Czechslovak Math. J. 73 (2023), no. 3, 971-978.

THE TANGENT FUNCTION AND POWER RESIDUES MODULO PRIMES

ZHI-WEI SUN

Abstract

Let p be an odd prime, and let a be an integer not divisible by p. When m is a positive integer with $p \equiv 1(\bmod 2 m)$ and 2 is an m th power residue modulo p, we determine the value of the product $\prod_{k \in R_{m}(p)}\left(1+\tan \pi \frac{a k}{p}\right)$, where $R_{m}(p)=\{0<k<p: k \in \mathbb{Z}$ is an m th power residue modulo $p\}$.

In particular, if $p=x^{2}+64 y^{2}$ with $x, y \in \mathbb{Z}$, then

$$
\prod_{k \in R_{4}(p)}\left(1+\tan \pi \frac{a k}{p}\right)=(-1)^{y}(-2)^{(p-1) / 8} .
$$

1. Introduction

It is well known that the function $\tan \pi x$ has period 1 . For any positive odd number n and complex number x with $x-1 / 2 \notin \mathbb{Z}$, Sun [4, Lemma 2.1] proved that

$$
\prod_{r=0}^{n-1}\left(1+\tan \pi \frac{x+r}{n}\right)=\left(\frac{2}{n}\right) 2^{(n-1) / 2}\left(1+\left(\frac{-1}{n}\right) \tan \pi x\right)
$$

where $(\dot{\bar{n}})$ is the Jacobi symbol. In particular, for any odd prime p and integer $a \not \equiv 0(\bmod p)$ we have

$$
\prod_{k=1}^{p-1}\left(1+\tan \pi \frac{a k}{p}\right)=\prod_{r=0}^{p-1}\left(1+\tan \pi \frac{r}{p}\right)=\left(\frac{2}{p}\right) 2^{(p-1) / 2} .
$$

Let p be an odd prime. Then

$$
1^{2}, 2^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}
$$

modulo p give all the $(p-1) / 2$ quadratic residues modulo p. Sun [4, Theorem 1.4] determined the value of the product $\prod_{k=1}^{(p-1) / 2}\left(1+\tan \pi \frac{a k^{2}}{p}\right)$ for any

[^0]integer a not divisible by p; in particular,
\[

$$
\begin{aligned}
& \prod_{k=1}^{(p-1) / 2}\left(1+\tan \pi \frac{a k^{2}}{p}\right) \\
= & \begin{cases}(-1)^{\left|\left\{1 \leqslant k<\frac{p}{4}:\left(\frac{k}{p}\right)=1\right\}\right|} 2^{(p-1) / 4} & \text { if } p \equiv 1(\bmod 8), \\
(-1)^{\left|\left\{1 \leqslant k<\frac{p}{4}:\left(\frac{k}{p}\right)=-1\right\}\right|} 2^{(p-1) / 4}\left(\frac{a}{p}\right) \varepsilon_{p}^{-3\left(\frac{a}{p}\right) h(p)} & \text { if } p \equiv 5(\bmod 8),\end{cases}
\end{aligned}
$$
\]

where $(\dot{\bar{p}})$ is the Legendre symbol, and ε_{p} and $h(p)$ are the fundamental unit and the class number of the real quadratic field $\mathbb{Q}(\sqrt{p})$ respectively.

Let $m \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$, and let p be a prime with $p \equiv 1(\bmod m)$. If $a \in \mathbb{Z}$ is not divisible by p, and $x^{m} \equiv a(\bmod p)$ for an integer x, then a is called an m th power residue modulo p. The set

$$
R_{m}(p)=\{k \in\{1, \ldots, p-1\}: k \text { is an } m \text { th power residue modulo } p\}
$$

has cardinality $(p-1) / m$, and $\left\{k+p \mathbb{Z}: k \in R_{m}(p)\right\}$ is a subgroup of the multiplicative group $\{k+p \mathbb{Z}: k=1, \ldots, p-1\}$. For an integer $a \not \equiv$ $0(\bmod p)$, the m th power residue symbol $\left(\frac{a}{p}\right)_{m}$ is a unique m th root ζ of unity such that

$$
a^{(p-1) / m} \equiv \zeta(\bmod p)
$$

in the ring of all algebraic integers. (Note that a primitive root g modulo p has order $p-1$ which is a multiple of m.) In particular,

$$
\left(\frac{-1}{p}\right)_{m}=(-1)^{(p-1) / m} .
$$

Let p be a prime with $p \equiv 1(\bmod 2 m)$, where $m \in \mathbb{Z}^{+}$. Note that $p-1 \in R_{m}(p)$ since $(-1)^{(p-1) / m}=1$. If $2 \in R_{m}(p)$, then $-2=(-1) \times 2$ is an m th power residue modulo p, hence

$$
\left(\frac{-2}{p}\right)_{2 m}= \begin{cases}1 & \text { if }-2 \text { is a } 2 m \text {-th power residue modulo } p \\ -1 & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
\left(\frac{-2}{p}\right)_{2 m}^{m}=\left(\frac{-2}{p}\right) \tag{1.2}
\end{equation*}
$$

since

$$
\left(\frac{-2}{p}\right)_{2 m}^{m} \equiv\left((-2)^{(p-1) /(2 m)}\right)^{m}=(-2)^{(p-1) / 2} \equiv\left(\frac{-2}{p}\right)(\bmod p) .
$$

Now we state our main theorem.
Theorem 1.1. Let $m \in \mathbb{Z}^{+}$, and let p be a prime with $p \equiv 1(\bmod 2 m)$. Suppose that 2 is an mth power residue modulo p. For any integer a not
divisible by p, we have

$$
\begin{equation*}
\prod_{k \in R_{m}(p)}\left(1+\tan \pi \frac{a k}{p}\right)=\left(\frac{-2}{p}\right)_{2 m}(-2)^{(p-1) /(2 m)}=\left(\frac{2}{p}\right)_{2 m} 2^{(p-1) /(2 m)} \tag{1.3}
\end{equation*}
$$

To prove Theorem 1.1, we need the following auxiliary result.
Theorem 1.2. Let m be a positive integer, and let p be a prime with $p \equiv$ $1(\bmod 2 m)$. Suppose that 2 is an mth power residue modulo p. For any integer $a \not \equiv 0(\bmod p)$, we have

$$
\begin{equation*}
\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a k / p}\right)=\left(\frac{-2}{p}\right)_{2 m} i^{(p-1) /(2 m)} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{k \in R_{m}(p)}\left(i+e^{2 \pi i a k / p}\right)=\left(\frac{2}{p}\right)_{2 m} i^{(p-1) /(2 m)} \tag{1.5}
\end{equation*}
$$

Let p be an odd prime with $p \equiv 1(\bmod m)$, where m is 3 or 4 . Then there are unique $x, y \in \mathbb{Z}^{+}$such that $p=x^{2}+m y^{2}$ (cf. [2, pp. 7-12]). It is well known that $2 \in R_{m}(p)$ if and only if $p=x^{2}+m(m y)^{2}$ for some $x, y \in \mathbb{Z}^{+}$ (cf. Prop. 9.6.2 of [3, p. 119] and Exer. 26 of [3, p. 64]).

Theorem 1.1 with $m=3$ has the following consequence.
Corollary 1.1. Let $p=x^{2}+27 y^{2}$ be a prime with $x, y \in \mathbb{Z}^{+}$. For any integer $a \not \equiv 0(\bmod p)$, we have

$$
\begin{equation*}
\prod_{k \in R_{3}(p)}\left(1+\tan \pi \frac{a k}{p}\right)=(-1)^{x y / 2}(-2)^{(p-1) / 6} \tag{1.6}
\end{equation*}
$$

From Theorem 1.1 in the case $m=4$, we can deduce the following result.
Corollary 1.2. Let $p=x^{2}+64 y^{2}$ be a prime with $x, y \in \mathbb{Z}^{+}$. For any integer $a \not \equiv 0(\bmod p)$, we have

$$
\begin{equation*}
\prod_{k \in R_{4}(p)}\left(1+\tan \pi \frac{a k}{p}\right)=(-1)^{y}(-2)^{(p-1) / 8} \tag{1.7}
\end{equation*}
$$

We will prove Theorems 1.1-1.2 in the next section, and deduce Corollaries 1.1-1.2 in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let m be a positive integer, and let p be a prime with $p \equiv$ $1(\bmod 2 m)$. Then we have

$$
\sum_{k \in R_{m}(p)} k=\frac{p(p-1)}{2 m} .
$$

Proof. Note that -1 is an m th power residue modulo p since $(p-1) / m$ is even. For $k \in\{1, \ldots, p-1\}$, clearly $p-k \in R_{m}(p)$ if and only if $k \in R_{m}(p)$. Thus

$$
2 \sum_{k \in R_{m}(p)} k=\sum_{k \in R_{m}(p)}(k+(p-k))=p \times\left|R_{m}(p)\right|=\frac{p(p-1)}{m} .
$$

This ends the proof of Lemma 2.1.
Proof of Theorem 1.2. Let

$$
c:=\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a k / p}\right)
$$

As $k \in \mathbb{Z}$ is an m th power residue modulo p if and only if $-k$ is an m th power residue modulo p, we also have

$$
c=\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a(-k) / p}\right)
$$

Thus

$$
\begin{aligned}
c^{2} & =\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a k / p}\right)\left(i-e^{-2 \pi i a k / p}\right) \\
& =\prod_{k \in R_{m}(p)}\left(i^{2}+1-i\left(e^{2 \pi i a k / p}+e^{-2 \pi i a k / p}\right)\right) \\
& =(-i)^{\left|R_{m}(p)\right|} \prod_{k \in R_{m}(p)}\left(e^{2 \pi i a k / p}+e^{-2 \pi i a k / p}\right) \\
& =(-i)^{(p-1) / m} \prod_{k \in R_{m}(p)} e^{-2 \pi i a k / p}\left(1+e^{4 \pi i a k / p}\right) \\
& =(-1)^{(p-1) /(2 m)} e^{-2 \pi i \sum_{k \in R_{m}(p)} a k / p} \prod_{k \in R_{m}(p)} \frac{1-e^{2 \pi i a(4 k) / p}}{1-e^{2 \pi i a(2 k) / p}} .
\end{aligned}
$$

Note that

$$
e^{-2 \pi i \sum_{k \in R_{m}(p)} a k / p}=e^{-2 \pi i a(p-1) /(2 m)}=1
$$

by Lemma 2.1. As 2 is an m th power residue modulo p, we also have

$$
\prod_{k \in R_{m}(p)}\left(1-e^{2 \pi i a k / p}\right)=\prod_{k \in R_{m}(p)}\left(1-e^{2 \pi i a(2 k) / p}\right)=\prod_{k \in R_{m}(p)}\left(1-e^{2 \pi i a(4 k) / p}\right)
$$

Combining the above, we see that

$$
c^{2}=(-1)^{(p-1) /(2 m)} \times 1 \times 1=(-1)^{(p-1) /(2 m)}
$$

Write $c=\delta i^{(p-1) /(2 m)}$ with $\delta \in\{ \pm 1\}$. In the ring of all algebraic integers, we have

$$
c^{p}=\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a k / p}\right)^{p}
$$

$$
\begin{aligned}
& \equiv \prod_{k \in R_{m}(p)}\left(i^{p}-1\right)=\left(i^{p}-1\right)^{(p-1) / m} \\
& =\left(\left(i^{p}-1\right)^{2}\right)^{(p-1) /(2 m)}=\left(-2 i^{p}\right)^{(p-1) /(2 m)}(\bmod p)
\end{aligned}
$$

Thus

$$
\delta i^{p(p-1) /(2 m)}=c^{p} \equiv(-2)^{(p-1) /(2 m)} i^{p(p-1) /(2 m)}(\bmod p)
$$

and hence

$$
\delta \equiv(-2)^{(p-1) /(2 m)} \equiv\left(\frac{-2}{p}\right)_{2 m}(\bmod p)
$$

Therefore $\delta=\left(\frac{-2}{p}\right)_{2 m}$ and hence (1.4) holds.
Taking conjugates of both sides of (1.4), we get

$$
\prod_{k \in R_{m}(p)}\left(-i-e^{-2 \pi i a k / p}\right)=\left(\frac{-2}{p}\right)_{2 m}(-i)^{(p-1) /(2 m)}
$$

and hence

$$
(-1)^{(p-1) / m} \prod_{k \in R_{m}(p)}\left(i+e^{2 \pi i a(p-k) / p}\right)=\left(\frac{-2}{p}\right)_{2 m}\left(\frac{-1}{p}\right)_{2 m} i^{(p-1) /(2 m)}
$$

This is equivalent to (1.5) since $\left\{p-k: k \in R_{m}(p)\right\}=R_{m}(p)$.
In view of the above, we have completed the proof of Theorem 1.2.
Proof of Theorem 1.1. For any $k \in \mathbb{Z}$, we have

$$
\begin{aligned}
1+\tan \pi \frac{k}{p} & =1+\frac{\sin \pi k / p}{\cos \pi k / p}=1+\frac{\left(e^{i \pi k / p}-e^{-i \pi k / p}\right) /(2 i)}{\left(e^{i \pi k / p}+e^{-i \pi k / p}\right) / 2} \\
& =1-i \frac{e^{2 \pi i k / p}+1-2}{e^{2 \pi i k / p}+1}=1-i+\frac{2 i}{e^{2 \pi i k / p}+1} \\
& =(1-i)\left(1+\frac{i-1}{e^{2 \pi i k / p}+1}\right)=(1-i) \frac{e^{2 \pi i k / p}+i}{e^{2 \pi i k / p}-i^{2}} \\
& =\frac{i-1}{i-e^{2 \pi i k / p}} \times \frac{e^{2 \pi i(2 k) / p}-i^{2}}{e^{2 \pi i k / p}-i^{2}}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\prod_{k \in R_{m}(p)}\left(1+\tan \pi \frac{a k}{p}\right)=\frac{(i-1)^{\left|R_{m}(p)\right|}}{\prod_{k \in R_{m}(p)}\left(i-e^{2 \pi i a k / p}\right)} \tag{2.1}
\end{equation*}
$$

Recall (1.4) and note that

$$
(i-1)^{\left|R_{m}(p)\right|}=\left((i-1)^{2}\right)^{(p-1) /(2 m)}=(-2 i)^{(p-1) /(2 m)}
$$

So (2.1) yields that

$$
\begin{aligned}
\prod_{k \in R_{m}(p)}\left(1+\tan \pi \frac{a k}{p}\right) & =\frac{(-2 i)^{(p-1) /(2 m)}}{\left(\frac{-2}{p}\right)_{2 m} i^{(p-1) /(2 m)}} \\
& =\left(\frac{-2}{p}\right)_{2 m}(-2)^{(p-1) /(2 m)}
\end{aligned}
$$

$$
=\left(\frac{2}{p}\right)_{2 m} 2^{(p-1) /(2 m)}
$$

This concludes our proof of Theorem 1.1.

3. Proofs of Corollaries 1.1-1.2

Lemma 3.1. For any prime $p=x^{2}+27 y^{2}$ with $x, y \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
\left(\frac{-2}{p}\right)=(-1)^{x y / 2} \tag{3.1}
\end{equation*}
$$

Proof. Clearly $p \equiv 1(\bmod 6)$ and $x \not \equiv y(\bmod 2)$ since $p=x^{2}+27 y^{2}$. Note that (3.1) has the equivalent form:

$$
\begin{equation*}
4 \mid x y \Longleftrightarrow p \equiv 1,3(\bmod 8) \tag{3.2}
\end{equation*}
$$

Case 1. x is odd and y is even.
In this case,

$$
p=x^{2}+27 y^{2} \equiv 1+3 y^{2}=1+12\left(\frac{y}{2}\right)^{2} \equiv 1+4\left(\frac{y}{2}\right)^{2}(\bmod 8)
$$

and hence

$$
p \equiv 1,\left.3(\bmod 8) \Longleftrightarrow p \equiv 1(\bmod 8) \Longleftrightarrow 2\left|\frac{y}{2} \Longleftrightarrow 4\right| y \Longleftrightarrow 4 \right\rvert\, x y
$$

Case 2. x is even and y is odd.
In this case,

$$
p=x^{2}+27 y^{2} \equiv x^{2}+3 y^{2}=4\left(\frac{x}{2}\right)^{2}+3(\bmod 8)
$$

and hence

$$
p \equiv 1,\left.3(\bmod 8) \Longleftrightarrow p \equiv 3(\bmod 8) \Longleftrightarrow 2\left|\frac{x}{2} \Longleftrightarrow 4\right| x \Longleftrightarrow 4 \right\rvert\, x y
$$

In view of the above, we have completed the proof of Lemma 3.1.
Proof of Corollary 1.1. As $p=x^{2}+27 y^{2}$, we see that $p \equiv 1(\bmod 6)$ and 2 is a cubic residue modulo p. By Lemma 3.1 and (1.2) with $m=3$, we have

$$
\left(\frac{-2}{p}\right)_{6}=\left(\frac{-2}{p}\right)=(-1)^{x y / 2}
$$

Combining this with Theorem 1.1 in the case $m=3$, we immediately obtain the desired (1.6).
Proof of Corollary 1.2. As $p=x^{2}+64 y^{2}$, we see that $p \equiv 1(\bmod 8)$ and 2 is a quartic residue modulo p. By Theorem 7.5.7 or Corollary 7.5.8 of [1, pp. 227-228], we have

$$
\left(\frac{-2}{p}\right)_{8}=(-1)^{y}
$$

Combining this with Theorem 1.1 in the case $m=4$, we immediately obtain the desired (1.7).

Acknowledgment. The author would like to thank the referee for helpful comments.

References

[1] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley \& Sons, 1998.
[2] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$: Fermat, Class Field Theory and Complex Multiplication, John Wiley \& Sons, Inc., New York, 1989.
[3] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Grad. Texts. in Math. 84, Springer, New York, 1990.
[4] Z.-W. Sun, Trigonometric identities and quadratic residues, Publ. Math. Debrecen 102 (2023), 111-138.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

[^0]: Key words and phrases. Power residues modulo primes, the tangent function, identity. 2020 Mathematics Subject Classification. Primary 11A15, 33B10; Secondary 05A19.
 The research has been supported by the National Natural Science Foundation of China (grant 11971222).

