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THE TANGENT FUNCTION AND

POWER RESIDUES MODULO PRIMES

ZHI-WEI SUN

Abstract. Let p be an odd prime, and let a be an integer not divisible
by p. When m is a positive integer with p ≡ 1 (mod 2m) and 2 is an
mth power residue modulo p, we determine the value of the product∏

k∈Rm(p)(1 + tanπ ak
p
), where

Rm(p) = {0 < k < p : k ∈ Z is an mth power residue modulo p}.
In particular, if p = x2 + 64y2 with x, y ∈ Z, then∏

k∈R4(p)

(
1 + tanπ

ak

p

)
= (−1)y(−2)(p−1)/8.

1. Introduction

It is well known that the function tanπx has period 1. For any positive
odd number n and complex number x with x−1/2 6∈ Z, Sun [4, Lemma 2.1]
proved that

n−1∏
r=0

(
1 + tanπ

x+ r

n

)
=

(
2

n

)
2(n−1)/2

(
1 +

(
−1

n

)
tanπx

)
,

where ( ·n) is the Jacobi symbol. In particular, for any odd prime p and
integer a 6≡ 0 (mod p) we have

p−1∏
k=1

(
1 + tanπ

ak

p

)
=

p−1∏
r=0

(
1 + tanπ

r

p

)
=

(
2

p

)
2(p−1)/2.

Let p be an odd prime. Then

12, 22, . . . ,

(
p− 1

2

)2

modulo p give all the (p−1)/2 quadratic residues modulo p. Sun [4, Theorem

1.4] determined the value of the product
∏(p−1)/2
k=1 (1 + tanπ ak

2

p ) for any
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integer a not divisible by p; in particular,

(p−1)/2∏
k=1

(
1 + tanπ

ak2

p

)

=

(−1)
|{16k< p

4
: ( k

p
)=1}|

2(p−1)/4 if p ≡ 1 (mod 8),

(−1)
|{16k< p

4
: ( k

p
)=−1}|

2(p−1)/4(ap )ε
−3(a

p
)h(p)

p if p ≡ 5 (mod 8),

where ( ·p) is the Legendre symbol, and εp and h(p) are the fundamental unit

and the class number of the real quadratic field Q(
√
p) respectively.

Let m ∈ Z+ = {1, 2, 3, . . .}, and let p be a prime with p ≡ 1 (mod m). If
a ∈ Z is not divisible by p, and xm ≡ a (mod p) for an integer x, then a is
called an mth power residue modulo p. The set

Rm(p) = {k ∈ {1, . . . , p− 1} : k is an mth power residue modulo p} (1.1)

has cardinality (p − 1)/m, and {k + pZ : k ∈ Rm(p)} is a subgroup of
the multiplicative group {k + pZ : k = 1, . . . , p − 1}. For an integer a 6≡
0 (mod p), the mth power residue symbol (ap )m is a unique mth root ζ of

unity such that

a(p−1)/m ≡ ζ (mod p)

in the ring of all algebraic integers. (Note that a primitive root g modulo p
has order p− 1 which is a multiple of m.) In particular,(

−1

p

)
m

= (−1)(p−1)/m.

Let p be a prime with p ≡ 1 (mod 2m), where m ∈ Z+. Note that

p− 1 ∈ Rm(p) since (−1)(p−1)/m = 1. If 2 ∈ Rm(p), then −2 = (−1)× 2 is
an mth power residue modulo p, hence(

−2

p

)
2m

=

{
1 if − 2 is a 2m-th power residue modulo p,

−1 otherwise,

and (
−2

p

)m
2m

=

(
−2

p

)
(1.2)

since(
−2

p

)m
2m

≡
(

(−2)(p−1)/(2m)
)m

= (−2)(p−1)/2 ≡
(
−2

p

)
(mod p).

Now we state our main theorem.

Theorem 1.1. Let m ∈ Z+, and let p be a prime with p ≡ 1 (mod 2m).
Suppose that 2 is an mth power residue modulo p. For any integer a not
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divisible by p, we have∏
k∈Rm(p)

(
1 + tanπ

ak

p

)
=

(
−2

p

)
2m

(−2)(p−1)/(2m) =

(
2

p

)
2m

2(p−1)/(2m).

(1.3)

To prove Theorem 1.1, we need the following auxiliary result.

Theorem 1.2. Let m be a positive integer, and let p be a prime with p ≡
1 (mod 2m). Suppose that 2 is an mth power residue modulo p. For any
integer a 6≡ 0 (mod p), we have∏

k∈Rm(p)

(i− e2πiak/p) =

(
−2

p

)
2m

i(p−1)/(2m) (1.4)

and ∏
k∈Rm(p)

(i+ e2πiak/p) =

(
2

p

)
2m

i(p−1)/(2m). (1.5)

Let p be an odd prime with p ≡ 1 (mod m), where m is 3 or 4. Then there
are unique x, y ∈ Z+ such that p = x2 + my2 (cf. [2, pp. 7-12]). It is well
known that 2 ∈ Rm(p) if and only if p = x2 + m(my)2 for some x, y ∈ Z+

(cf. Prop. 9.6.2 of [3, p. 119] and Exer. 26 of [3, p. 64]).
Theorem 1.1 with m = 3 has the following consequence.

Corollary 1.1. Let p = x2 + 27y2 be a prime with x, y ∈ Z+. For any
integer a 6≡ 0 (mod p), we have∏

k∈R3(p)

(
1 + tanπ

ak

p

)
= (−1)xy/2(−2)(p−1)/6. (1.6)

From Theorem 1.1 in the case m = 4, we can deduce the following result.

Corollary 1.2. Let p = x2 + 64y2 be a prime with x, y ∈ Z+. For any
integer a 6≡ 0 (mod p), we have∏

k∈R4(p)

(
1 + tanπ

ak

p

)
= (−1)y(−2)(p−1)/8. (1.7)

We will prove Theorems 1.1-1.2 in the next section, and deduce Corollaries
1.1-1.2 in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let m be a positive integer, and let p be a prime with p ≡
1 (mod 2m). Then we have ∑

k∈Rm(p)

k =
p(p− 1)

2m
.
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Proof. Note that −1 is an mth power residue modulo p since (p − 1)/m is
even. For k ∈ {1, . . . , p− 1}, clearly p− k ∈ Rm(p) if and only if k ∈ Rm(p).
Thus

2
∑

k∈Rm(p)

k =
∑

k∈Rm(p)

(k + (p− k)) = p× |Rm(p)| = p(p− 1)

m
.

This ends the proof of Lemma 2.1. �

Proof of Theorem 1.2. Let

c :=
∏

k∈Rm(p)

(
i− e2πiak/p

)
.

As k ∈ Z is an mth power residue modulo p if and only if −k is an mth
power residue modulo p, we also have

c =
∏

k∈Rm(p)

(
i− e2πia(−k)/p

)
.

Thus

c2 =
∏

k∈Rm(p)

(
i− e2πiak/p

)(
i− e−2πiak/p

)
=

∏
k∈Rm(p)

(
i2 + 1− i

(
e2πiak/p + e−2πiak/p

))
= (−i)|Rm(p)|

∏
k∈Rm(p)

(
e2πiak/p + e−2πiak/p

)
= (−i)(p−1)/m

∏
k∈Rm(p)

e−2πiak/p
(

1 + e4πiak/p
)

= (−1)(p−1)/(2m)e−2πi
∑

k∈Rm(p) ak/p
∏

k∈Rm(p)

1− e2πia(4k)/p

1− e2πia(2k)/p
.

Note that

e−2πi
∑

k∈Rm(p) ak/p = e−2πia(p−1)/(2m) = 1

by Lemma 2.1. As 2 is an mth power residue modulo p, we also have∏
k∈Rm(p)

(
1− e2πiak/p

)
=

∏
k∈Rm(p)

(
1− e2πia(2k)/p

)
=

∏
k∈Rm(p)

(
1− e2πia(4k)/p

)
.

Combining the above, we see that

c2 = (−1)(p−1)/(2m) × 1× 1 = (−1)(p−1)/(2m).

Write c = δi(p−1)/(2m) with δ ∈ {±1}. In the ring of all algebraic integers,
we have

cp =
∏

k∈Rm(p)

(i− e2πiak/p)p
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≡
∏

k∈Rm(p)

(ip − 1) = (ip − 1)(p−1)/m

= ((ip − 1)2)(p−1)/(2m) = (−2ip)(p−1)/(2m) (mod p).

Thus
δip(p−1)/(2m) = cp ≡ (−2)(p−1)/(2m)ip(p−1)/(2m) (mod p)

and hence

δ ≡ (−2)(p−1)/(2m) ≡
(
−2

p

)
2m

(mod p).

Therefore δ = (−2p )2m and hence (1.4) holds.

Taking conjugates of both sides of (1.4), we get∏
k∈Rm(p)

(−i− e−2πiak/p) =

(
−2

p

)
2m

(−i)(p−1)/(2m)

and hence

(−1)(p−1)/m
∏

k∈Rm(p)

(i+ e2πia(p−k)/p) =

(
−2

p

)
2m

(
−1

p

)
2m

i(p−1)/(2m).

This is equivalent to (1.5) since {p− k : k ∈ Rm(p)} = Rm(p).
In view of the above, we have completed the proof of Theorem 1.2. �

Proof of Theorem 1.1. For any k ∈ Z, we have

1 + tanπ
k

p
= 1 +

sinπk/p

cosπk/p
= 1 +

(eiπk/p − e−iπk/p)/(2i)
(eiπk/p + e−iπk/p)/2

= 1− ie
2πik/p + 1− 2

e2πik/p + 1
= 1− i+

2i

e2πik/p + 1

= (1− i)
(

1 +
i− 1

e2πik/p + 1

)
= (1− i) e

2πik/p + i

e2πik/p − i2

=
i− 1

i− e2πik/p
× e2πi(2k)/p − i2

e2πik/p − i2
.

Therefore ∏
k∈Rm(p)

(
1 + tanπ

ak

p

)
=

(i− 1)|Rm(p)|∏
k∈Rm(p)(i− e2πiak/p)

. (2.1)

Recall (1.4) and note that

(i− 1)|Rm(p)| = ((i− 1)2)(p−1)/(2m) = (−2i)(p−1)/(2m).

So (2.1) yields that∏
k∈Rm(p)

(
1 + tanπ

ak

p

)
=

(−2i)(p−1)/(2m)

(−2p )2mi(p−1)/(2m)

=

(
−2

p

)
2m

(−2)(p−1)/(2m)
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=

(
2

p

)
2m

2(p−1)/(2m).

This concludes our proof of Theorem 1.1. �

3. Proofs of Corollaries 1.1-1.2

Lemma 3.1. For any prime p = x2 + 27y2 with x, y ∈ Z+, we have(
−2

p

)
= (−1)xy/2, (3.1)

Proof. Clearly p ≡ 1 (mod 6) and x 6≡ y (mod 2) since p = x2 + 27y2. Note
that (3.1) has the equivalent form:

4 | xy ⇐⇒ p ≡ 1, 3 (mod 8). (3.2)

Case 1. x is odd and y is even.

In this case,

p = x2 + 27y2 ≡ 1 + 3y2 = 1 + 12
(y

2

)2
≡ 1 + 4

(y
2

)2
(mod 8)

and hence

p ≡ 1, 3 (mod 8) ⇐⇒ p ≡ 1 (mod 8) ⇐⇒ 2 | y
2
⇐⇒ 4 | y ⇐⇒ 4 | xy.

Case 2. x is even and y is odd.

In this case,

p = x2 + 27y2 ≡ x2 + 3y2 = 4
(x

2

)2
+ 3 (mod 8)

and hence

p ≡ 1, 3 (mod 8) ⇐⇒ p ≡ 3 (mod 8) ⇐⇒ 2 | x
2
⇐⇒ 4 | x ⇐⇒ 4 | xy.

In view of the above, we have completed the proof of Lemma 3.1. �

Proof of Corollary 1.1. As p = x2 + 27y2, we see that p ≡ 1 (mod 6) and 2
is a cubic residue modulo p. By Lemma 3.1 and (1.2) with m = 3, we have(

−2

p

)
6

=

(
−2

p

)
= (−1)xy/2.

Combining this with Theorem 1.1 in the case m = 3, we immediately obtain
the desired (1.6). �

Proof of Corollary 1.2. As p = x2 + 64y2, we see that p ≡ 1 (mod 8) and
2 is a quartic residue modulo p. By Theorem 7.5.7 or Corollary 7.5.8 of [1,
pp. 227-228], we have (

−2

p

)
8

= (−1)y.
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Combining this with Theorem 1.1 in the case m = 4, we immediately obtain
the desired (1.7). �
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