Bull. Pol. Acad. Sci. Math. 70 (2022), no. 2, 93-106.

$\mathbb{Q} \backslash \mathbb{Z}$ IS DIOPHANTINE OVER \mathbb{Q} WITH 32 UNKNOWNS

GENG-RUI ZHANG AND ZHI-WEI SUN*

$$
\begin{aligned}
& \text { Abstract. In } 2016 \mathrm{~J} \text {. Koenigsmann refined a celebrated theorem of J. } \\
& \text { Robinson by proving that } \mathbb{Q} \backslash \mathbb{Z} \text { is diophantine over } \mathbb{Q} \text {, i.e., there is a } \\
& \text { polynomial } P\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[t, x_{1}, \ldots, x_{n}\right] \text { such that for any rational } \\
& \text { number } t \text { we have } \\
& \qquad t \notin \mathbb{Z} \Longleftrightarrow \exists x_{1} \cdots \exists x_{n}\left[P\left(t, x_{1}, \ldots, x_{n}\right)=0\right]
\end{aligned}
$$

where variables range over \mathbb{Q}, equivalently

$$
t \in \mathbb{Z} \Longleftrightarrow \forall x_{1} \cdots \forall x_{n}\left[P\left(t, x_{1}, \ldots, x_{n}\right) \neq 0\right]
$$

In this paper we prove that we may take $n=32$. Combining this with a result of Z.-W. Sun, we show that there is no algorithm to decide for any $f\left(x_{1}, \ldots, x_{41}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{41}\right]$ whether

$$
\forall x_{1} \cdots \forall x_{9} \exists y_{1} \cdots \exists y_{32}\left[f\left(x_{1}, \ldots, x_{9}, y_{1}, \ldots, y_{32}\right)=0\right],
$$

where variables range over \mathbb{Q}.

1. Introduction

Hilbert's Tenth Problem (HTP) asks for an algorithm to determine for any given polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ whether the diophantine equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ has solutions $x_{1}, \ldots, x_{n} \in \mathbb{Z}$. This was solved negatively by Yu. Matiyasevich [8] in 1970, on the basis of the important work of M. Davis, H. Putnam and J. Robinson [5]; see also Davis [4] for a nice introduction. Z.-W. Sun [15] proved his 11 unknowns theorem which states that there is no algorithm to determine for any $P\left(x_{1}, \ldots, x_{11}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{11}\right]$ whether the equation $P\left(x_{1}, \ldots, x_{11}\right)=0$ has solutions over \mathbb{Z}.

It remains open whether HTP over \mathbb{Q} is undecidable. However, Robinson [14] used the theory of quadratic forms to prove that one can characterize \mathbb{Z} by using the language of \mathbb{Q} in the following way: For any $t \in \mathbb{Q}$ we have
$t \in \mathbb{Z} \Longleftrightarrow \forall x_{1} \forall x_{2} \exists y_{1} \cdots \exists y_{7} \forall z_{1} \cdots \forall z_{6}\left[f\left(t, x_{1}, x_{2}, y_{1}, \ldots, y_{7}, z_{1}, \ldots, z_{6}\right)=0\right]$,
where f is a polynomial with integer coefficients. (Throughout this paper, variables always range over \mathbb{Q}.) In 2009 B. Poonen [13] improved this by finding a polynomial $F\left(t, x_{1}, x_{2}, y_{1}, \ldots, y_{7}\right)$ with integer coefficients such that

[^0]for any $t \in \mathbb{Q}$ we have
$$
t \in \mathbb{Z} \Longleftrightarrow \forall x_{1} \forall x_{2} \exists y_{1} \cdots \exists y_{7}\left[F\left(t, x_{1}, x_{2}, y_{1}, \ldots, y_{7}\right)=0\right] .
$$

In 2016 J. Koenigsmann [7] improved Poonen's result by proving that the set $\mathbb{Q} \backslash \mathbb{Z}$ is diophantine over \mathbb{Q}, i.e., there is a polynomial $P\left(t, x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{Q}\left[t, x_{1}, \ldots, x_{n}\right]$ such that for any $t \in \mathbb{Q}$ we have

$$
t \notin \mathbb{Z} \Longleftrightarrow \exists x_{1} \cdots \exists x_{n}\left[P\left(t, x_{1}, \ldots, x_{n}\right)=0\right],
$$

i.e.,

$$
t \in \mathbb{Z} \Longleftrightarrow \forall x_{1} \cdots \forall x_{n}\left[P\left(t, x_{1}, \ldots, x_{n}\right) \neq 0\right] .
$$

The number n of unknowns in Koenigsmann's diophantine representation of $\mathbb{Q} \backslash \mathbb{Z}$ over \mathbb{Q} is over 400 but below 500 . In 2018 N. Daans [2] significantly simplified Koenigsmann's approach and proved that $\mathbb{Q} \backslash \mathbb{Z}$ has a diophantine representation over \mathbb{Q} with 50 unknowns. The number 50 could be reduced to 38 by applying a recent result [3, Theorem 1.4] obtained by model theory.

In this paper we establish the following new result.
Theorem 1.1. $\mathbb{Q} \backslash \mathbb{Z}$ has a diophantine representation over \mathbb{Q} with 32 unknowns, i.e., there is a polynomial $P\left(t, x_{1}, \ldots, x_{32}\right) \in \mathbb{Z}\left[t, x_{1}, \ldots, x_{32}\right]$ such that for any $t \in \mathbb{Q}$ we have

$$
\begin{equation*}
t \notin \mathbb{Z} \Longleftrightarrow \exists x_{1} \cdots \exists x_{32}\left[P\left(t, x_{1}, \ldots, x_{32}\right)=0\right] . \tag{1.1}
\end{equation*}
$$

Furthermore, the polynomial P can be constructed explicitly with $\operatorname{deg} P<$ 2.1×10^{11}.

To obtain this theorem, we start from Daans' work [2], and mainly use a new relation-combining theorem on diophantine representations over \mathbb{Q} (which is an analogue of Matiyasevich and Robinson's relation-combining theorem [9, Theorem 1]) as an auxiliary tool. Now we state our relationcombining theorem for diophantine representations over \mathbb{Q}.

Theorem 1.2. Let $\mathcal{J}_{k}\left(x_{1}, \ldots, x_{k}, x\right)$ denote the expression

$$
\prod_{s=1}^{k} x_{s}^{(k-1) 2^{k+1}} \times \prod_{\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}}\left(x+\sum_{s=1}^{k} \varepsilon_{s} \sqrt{x_{s}} W\left(x_{1}, \ldots, x_{k}\right)^{s-1}\right)
$$

where

$$
W\left(x_{1}, \ldots, x_{k}\right)=\left(k+\sum_{s=1}^{k} x_{s}^{2}\right)\left(1+\sum_{s=1}^{k} x_{s}^{-2}\right) .
$$

Then $\mathcal{J}_{k}\left(x_{1}, \ldots, x_{k}, x\right)$ is a polynomial with integer coefficients. Moreover, for any $A_{1}, \ldots, A_{k} \in \mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$, we have

$$
\begin{equation*}
A_{1}, \ldots, A_{k} \in \square \Longleftrightarrow \exists x\left[\mathcal{J}_{k}\left(A_{1}, \ldots, A_{k}, x\right)=0\right] \tag{1.2}
\end{equation*}
$$

where $\square=\left\{r^{2}: r \in \mathbb{Q}\right\}$.
Remark 1.1. In view of its proof, Theorem 1.2 can be generalized by replacing \mathbb{Q} with any subfield of the real field \mathbb{R} or any ordered field.

When $\rho_{s} \in\{\forall, \exists\}$ for all $s=1, \ldots, k$, we say that $\rho_{1} \cdots \rho_{k}$ over \mathbb{Q} is undecidable if there is no algorithm to decide for any polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ over \mathbb{Q} whether

$$
\rho_{1} x_{1} \cdots \rho_{k} x_{k}\left[P\left(x_{1}, \ldots, x_{k}\right)=0\right]
$$

or not. For convenience we adopt certain abbreviation, for example, $\forall^{2} \exists^{3}$ denotes $\forall \forall \exists \exists \exists$.

Combining Theorem 1.1 and its proof with a result of Sun [15, Theorem 1.1], we obtain the following theorem.

Theorem 1.3. $\forall^{9} \exists^{32}$ over \mathbb{Q} is undecidable, i.e., there is no algorithm to determine for any $P\left(x_{1}, \ldots, x_{41}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{41}\right]$ whether

$$
\forall x_{1} \cdots \forall x_{9} \exists y_{1} \cdots \exists y_{32}\left[P\left(x_{1}, \ldots, x_{9}, y_{1}, \ldots, y_{32}\right)=0\right] .
$$

Also, $\exists^{9} \forall^{32} \exists$ over \mathbb{Q} and $\exists^{10} \forall^{31} \exists$ over \mathbb{Q} are undecidable.
We remark that Sun [16] obtained some undecidability results on mixed quantifier prefixes over diophantine equations with integer variables; for example, he proved that $\forall^{2} \exists \exists^{4}$ over \mathbb{Z} is undecidable.

In the next section we will prove Theorem 1.2. Sections 3 and 4 are devoted to our proofs of Theorems 1.1 and 1.3 respectively.

2. Proof of Theorem 1.2

Proof of Theorem 1.2. Clearly,

$$
I_{k}\left(x_{1}, \ldots, x_{k}, x, y\right)=\prod_{\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}}\left(x+\varepsilon_{1} x_{1}+\varepsilon_{2} x_{2} y+\cdots+\varepsilon_{k} x_{k} y^{k-1}\right)
$$

is a polynomial with integer coefficients. As

$$
I_{k}\left(x_{1}, \ldots, x_{k}, x, y\right)=\prod_{\varepsilon_{i} \in\{ \pm 1\} \text { for } i \neq t}\left(\left(x+\sum_{\substack{s=1 \\ s \neq t}}^{k} \varepsilon_{s} x_{s} y^{s-1}\right)^{2}-x_{t}^{2} y^{2(t-1)}\right)
$$

for all $t=1, \ldots, k$, we see that

$$
I_{k}\left(x_{1}, \ldots, x_{k}, x, y\right)=I_{k}^{*}\left(x_{1}^{2}, \ldots, x_{k}^{2}, x, y\right)
$$

for some polynomial I_{k}^{*} with integer coefficients. Note that

$$
\begin{aligned}
\mathcal{J}_{k}\left(x_{1}, \ldots, x_{k}, x\right)= & \prod_{s=1}^{k} x_{s}^{(k-1) 2^{k+1}} \\
& \times I_{k}^{*}\left(x_{1}, \ldots, x_{k}, x,\left(k+\sum_{j=1}^{k} x_{j}^{2}\right)\left(1+\sum_{j=1}^{k} x_{j}^{-2}\right)\right)
\end{aligned}
$$

is a polynomial with integer coefficients.
Now let $A_{1}, \ldots, A_{k} \in \mathbb{Q}^{*}$. We claim that for any rational number

$$
\begin{equation*}
W_{k} \geq \frac{1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right|}{\min \left\{\left|\sqrt{A_{1}}\right|, \ldots,\left|\sqrt{A_{k}}\right|\right\}} \tag{2.1}
\end{equation*}
$$

we have

$$
A_{1}, \ldots, A_{k} \in \square \Longleftrightarrow \exists x\left[I_{k}^{*}\left(A_{1}, \ldots, A_{k}, x, W_{k}\right)=0\right] .
$$

The " \Rightarrow " direction is easy. If $A_{1}=a_{1}^{2}, \ldots, A_{k}=a_{k}^{2}$ for some $a_{1}, \ldots, a_{k} \in$ \mathbb{Q}, then, for $x=a_{1}+a_{2} W_{k}+\cdots+a_{k} W_{k}^{k-1} \in \mathbb{Q}$ we have $I_{k}^{*}\left(A_{1}, \ldots, A_{k}, x, W_{k}\right)=$ 0.

We use induction on k to prove the " \Leftarrow " direction of the claim. In the case $k=1$, if $I_{1}^{*}\left(A_{1}, x, W_{1}\right)=x^{2}-A_{1}$ is zero for some $x \in \mathbb{Q}$ then we obviously have $A_{1} \in \square$.

Now let $k>1$ and assume that the " \Leftarrow " direction of the claim holds for all smaller values of k. Let W_{k} be any rational number satisfying the inequality (2.1). Suppose that $I_{k}^{*}\left(A_{1}, \ldots, A_{k}, x, W_{k}\right)=0$ for some $x \in \mathbb{Q}$. Then there are $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$ such that

$$
x+\sum_{s=1}^{k} \varepsilon_{s} \sqrt{A_{s}} W_{k}^{s-1}=0 .
$$

If $A_{k}=a_{k}^{2}$ for some $a_{k} \in \mathbb{Q}$, then, for $x^{\prime}=x+\varepsilon_{k}\left|a_{k}\right| W_{k}^{k-1}$ we have

$$
x^{\prime}+\varepsilon_{1} \sqrt{A_{1}}+\varepsilon_{2} \sqrt{A_{2}} W_{k}+\cdots+\varepsilon_{k-1} \sqrt{A_{k-1}} W_{k}^{k-2}=0
$$

and hence $I_{k-1}^{*}\left(A_{1}, \ldots, A_{k-1}, x^{\prime}, W_{k}\right)=0$. Note that

$$
\left|\sqrt{A_{t}}\right| W_{k} \geq 1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right| \geq 1+\sum_{s=1}^{k-1}\left|\sqrt{A_{s}}\right|
$$

for each $t=1, \ldots, k-1$. So, in the case $A_{k} \in \square$, we get $A_{1}, \ldots, A_{k-1} \in \square$ by the induction hypothesis.

To finish the induction step, it remains to prove $A_{k} \in \square$. As the characteristic of \mathbb{Q} is zero, $\mathbb{Q}\left(\sqrt{A_{s}}\right)$ is a Galois extension of \mathbb{Q} for any $s=1, \ldots, k$. Thus

$$
\mathbb{Q}\left(\sqrt{A_{1}}, \ldots, \sqrt{A_{k}}\right)=\mathbb{Q}\left(\sqrt{A_{1}}\right) \cdots \mathbb{Q}\left(\sqrt{A_{k}}\right)
$$

is also a Galois extension of \mathbb{Q} in view of [10, p. 50, Problem 10(d)]. Suppose that $A_{k} \notin \square$. Then $\sqrt{A_{k}} \notin \mathbb{Q}$, and hence there is an automorphism $\sigma \in$ $\operatorname{Gal}(K / \mathbb{Q})$ with $\sigma\left(\sqrt{A_{k}}\right) \neq \sqrt{A_{k}}$, where $K=\mathbb{Q}\left(\sqrt{A_{1}}, \ldots, \sqrt{A_{k}}\right)$. Recall that

$$
0=x+\sum_{s=1}^{k} \varepsilon_{s} \sqrt{A_{s}} W_{k}^{s-1} .
$$

Hence

$$
\begin{equation*}
0=0-\sigma(0)=\sum_{s=1}^{k} \varepsilon_{s}\left(\sqrt{A_{s}}-\sigma\left(\sqrt{A_{s}}\right)\right) W_{k}^{s-1} . \tag{2.2}
\end{equation*}
$$

Note that $\sigma\left(\sqrt{A}_{k}\right)=-\sqrt{A_{k}}$, and $\sigma\left(\sqrt{A_{s}}\right) \in\left\{ \pm \sqrt{A_{s}}\right\}$ for all $s=1, \ldots, k-1$. Thus, by (2.2) we have

$$
2\left|\sqrt{A_{k}}\right| W_{k}^{k-1}=\left|2 \varepsilon_{k} \sqrt{A_{k}} W_{k}^{k-1}\right| \leq \sum_{s=1}^{k-1} 2\left|\sqrt{A_{s}}\right| W_{k}^{s-1} .
$$

On the other hand,

$$
\begin{aligned}
\left|\sqrt{A_{k}}\right| W_{k}^{k-1} & \geq W_{k}^{k-2}\left(1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right|\right) \\
& >W_{k}^{k-2} \sum_{s=1}^{k-1}\left|\sqrt{A_{s}}\right| \geq \sum_{s=1}^{k-1}\left|\sqrt{A_{s}}\right| W_{k}^{s-1} .
\end{aligned}
$$

So we get a contradiction and this concludes our proof of the claim.
Note that

$$
\begin{aligned}
W & :=\left(\sum_{s=1}^{k}\left(1+A_{s}^{2}\right)\right)\left(1+\sum_{s=1}^{k} A_{s}^{-2}\right) \\
& =\sum_{s=1}^{k}\left(1+A_{s}^{2}\right)+\sum_{r=1}^{k} \sum_{s=1}^{k} A_{r}^{-2}\left(1+A_{s}^{2}\right) .
\end{aligned}
$$

For $0 \leq \alpha \leq 1$ clearly $1+\alpha^{4} \geq 1 \geq \alpha$; if $\alpha \geq 1$ then $1+\alpha^{4} \geq \alpha^{4} \geq \alpha$. So $1+\alpha^{4} \geq \alpha$ for all $\alpha \geq 0$, and hence $1+A_{s}^{2} \geq\left|\sqrt{A_{s}}\right|$ for all $s=1, \ldots, k$. Therefore,

$$
W \geq \sum_{s=1}^{k}\left(1+A_{s}^{2}\right)+1 \geq 1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right| .
$$

If $t \in\{1, \ldots, k\}$ and $\left|A_{t}\right| \geq 1$, then

$$
\left|\sqrt{A_{t}}\right| W \geq W \geq 1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right|
$$

If $1 \leq t \leq k$ and $\left|A_{t}\right|<1$, then $\left|\sqrt{A_{t}}\right|=\left|A_{t}\right|^{1 / 2}>A_{t}^{2}$ and hence

$$
\begin{aligned}
\left|\sqrt{A_{t}}\right| W & \geq\left|\sqrt{A_{t}}\right|\left(1+\sum_{s=1}^{k} A_{t}^{-2}\left(1+A_{s}^{2}\right)\right) \\
& \geq\left|\sqrt{A_{t}}\right|+\sum_{s=1}^{k}\left(1+A_{s}^{2}\right)=\left|\sqrt{A_{t}}\right|+\left(1+A_{t}^{2}\right)+\sum_{\substack{s=1 \\
s \neq t}}^{k}\left(1+A_{s}^{2}\right) \\
& \geq 1+\sum_{s=1}^{k}\left|\sqrt{A_{s}}\right|
\end{aligned}
$$

Therefore the inequality (2.1) holds if we take $W_{k}=W$. Applying the proved claim we immediately obtain the desired result. This concludes our proof of Theorem 1.2.

3. Proof of Theorem 1.1

Let p be any prime. As usual, we let \mathbb{Q}_{p} and \mathbb{Z}_{p} denote the p-adic field and the ring of p-adic integers respectively. We also define

$$
\mathbb{Z}_{(p)}=\mathbb{Q} \cap \mathbb{Z}_{p}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \text { and } p \nmid b\right\} .
$$

D. Flath and S. Wagon [6] attributed the following lemma as an observation of J. Robinson, but we cannot find it in any of Robinson's papers.
Lemma 3.1. Let r be any rational number. Then

$$
\begin{equation*}
r \in \mathbb{Z}_{(2)} \Longleftrightarrow \exists x \exists y \exists z\left[7 r^{2}+2=x^{2}+y^{2}+z^{2}\right] . \tag{3.1}
\end{equation*}
$$

Proof. The Gauss-Legendre theorem on sums of three squares (cf. [11, pp. $17-23])$) states that $n \in \mathbb{N}=\{0,1, \ldots\}$ is a sum of three integer squares if and only if $n \notin\left\{4^{k}(8 m+7): k, m \in \mathbb{N}\right\}$.

If $r=a / b$ with $a, b \in \mathbb{Z}$ and $2 \nmid b$, then $7 a^{2}+2 b^{2} \equiv 2-a^{2} \equiv 1,2(\bmod 4)$ and hence $7 a^{2}+2 b^{2}$ is a sum of three squares, thus $7 r^{2}+2=\left(7 a^{2}+2 b^{2}\right) / b^{2}$ can be expressed as $x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Q}$.

Suppose that $r=a / b$ with $a, b \in \mathbb{Z}, 2 \nmid a, b \neq 0$ and $2 \mid b$. If $7 r^{2}+2=$ $x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Q}$, then there is a nonzero integer c such that $c^{2}\left(7 r^{2}+2\right)$ is a sum of three integer squares and hence $c^{2}\left(7 r^{2}+2\right) \notin$ $\left\{4^{k}(8 m+7): k, m \in \mathbb{N}\right\}$. Note that any odd square is congruent to 1 modulo 8 and $7 a^{2}+2 b^{2} \equiv 7(\bmod 8)$ as $2 \nmid a$ and $2 \mid b$. Thus the integer $c^{2}\left(7 r^{2}+2\right)=(c / b)^{2}\left(7 a^{2}+2 b^{2}\right)$ has the form $\left(2^{k}\right)^{2}(8 m+7)$ with $k, m \in \mathbb{N}$ which leads to a contradiction.

In view of the above, we have completed the proof of Lemma 3.1.
For any prime p and $t \in \mathbb{Q}$, as usual we denote the p-adic valuation of t by $\nu_{p}(t)$. For $A \subseteq \mathbb{Q}$ we define $A^{\times}=\left\{a \in A \backslash\{0\}: a^{-1} \in A\right\}$.
Lemma 3.2. Let p be a prime, and let $t \in \mathbb{Q}$. Then

$$
\begin{equation*}
t \in \mathbb{Z}_{(p)}^{\times} \Longleftrightarrow t \neq 0 \wedge\left(t+t^{-1} \in \mathbb{Z}_{(p)}\right) . \tag{3.2}
\end{equation*}
$$

Proof. For $t \in \mathbb{Q}^{*}$, we have $\nu_{p}\left(t^{-1}\right)=-\nu_{p}(t)$. So the desired result follows.

Remark 3.1. This easy lemma was used by Daans [2].
For first-order formulas $\psi_{1}, \ldots, \psi_{k}$, we simply write

$$
\psi_{1} \vee \cdots \vee \psi_{k} \text { and } \psi_{1} \wedge \cdots \wedge \psi_{k}
$$

as $\bigvee_{s=1}^{k} \psi_{s}$ and $\bigwedge_{s=1}^{k} \psi_{s}$ respectively.
Definition 3.1. We set $\square^{*}=\left\{x^{2}: x \in \mathbb{Q}^{*}\right\}$. A subset T of \mathbb{Q} is said to be m-good if there are polynomials

$$
f_{s}\left(t, x_{1}, \ldots, x_{m}\right), g_{s 1}\left(t, x_{1}, \ldots, x_{m}\right), \ldots, g_{s \ell_{s}}\left(t, x_{1}, \ldots, x_{m}\right)(s=1, \ldots, k)
$$

with integer coefficients such that a rational number t belongs to T if and only if

$$
\exists x_{1} \cdots \exists x_{m}\left[\bigvee_{s=1}^{k}\left(f_{s}\left(t, x_{1}, \ldots, x_{m}\right)=0 \wedge \bigwedge_{j=1}^{\ell_{s}}\left(g_{s j}\left(t, x_{1}, \ldots, x_{m}\right) \in \square^{*}\right)\right)\right]
$$

Remark 3.2. (i) Clearly a rational number t is nonzero if and only if $t^{2} \in$ \square^{*}. For any polynomial $P(x) \in \mathbb{Z}[x]$ of degree d, we have $x^{2 d} P\left(x^{-1}\right) \in \mathbb{Z}[x]$, and

$$
t^{2 d} P\left(t^{-1}\right) \in \square^{*} \Longleftrightarrow P\left(t^{-1}\right) \in \square^{*}
$$

for all $t \in \mathbb{Q}^{*}$.
(ii) For any $a, b \in \mathbb{Q}$, clearly $(a=0 \wedge b=0) \Longleftrightarrow a^{2}+b^{2}=0$. In view of this and the distributive law concerning disjunction and conjunction, if $S \subseteq \mathbb{Q}$ is m-good and $T \subseteq \mathbb{Q}$ is n-good then $S \cap T$ is $(m+n)$-good.
Lemma 3.3. Both $\mathbb{Z}_{(2)}$ and $\mathbb{Z}_{(2)}^{\times}$are 2-good.
Proof. For any $t \in \mathbb{Q}$, by Lemma 3.1 we have

$$
t \in \mathbb{Z}_{(2)} \Longleftrightarrow \exists x \exists y\left[7 t^{2}+2-x^{2}-y^{2} \in \square\right] .
$$

Note also that

$$
t \in \mathbb{Z}_{(2)}^{\times} \Longleftrightarrow t \neq 0 \wedge\left(t+t^{-1} \in \mathbb{Z}_{(2)}\right)
$$

by Lemma 3.2. Combining these with Remark 3.2 we immediately get the desired result.

Let $a, b \in \mathbb{Q}^{*}$. As in Poonen [13], we define

$$
\begin{equation*}
S_{a, b}=\left\{2 x_{1} \in \mathbb{Q}: \exists x_{2} \exists x_{3} \exists x_{4}\left[x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b x_{4}^{2}=1\right]\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{a, b}=\left\{x+y: x, y \in S_{a, b}\right\} . \tag{3.4}
\end{equation*}
$$

Lemma 3.4. Let $a, b \in \mathbb{Q}^{*}$ with $a>0$ or $b>0$. Then $T_{a, b}$ and $T_{a, b}^{\times}$are 5 -good.
Proof. Let $r \in \mathbb{Q}$. Note that
$\left(\frac{r}{2}\right)^{2}-a\left(\frac{x}{2}\right)^{2}-b\left(\frac{y}{2}\right)^{2}+a b\left(\frac{z}{2}\right)^{2}=1 \Longleftrightarrow a b\left(4-r^{2}+a x^{2}+b y^{2}\right)=(a b z)^{2}$.
So

$$
\begin{aligned}
r \in S_{a, b} & \Longleftrightarrow \exists x \exists y\left[a b\left(4-r^{2}+a x^{2}+b y^{2}\right) \in \square\right] \\
& \Longleftrightarrow \exists x \exists y\left[a b\left(4-r^{2}+a x^{2}+b y^{2}\right)=0 \vee a b\left(4-r^{2}+a x^{2}+b y^{2}\right) \in \square^{*}\right]
\end{aligned}
$$

and hence $S_{a, b}$ is 2-good.
For $t \in \mathbb{Q}$, we obviously have

$$
t \in T_{a, b} \Longleftrightarrow \exists r\left(r \in S_{a, b} \wedge t-r \in S_{a, b}\right)
$$

As $S_{a, b}$ is 2 -good, $T_{a, b}$ is 5 -good by Remark 3.2(ii).
By Koenigsmann [7, Proposition 6],

$$
T_{a, b}^{\times}=\bigcap_{p \in \Delta_{a, b}} \mathbb{Z}_{(p)}^{\times},
$$

where

$$
\Delta_{a, b}=\left\{p: p \text { is prime and }(a, b)_{p}=-1\right\}
$$

with $(a, b)_{p}$ the Hilbert symbol. (We view an empty intersection of subsets of \mathbb{Q} as \mathbb{Q}, thus $T_{a, b}^{\times}=\mathbb{Q}$ if $\Delta_{a, b}=\emptyset$.) Let $t \in \mathbb{Q}^{*}$. By Lemma 3.2, we have

$$
t \in T_{a, b}^{\times} \Longleftrightarrow \forall p \in \Delta_{a, b}\left(t+t^{-1} \in \mathbb{Z}_{(p)}\right) \Longleftrightarrow t+t^{-1} \in T_{a, b} .
$$

In view of Remark 3.2, from the above we see that $T_{a, b}^{\times}$is 5 -good.
The proof of Lemma 3.4 is now complete.

For $S, T \subseteq \mathbb{Q}$ we set

$$
S T=\{s t: s \in S \text { and } t \in T\} .
$$

For $a, b, c \in \mathbb{Q}^{*}$ with $a>0$ or $b>0$, we define

$$
\begin{equation*}
J_{a, b}^{c}=T_{a, b}\left\{c y^{2}: y \in \mathbb{Q} \text { and } 1-c y^{2} \in \square T_{a, b}^{\times}\right\} . \tag{3.5}
\end{equation*}
$$

By Koenigsmann [7, Proposition 6] and Daans [2, Lemma 5.4],

$$
\begin{equation*}
J_{a, b}^{c}=\bigcap_{\substack{p \in \Delta_{a, b} \\ 2 \nmid \nu_{p}(c)}} p \mathbb{Z}_{(p)} \tag{3.6}
\end{equation*}
$$

Lemma 3.5. Let $a, b, c \in \mathbb{Q}^{*}$ with $a>0$ or $b>0$. Then $J_{a, b}^{c}$ is 12 -good.
Proof. As $0 \in J_{a, b}^{c}$ by (3.6), we have $T_{a, b}^{\times} \neq \emptyset$. For any $x \in \mathbb{Q}$, clearly

$$
x \in \square T_{a, b}^{\times} \Longleftrightarrow x=0 \vee \exists y\left(x y^{2} \in T_{a, b}^{\times}\right)
$$

So $\square T_{a, b}^{\times}$is 6 -good in light of Lemma 3.4. As $\pm 2 \in S_{a, b}$, both $T_{a, b}$ and $J_{a, b}^{c}$ contain 0 . Let $x \in \mathbb{Q}$. Note that

$$
x \in J_{a, b}^{c} \Longleftrightarrow x=0 \vee \exists y \neq 0\left[\frac{x}{c y^{2}} \in T_{a, b} \wedge\left(1-c y^{2} \in \square T_{a, b}^{\times}\right)\right]
$$

Thus, with the aid of Remark 3.2 and Lemma 3.4, we see that $J_{a, b}^{c}$ is 12good.
Proof of Theorem 1.1. Let $t \in \mathbb{Q}$. Clearly,

$$
t \in \mathbb{Q} \backslash \mathbb{Z} \Longleftrightarrow t \neq 0 \wedge t^{-1} \in \bigcup_{p \in \mathbb{P}} p \mathbb{Z}_{(p)},
$$

where \mathbb{P} is the set of all primes. By Daans [2, (1)], we have

$$
\begin{equation*}
\bigcup_{p \in \mathbb{P}} p \mathbb{Z}_{(p)}=2 \mathbb{Z}_{(2)} \cup \bigcup_{(a, b) \in \Phi}\left(J_{a, b}^{a} \cap J_{a, b}^{2 b}\right), \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi=\left\{\left(1+4 u^{2}, 2 v\right): u, v \in \mathbb{Z}_{(2)}^{\times}\right\} \tag{3.8}
\end{equation*}
$$

In view of this and Lemma 3.1, when $t \neq 0$ we have

$$
\begin{aligned}
t \notin \mathbb{Z} \Longleftrightarrow & \frac{1}{2 t} \in \mathbb{Z}_{(2)} \vee \exists u \exists v\left[u, v \in \mathbb{Z}_{(2)}^{\times} \wedge \frac{1}{t} \in J_{1+4 u^{2}, 2 v}^{1+4 u^{2}} \cap J_{1+4 u^{2}, 2 v}^{4 v}\right] \\
\Longleftrightarrow & \exists u \exists v\left(\frac{7}{4 t^{2}}+2-u^{2}-v^{2} \in \square\right) \\
& \vee \exists u \exists v\left[u, v \in \mathbb{Z}_{(2)}^{\times} \wedge \frac{1}{t} \in J_{1+4 u^{2}, 2 v}^{1+4 u^{2}} \cap J_{1+4 u^{2}, 2 v}^{4 v}\right] \\
\Longleftrightarrow & \exists u \exists v\left[8 t^{2}+7-u^{2}-v^{2} \in \square\right. \\
& \left.\vee\left(u, v \in \mathbb{Z}_{(2)}^{\times} \wedge t^{-1} \in J_{1+4 u^{2}, 2 v}^{1+4 u^{2}} \wedge t^{-1} \in J_{1+4 u^{2}, 2 v}^{4 v}\right)\right] .
\end{aligned}
$$

Combining this with Lemmas 3.3 and 3.5, we obtain that $\mathbb{Q} \backslash \mathbb{Z}$ is 30 -good in view of Remark 3.2.

By the above, there are polynomials

$$
f_{s}\left(t, x_{1}, \ldots, x_{30}\right), g_{s 1}\left(t, x_{1}, \ldots, x_{30}\right), \ldots, g_{s \ell_{s}}\left(t, x_{1}, \ldots, x_{30}\right)(s=1, \ldots, k)
$$

with integer coefficients such that a rational number t is not an integer if and only if

$$
\exists x_{1} \cdots \exists x_{30}\left[\bigvee_{s=1}^{k}\left(f_{s}\left(t, x_{1}, \ldots, x_{30}\right)=0 \wedge \bigwedge_{j=1}^{\ell_{s}}\left(g_{s j}\left(t, x_{1}, \ldots, x_{30}\right) \in \square^{*}\right)\right)\right] .
$$

Note that

$$
g_{s j}\left(t, x_{1}, \ldots, x_{30}\right) \neq 0 \quad \text { for all } j=1, \ldots, \ell_{s}
$$

if and only if

$$
x_{31} \prod_{j=1}^{\ell_{s}} g_{s j}\left(t, x_{1}, \ldots, x_{30}\right)-1=0
$$

for some $x_{31} \in \mathbb{Q}$. By Theorem 1.2, when $\prod_{j=1}^{\ell_{s}} g_{s j}\left(t, x_{1}, \ldots, x_{30}\right) \neq 0$, we have

$$
g_{s j}\left(t, x_{1}, \ldots, x_{30}\right) \in \square \quad \text { for all } j=1, \ldots, \ell_{s}
$$

if and only if

$$
\mathcal{J}_{\ell_{s}}\left(g_{s 1}\left(t, x_{1}, \ldots, x_{30}\right), \ldots, g_{s \ell_{s}}\left(t, x_{1}, \ldots, x_{30}\right), x_{32}\right)=0
$$

for some $x_{32} \in \mathbb{Q}$. Combining these we see that $t \notin \mathbb{Z}$ if and only if there are $x_{1}, \ldots, x_{32} \in \mathbb{Q}$ such that the product of all those

$$
\begin{aligned}
& f_{s}\left(t, x_{1}, \ldots, x_{30}\right)^{2}+\left(x_{31} \prod_{j=1}^{\ell_{s}} g_{s j}\left(t, x_{1}, \ldots, x_{30}\right)-1\right)^{2} \\
& +\mathcal{J}_{\ell_{s}}\left(g_{s 1}\left(t, x_{1}, \ldots, x_{30}\right), \ldots, g_{s \ell_{s}}\left(t, x_{1}, \ldots, x_{30}\right), x_{32}\right)^{2}
\end{aligned}
$$

$(s=1, \ldots, k)$ is zero.
In the spirit of the above proof, we can actually construct an explicit polynomial $P\left(t, x_{1}, \ldots, x_{32}\right)$ with integer coefficients satisfying (1.1) with the total degree of P smaller than 2.1×10^{11}. This concludes our proof of Theorem 1.1.

4. Proof of Theorem 1.3

It is known that each nonnegative integer can be written as a sum of four squares of rational numbers. This result due to Euler (cf. [12]) is weaker than Lagrange's four-square theorem (cf. [11, pp. 5-7]). Clearly, any nonnegative rational number can be written as $a / b=(a b) / b^{2}$ with $a, b \in \mathbb{N}$ and $b>0$. So we have the following lemma.

Lemma 4.1. Let $r \in \mathbb{Q}$. Then

$$
\begin{equation*}
r \geq 0 \Longleftrightarrow \exists w \exists x \exists y \exists z\left[r=w^{2}+x^{2}+y^{2}+z^{2}\right] . \tag{4.1}
\end{equation*}
$$

We also need a known result of Sun [15, Theorem 1.1].

Lemma 4.2 (Sun [15]). Let $\mathcal{A} \subseteq \mathbb{N}$ be an r.e. (recursively enumerable) set.
(i) There is a polynomial $P_{\mathcal{A}}\left(x_{0}, x_{1}, \ldots, x_{9}\right)$ with integer coefficients such that for any $a \in \mathbb{N}$ we have $a \in \mathcal{A}$ if and only if $P_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{9}\right)=0$ for some $x_{1}, \ldots, x_{9} \in \mathbb{Z}$ with $x_{9} \geq 0$.
(ii) There is a polynomial $Q_{\mathcal{A}}\left(x_{0}, x_{1}, \ldots, x_{10}\right)$ with integer coefficients such that for any $a \in \mathbb{N}$ we have $a \in \mathcal{A}$ if and only if $Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right)=0$ for some $x_{1}, \ldots, x_{10} \in \mathbb{Z}$ with $x_{10} \neq 0$.

Proof of Theorem 1.3. It is well known that there are nonrecursive r.e. sets (see, e.g., [1, pp. 140-141]). Let us take any nonrecursive r.e. set $\mathcal{A} \subseteq \mathbb{N}$.
(i) Let $P_{\mathcal{A}}$ and P be polynomials as in Lemma 4.2 and Theorem 1.1. In view of Lemmas 4.1-4.2 and Theorem 1.1, for any $a \in \mathbb{N}$ we have

$$
\begin{aligned}
a \notin \mathcal{A} & \Longleftrightarrow \forall x_{1} \cdots \forall x_{9}\left[\neg\left(x_{1}, \ldots, x_{9} \in \mathbb{Z} \wedge x_{9} \geq 0\right) \vee P_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{9}\right) \neq 0\right] \\
& \Longleftrightarrow \forall x_{1} \cdots \forall x_{9}\left[\bigvee_{t=1}^{9}\left(x_{t} \notin \mathbb{Z}\right) \vee x_{9}<0 \vee P_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{9}\right) \neq 0\right] \\
& \Longleftrightarrow \forall x_{1} \cdots \forall x_{9}\left[\bigvee_{t=1}^{9} \exists y_{1} \cdots \exists y_{32}\left(P\left(x_{t}, y_{1}, \ldots, y_{32}\right)=0\right)\right. \\
& \left.\vee-x_{9}>0 \vee \exists y_{1}\left(y_{1} P_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{9}\right)-1=0\right)\right] \\
& \Longleftrightarrow \forall x_{1} \cdots \forall x_{9} \exists y_{1} \cdots \exists y_{32}\left[P_{0}\left(a, x_{1}, \ldots, x_{9}, y_{1}, \ldots, y_{32}\right)=0\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{0}\left(a, x_{1}, \ldots, x_{9}, y_{1}, \ldots, y_{32}\right) \\
= & \left(y_{1} P_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{9}\right)-1\right) \prod_{t=1}^{9} P\left(x_{t}, y_{1}, \ldots, y_{32}\right) \\
& \times\left(\left(x_{9} y_{1}-1\right)^{2}+\left(x_{9}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+y_{5}^{2}\right)^{2}\right) .
\end{aligned}
$$

It follows that for any $a \in \mathbb{N}$ we have

$$
a \in \mathcal{A} \Longleftrightarrow \exists x_{1} \cdots \exists x_{9} \forall y_{1} \cdots \forall y_{32} \exists y_{33}\left[y_{33} P_{0}\left(a, x_{1}, \ldots, x_{9}, y_{1}, \ldots, y_{32}\right)-1=0\right]
$$

As both \mathcal{A} and $\mathbb{N} \backslash \mathcal{A}$ are nonrecursive, by the above we get that $\forall^{9} \exists \exists^{32}$ over \mathbb{Q} and $\exists^{9} \forall^{32} \exists$ over \mathbb{Q} are undecidable.
(ii) Let $Q_{\mathcal{A}}$ be the polynomial in Lemma 4.2(ii). For any $a \in \mathbb{N}$, we have

$$
\begin{aligned}
a \notin \mathcal{A} & \Longleftrightarrow \forall x_{1} \cdots \forall x_{10}\left[\neg\left(x_{1}, \ldots, x_{10} \in \mathbb{Z} \wedge x_{10} \neq 0\right) \vee Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right) \neq 0\right] \\
& \Longleftrightarrow \forall x_{1} \cdots \forall x_{10}\left[\bigvee_{t=1}^{10}\left(x_{t} \notin \mathbb{Z}\right) \vee x_{10}=0 \vee Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right) \neq 0\right]
\end{aligned}
$$

By the proof of Theorem $1.1, \mathbb{Q} \backslash \mathbb{Z}$ is 30 -good. Thus, in view of Theorem 1.2 , there are polynomials

$$
f_{s}\left(x, y_{1}, \ldots, y_{31}\right) \text { and } g_{s}\left(x, y_{1}, \ldots, y_{31}\right) \quad(s=1, \ldots, k)
$$

with integer coefficients such that for any $x \in \mathbb{Q}$ we have
$x \notin \mathbb{Z} \Longleftrightarrow \exists y_{1} \cdots \exists y_{31}\left[\bigvee_{s=1}^{k}\left(f_{s}\left(x, y_{1}, \ldots, y_{31}\right)=0 \wedge g_{s}\left(x, y_{1}, \ldots, y_{31}\right) \neq 0\right)\right]$
Thus, for any $a \in \mathbb{N}$, we have
$a \notin \mathcal{A} \Longleftrightarrow \forall x_{1} \cdots \forall x_{10} \exists y_{1} \cdots \exists y_{31}$

$$
\begin{aligned}
& {\left[\bigvee _ { t = 1 } ^ { 1 0 } \left(\bigvee_{s=1}^{k}\left(f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right)=0 \wedge g_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right) \neq 0\right)\right.\right.} \\
& \left.\left.\vee x_{10}=0 \vee Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right) \neq 0\right)\right]
\end{aligned}
$$

and hence

$$
\begin{aligned}
a \in \mathcal{A} \Longleftrightarrow & \exists x_{1} \cdots \exists x_{10} \forall y_{1} \cdots \forall y_{31} \\
& {\left[\bigwedge _ { t = 1 } ^ { 1 0 } \left(\bigwedge_{s=1}^{k}\left(f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right) \neq 0 \vee g_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right)=0\right)\right.\right.} \\
& \left.\left.\wedge x_{10} \neq 0 \wedge Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right)=0\right)\right] .
\end{aligned}
$$

Let $\Gamma=\{1, \ldots, k\} \times\{1, \ldots, 10\}$. By the distributive law concerning disjunction and conjunction,

$$
\bigwedge_{t=1}^{10} \bigwedge_{s=1}^{k}\left(f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right) \neq 0 \vee g_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right)=0\right)
$$

is equivalent to

$$
\bigvee_{\Delta \subseteq \Gamma}\left(\bigwedge_{(s, t) \in \Delta}\left(f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right) \neq 0\right) \wedge \bigwedge_{\left(s^{\prime}, t^{\prime}\right) \in \Gamma \backslash \Delta}\left(g_{s^{\prime}}\left(x_{t^{\prime}}, y_{1}, \ldots, y_{31}\right)=0\right)\right) .
$$

Thus, for any $a \in \mathbb{N}$, we have

$$
\begin{aligned}
a \in \mathcal{A} \Longleftrightarrow & \exists x_{1} \cdots \exists x_{10} \forall y_{1} \cdots \forall y_{31} \\
& {\left[\bigvee _ { \Delta \subseteq \Gamma } \left(x_{10} \prod_{(s, t) \in \Delta} f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right) \neq 0\right.\right.} \\
& \left.\left.\wedge \bigwedge_{\left(s^{\prime}, t^{\prime}\right) \in \Gamma \backslash \Delta}\left(g_{s^{\prime}}\left(x_{t^{\prime}}, y_{1}, \ldots, y_{31}\right)=0\right) \wedge Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right)=0\right)\right] \\
\Longleftrightarrow & \exists x_{1} \cdots \exists x_{10} \forall y_{1} \cdots \forall y_{31} \exists z \\
& {\left[\bigvee _ { \Delta \subseteq \Gamma } \left(1-z x_{10} \prod_{(s, t) \in \Delta} f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right)=0\right.\right.} \\
& \left.\left.\wedge \bigwedge_{\left(s^{\prime}, t^{\prime}\right) \in \Gamma \backslash \Delta}\left(g_{s^{\prime}}\left(x_{t^{\prime}}, y_{1}, \ldots, y_{31}\right)=0\right) \wedge Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right)=0\right)\right]
\end{aligned}
$$

and hence

$$
a \in \mathcal{A} \Longleftrightarrow \exists x_{1} \cdots \exists x_{10} \forall y_{1} \cdots \forall y_{31} \exists z\left[P_{1}\left(a, x_{1}, \ldots, x_{10}, y_{1}, \ldots, y_{31}, z\right)=0\right]
$$

where we view an empty product as 1 , and $P_{1}\left(a, x_{1}, \ldots, x_{10}, y_{1}, \ldots, y_{31}, z\right)$ stands for the product of

$$
\begin{aligned}
& \left(1-z x_{10} \prod_{(s, t) \in \Delta} f_{s}\left(x_{t}, y_{1}, \ldots, y_{31}\right)\right)^{2} \\
+ & \sum_{\left(s^{\prime}, t^{\prime}\right) \in \Gamma \backslash \Delta} g_{s^{\prime}}\left(x_{t^{\prime}}, y_{1}, \ldots, y_{31}\right)^{2}+Q_{\mathcal{A}}\left(a, x_{1}, \ldots, x_{10}\right)^{2}
\end{aligned}
$$

over $\Delta \subseteq \Gamma$. As \mathcal{A} is nonrecursive, we obtain that $\exists^{10} \forall^{31} \exists$ over \mathbb{Q} is undecidable.

In view of the above, we have completed the proof of Theorem 1.3.
Acknowledgment. The authors would like to thank the referee for helpful comments.

References

[1] N. Cutland, Computability, Cambridge Univ. Press, Cambridge, 1980.
[2] N. Daans, Universally defining finite generated subrings of global fields, Doc. Math. 26 (2021), 1851-1869.
[3] N. Daans, P. Dittmann and A. Fehm, Existential rank and essential dimension of Diophantine sets, preprint, arXiv:2102.06941, 2021.
[4] M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
[5] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math. 74 (1961), 425-436.
[6] D. Flath and S. Wagon, How to pick out the integers in the rationals: an application of number theory to logic? Amer. Math. Monthly 98 (1991), 812-823.
[7] J. Koenigsmann, Defining \mathbb{Z} in \mathbb{Q}, Annals of Math. 183 (2016), 73-93.
[8] Yu. Matiyasevich, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282; English translation with addendum, Soviet Math. Doklady 11 (1970), 354-357.
[9] Yu. Matiyasevich and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-553.
[10] P. Morandi, Fields and Galois Theory, Grad. Texts in Math. 167, Springer, New York, 1996.
[11] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
[12] H. Pieper, On Euler's contributions to the four-squares theorem, Historia Math. 20 (1993), 12-18.
[13] B. Poonen, Characterizing integers among rational numbers with a universalexistential formula, Amer. J. Math. 131 (2009), 675-682.
[14] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98-114.
[15] Z.-W. Sun, Further results on Hilbert's Tenth Problem, Sci. China Math. 64 (2021), 281-306.
[16] Z.-W. Sun, Mixed quantifier prefixes over Diophantine equations with integer variables, preprint, arXiv:2103.08302, 2021.
(Geng-Rui Zhang) School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

E-mail address: grzhang@stu.pku.edu.cn
(Zhi-Wei Sun, corresponding author) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

[^0]: Key words and phrases. Undecidability, definability, diophantine sets, Hilbert's tenth problem over \mathbb{Q}, mixed quantifiers.

 2020 Mathematics Subject Classification. Primary 03D35, 11U05; Secondary 03D25, 11D99, 11S99.

 * Corresponding author, supported by the National Natural Science Foundation of China (grant no. 11971222).

