . . , ψk, we simply write

ψ1 ∨ · · · ∨ ψk and ψ1 ∧ · · · ∧ ψk

as
∨k

s=1 ψs and
∧k

s=1 ψs respectively.

Definition 3.1. We set �∗ = {x2 : x ∈ Q∗}. A subset T of Q is said to be
m-good if there are polynomials

fs(t, x1, . . . , xm), gs1(t, x1, . . . , xm), . . . , gs`s(t, x1, . . . , xm) (s = 1, . . . , k)

with integer coefficients such that a rational number t belongs to T if and
only if

∃x1 · · · ∃xm
[ k∨
s=1

(
fs(t, x1, . . . , xm) = 0 ∧

`s∧
j=1

(gsj(t, x1, . . . , xm) ∈ �∗)

)]
.

Remark 3.2. (i) Clearly a rational number t is nonzero if and only if t2 ∈
�∗. For any polynomial P (x) ∈ Z[x] of degree d, we have x2dP (x−1) ∈ Z[x],
and

t2dP (t−1) ∈ �∗ ⇐⇒ P (t−1) ∈ �∗
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for all t ∈ Q∗.
(ii) For any a, b ∈ Q, clearly (a = 0 ∧ b = 0) ⇐⇒ a2 + b2 = 0. In view

of this and the distributive law concerning disjunction and conjunction, if
S ⊆ Q is m-good and T ⊆ Q is n-good then S ∩ T is (m+ n)-good.

Lemma 3.3. Both Z(2) and Z×(2) are 2-good.

Proof. For any t ∈ Q, by Lemma 3.1 we have

t ∈ Z(2) ⇐⇒ ∃x∃y[7t2 + 2− x2 − y2 ∈ �].

Note also that
t ∈ Z×(2) ⇐⇒ t 6= 0 ∧ (t+ t−1 ∈ Z(2))

by Lemma 3.2. Combining these with Remark 3.2 we immediately get the
desired result. �

Let a, b ∈ Q∗. As in Poonen [13], we define

Sa,b = {2x1 ∈ Q : ∃x2∃x3∃x4[x2
1 − ax2

2 − bx2
3 + abx2

4 = 1]} (3.3)

and
Ta,b = {x+ y : x, y ∈ Sa,b}. (3.4)

Lemma 3.4. Let a, b ∈ Q∗ with a > 0 or b > 0. Then Ta,b and T×a,b are

5-good.

Proof. Let r ∈ Q. Note that(r
2

)2
−a
(x

2

)2
−b
(y

2

)2
+ab

(z
2

)2
= 1 ⇐⇒ ab(4−r2 +ax2 +by2) = (abz)2.

So

r ∈ Sa,b ⇐⇒ ∃x∃y[ab(4− r2 + ax2 + by2) ∈ �]

⇐⇒ ∃x∃y[ab(4− r2 + ax2 + by2) = 0 ∨ ab(4− r2 + ax2 + by2) ∈ �∗]

and hence Sa,b is 2-good.
For t ∈ Q, we obviously have

t ∈ Ta,b ⇐⇒ ∃r(r ∈ Sa,b ∧ t− r ∈ Sa,b).
As Sa,b is 2-good, Ta,b is 5-good by Remark 3.2(ii).

By Koenigsmann [7, Proposition 6],

T×a,b =
⋂

p∈∆a,b

Z×(p),

where
∆a,b = {p : p is prime and (a, b)p = −1}

with (a, b)p the Hilbert symbol. (We view an empty intersection of subsets
of Q as Q, thus T×a,b = Q if ∆a,b = ∅.) Let t ∈ Q∗. By Lemma 3.2, we have

t ∈ T×a,b ⇐⇒ ∀p ∈ ∆a,b(t+ t−1 ∈ Z(p)) ⇐⇒ t+ t−1 ∈ Ta,b.

In view of Remark 3.2, from the above we see that T×a,b is 5-good.

The proof of Lemma 3.4 is now complete. �
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For S, T ⊆ Q we set

ST = {st : s ∈ S and t ∈ T}.
For a, b, c ∈ Q∗ with a > 0 or b > 0, we define

Jc
a,b = Ta,b {cy2 : y ∈ Q and 1− cy2 ∈ �T×a,b}. (3.5)

By Koenigsmann [7, Proposition 6] and Daans [2, Lemma 5.4],

Jc
a,b =

⋂
p∈∆a,b
2-νp(c)

pZ(p). (3.6)

Lemma 3.5. Let a, b, c ∈ Q∗ with a > 0 or b > 0. Then Jc
a,b is 12-good.

Proof. As 0 ∈ Jc
a,b by (3.6), we have T×a,b 6= ∅. For any x ∈ Q, clearly

x ∈ �T×a,b ⇐⇒ x = 0 ∨ ∃y(xy2 ∈ T×a,b).

So �T×a,b is 6-good in light of Lemma 3.4. As ±2 ∈ Sa,b, both Ta,b and Jc
a,b

contain 0. Let x ∈ Q. Note that

x ∈ Jc
a,b ⇐⇒ x = 0 ∨ ∃y 6= 0

[
x

cy2
∈ Ta,b ∧ (1− cy2 ∈ �T×a,b)

]
.

Thus, with the aid of Remark 3.2 and Lemma 3.4, we see that Jc
a,b is 12-

good. �

Proof of Theorem 1.1. Let t ∈ Q. Clearly,

t ∈ Q \ Z ⇐⇒ t 6= 0 ∧ t−1 ∈
⋃
p∈P

pZ(p),

where P is the set of all primes. By Daans [2, (1)], we have⋃
p∈P

pZ(p) = 2Z(2) ∪
⋃

(a,b)∈Φ

(Ja
a,b ∩ J2b

a,b), (3.7)

where

Φ = {(1 + 4u2, 2v) : u, v ∈ Z×(2)}. (3.8)

In view of this and Lemma 3.1, when t 6= 0 we have

t 6∈ Z ⇐⇒ 1

2t
∈ Z(2) ∨ ∃u∃v

[
u, v ∈ Z×(2) ∧

1

t
∈ J1+4u2

1+4u2,2v
∩ J4v

1+4u2,2v

]
⇐⇒ ∃u∃v

(
7

4t2
+ 2− u2 − v2 ∈ �

)
∨ ∃u∃v

[
u, v ∈ Z×(2) ∧

1

t
∈ J1+4u2

1+4u2,2v
∩ J4v

1+4u2,2v

]
⇐⇒ ∃u∃v

[
8t2 + 7− u2 − v2 ∈ �

∨
(
u, v ∈ Z×(2) ∧ t

−1 ∈ J1+4u2

1+4u2,2v
∧ t−1 ∈ J4v

1+4u2,2v

)]
.
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Combining this with Lemmas 3.3 and 3.5, we obtain that Q \ Z is 30-good
in view of Remark 3.2.

By the above, there are polynomials

fs(t, x1, . . . , x30), gs1(t, x1, . . . , x30), . . . , gs`s(t, x1, . . . , x30) (s = 1, . . . , k)

with integer coefficients such that a rational number t is not an integer if
and only if

∃x1 · · · ∃x30

[ k∨
s=1

(
fs(t, x1, . . . , x30) = 0 ∧

`s∧
j=1

(gsj(t, x1, . . . , x30) ∈ �∗)

)]
.

Note that
gsj(t, x1, . . . , x30) 6= 0 for all j = 1, . . . , `s

if and only if

x31

`s∏
j=1

gsj(t, x1, . . . , x30)− 1 = 0

for some x31 ∈ Q. By Theorem 1.2, when
∏`s

j=1 gsj(t, x1, . . . , x30) 6= 0, we
have

gsj(t, x1, . . . , x30) ∈ � for all j = 1, . . . , `s

if and only if

J`s (gs1(t, x1, . . . , x30), . . . , gs`s(t, x1, . . . , x30), x32) = 0

for some x32 ∈ Q. Combining these we see that t 6∈ Z if and only if there
are x1, . . . , x32 ∈ Q such that the product of all those

fs(t, x1, . . . , x30)2 +

(
x31

`s∏
j=1

gsj(t, x1, . . . , x30)− 1

)2

+ J`s(gs1(t, x1, . . . , x30), . . . , gs`s(t, x1, . . . , x30), x32)2

(s = 1, . . . , k) is zero.
In the spirit of the above proof, we can actually construct an explicit

polynomial P (t, x1, . . . , x32) with integer coefficients satisfying (1.1) with
the total degree of P smaller than 2.1 × 1011. This concludes our proof of
Theorem 1.1. �

4. Proof of Theorem 1.3

It is known that each nonnegative integer can be written as a sum of four
squares of rational numbers. This result due to Euler (cf. [12]) is weaker than
Lagrange’s four-square theorem (cf. [11, pp. 5-7]). Clearly, any nonnegative
rational number can be written as a/b = (ab)/b2 with a, b ∈ N and b > 0.
So we have the following lemma.

Lemma 4.1. Let r ∈ Q. Then

r ≥ 0 ⇐⇒ ∃w∃x∃y∃z[r = w2 + x2 + y2 + z2]. (4.1)

We also need a known result of Sun [15, Theorem 1.1].
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Lemma 4.2 (Sun [15]). Let A ⊆ N be an r.e. (recursively enumerable) set.
(i) There is a polynomial PA(x0, x1, . . . , x9) with integer coefficients such

that for any a ∈ N we have a ∈ A if and only if PA(a, x1, . . . , x9) = 0 for
some x1, . . . , x9 ∈ Z with x9 ≥ 0.

(ii) There is a polynomial QA(x0, x1, . . . , x10) with integer coefficients such
that for any a ∈ N we have a ∈ A if and only if QA(a, x1, . . . , x10) = 0 for
some x1, . . . , x10 ∈ Z with x10 6= 0.

Proof of Theorem 1.3. It is well known that there are nonrecursive r.e. sets
(see, e.g., [1, pp. 140-141]). Let us take any nonrecursive r.e. set A ⊆ N.

(i) Let PA and P be polynomials as in Lemma 4.2 and Theorem 1.1. In
view of Lemmas 4.1-4.2 and Theorem 1.1, for any a ∈ N we have

a 6∈ A ⇐⇒ ∀x1 · · · ∀x9[¬(x1, . . . , x9 ∈ Z ∧ x9 ≥ 0) ∨ PA(a, x1, . . . , x9) 6= 0]

⇐⇒ ∀x1 · · · ∀x9

[ 9∨
t=1

(xt 6∈ Z) ∨ x9 < 0 ∨ PA(a, x1, . . . , x9) 6= 0

]

⇐⇒ ∀x1 · · · ∀x9

[ 9∨
t=1

∃y1 · · · ∃y32(P (xt, y1, . . . , y32) = 0)

∨ −x9 > 0 ∨ ∃y1(y1PA(a, x1, . . . , x9)− 1 = 0)

]
⇐⇒ ∀x1 · · · ∀x9∃y1 · · · ∃y32[P0(a, x1, . . . , x9, y1, . . . , y32) = 0],

where

P0(a, x1, . . . , x9, y1, . . . , y32)

=(y1PA(a, x1, . . . , x9)− 1)
9∏

t=1

P (xt, y1, . . . , y32)

×
(
(x9y1 − 1)2 + (x9 + y2

2 + y2
3 + y2

4 + y2
5)2
)
.

It follows that for any a ∈ N we have

a ∈ A ⇐⇒ ∃x1 · · · ∃x9∀y1 · · · ∀y32∃y33[y33P0(a, x1, . . . , x9, y1, . . . , y32)−1 = 0]

As both A and N \ A are nonrecursive, by the above we get that ∀9∃32 over
Q and ∃9∀32∃ over Q are undecidable.

(ii) Let QA be the polynomial in Lemma 4.2(ii). For any a ∈ N, we have

a 6∈ A ⇐⇒ ∀x1 · · · ∀x10[¬(x1, . . . , x10 ∈ Z ∧ x10 6= 0) ∨QA(a, x1, . . . , x10) 6= 0]

⇐⇒ ∀x1 · · · ∀x10

[ 10∨
t=1

(xt 6∈ Z) ∨ x10 = 0 ∨QA(a, x1, . . . , x10) 6= 0

]
.

By the proof of Theorem 1.1, Q \ Z is 30-good. Thus, in view of Theorem
1.2, there are polynomials

fs(x, y1, . . . , y31) and gs(x, y1, . . . , y31) (s = 1, . . . , k)
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with integer coefficients such that for any x ∈ Q we have

x 6∈ Z ⇐⇒ ∃y1 · · · ∃y31

[ k∨
s=1

(fs(x, y1, . . . , y31) = 0 ∧ gs(x, y1, . . . , y31) 6= 0)

]
Thus, for any a ∈ N, we have

a 6∈ A ⇐⇒ ∀x1 · · · ∀x10∃y1 · · · ∃y31[ 10∨
t=1

( k∨
s=1

(fs(xt, y1, . . . , y31) = 0 ∧ gs(xt, y1, . . . , y31) 6= 0)

∨ x10 = 0 ∨QA(a, x1, . . . , x10) 6= 0

)]
and hence

a ∈ A ⇐⇒ ∃x1 · · · ∃x10∀y1 · · · ∀y31[ 10∧
t=1

( k∧
s=1

(fs(xt, y1, . . . , y31) 6= 0 ∨ gs(xt, y1, . . . , y31) = 0)

∧ x10 6= 0 ∧QA(a, x1, . . . , x10) = 0

)]
.

Let Γ = {1, . . . , k}×{1, . . . , 10}. By the distributive law concerning disjunc-
tion and conjunction,

10∧
t=1

k∧
s=1

(fs(xt, y1, . . . , y31) 6= 0 ∨ gs(xt, y1, . . . , y31) = 0)

is equivalent to∨
∆⊆Γ

( ∧
(s,t)∈∆

(fs(xt, y1, . . . , y31) 6= 0) ∧
∧

(s′,t′)∈Γ\∆

(gs′(xt′ , y1, . . . , y31) = 0)

)
.

Thus, for any a ∈ N, we have

a ∈ A ⇐⇒ ∃x1 · · · ∃x10∀y1 · · · ∀y31[ ∨
∆⊆Γ

(
x10

∏
(s,t)∈∆

fs(xt, y1, . . . , y31) 6= 0

∧
∧

(s′,t′)∈Γ\∆

(gs′(xt′ , y1, . . . , y31) = 0) ∧QA(a, x1, . . . , x10) = 0

)]
⇐⇒ ∃x1 · · · ∃x10∀y1 · · · ∀y31∃z[ ∨

∆⊆Γ

(
1− zx10

∏
(s,t)∈∆

fs(xt, y1, . . . , y31) = 0

∧
∧

(s′,t′)∈Γ\∆

(gs′(xt′ , y1, . . . , y31) = 0) ∧QA(a, x1, . . . , x10) = 0

)]
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and hence

a ∈ A ⇐⇒ ∃x1 · · · ∃x10∀y1 · · · ∀y31∃z[P1(a, x1, . . . , x10, y1, . . . , y31, z) = 0],

where we view an empty product as 1, and P1(a, x1, . . . , x10, y1, . . . , y31, z)
stands for the product of(

1− zx10

∏
(s,t)∈∆

fs(xt, y1, . . . , y31)

)2

+
∑

(s′,t′)∈Γ\∆

gs′(xt′ , y1, . . . , y31)2 +QA(a, x1, . . . , x10)2

over ∆ ⊆ Γ. As A is nonrecursive, we obtain that ∃10∀31∃ over Q is unde-
cidable.

In view of the above, we have completed the proof of Theorem 1.3. �

Acknowledgment. The authors would like to thank the referee for helpful
comments.
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