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THE TANGENT FUNCTION AND
POWER RESIDUES MODULO PRIMES

ZHI-WEI SUN

ABSTRACT. Let p be an odd prime, and let a be an integer not divisible
by p. When m is a positive integer with p = 1 (mod 2m) and 2 is an
mth power residue modulo p, we determine the value of the product
icr,, 1+ tanﬂ%), where

Rn(p) ={0 < k <p: k €Zis an mth power residue modulo p}.
In particular, if p = 22 4 64y? with z,y € Z, then

11 <1+tam%k> _ (—1)Y(—2)® V78,

keR4(p)

1. INTRODUCTION

It is well known that the function tan 7wz has period 1. For any positive
odd number n and complex number z with z —1/2 ¢ Z, Sun [4, Lemma 2.1]
proved that

n—1

2 -1
H <1 + tan 7o + r> = () o(n=1)/2 (1 + <> tanmc) )
st n n n

where (5) is the Jacobi symbol. In particular, for any odd prime p and
integer a # 0 (mod p) we have

= ak pt T 2
H (]_ + tan 7T) = H (1 + tan 7T> — <) 2(27—1)/2‘
p p p

k=1 r=0

Let p be an odd prime. Then

2
12 92 p—1
) bR 2

modulo p give all the (p—1)/2 quadratic residues modulo p. Sun [4, Theorem
1.4] determined the value of the product H,(f:_ll)/ 2(1 + tan w%) for any
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integer a not divisible by p; in particular,

(p—1)/2 < ak2>
H 1+tanm—
p

k=1

(_1)|{1<k<§¢ (5)=1Hg(p-1)/4 if p=1 (mod 8),
= B (bt 114 an B

(_1)|{1<k<4 (3)==o( 1)/4(5)51) p/ P if p=>5 (mod 8),

where () is the Legendre symbol, and €, and h(p) are the fundamental unit
and the class number of the real quadratic field Q(,/p) respectively.

Let m € Z*t = {1,2,3,...}, and let p be a prime with p = 1 (mod m). If
a € Z is not divisible by p, and 2™ = a (mod p) for an integer x, then a is
called an mth power residue modulo p. The set

Ry (p) ={ke{l,...,p—1}: kis an mth power residue modulo p} (1.1)

has cardinality (p — 1)/m, and {k +pZ : k € R,,(p)} is a subgroup of
the multiplicative group {k +pZ : k =1,...,p — 1}. For an integer a #
0 (mod p), the mth power residue symbol (%)m is a unique mth root ¢ of
unity such that

aP=D/m = ¢ (mod p)

in the ring of all algebraic integers. (Note that a primitive root g modulo p
has order p — 1 which is a multiple of m.) In particular,

(;)m _ (—1)eD/m,

Let p be a prime with p = 1 (mod 2m), where m € Z*. Note that
p—1¢€ Ry(p) since (—1)P=D/™ =1, If 2 € R,,(p), then —2 = (—1) x 2 is
an mth power residue modulo p, hence

(—2) B {1 if —21is a 2m-th power residue modulo p,
2m

—1 otherwise,

(7)) a2

(—2>m = (=2 0/em) " — (o2 = (;2) (mod p).

p 2m

and

since

Now we state our main theorem.

Theorem 1.1. Let m € Z*, and let p be a prime with p = 1 (mod 2m).
Suppose that 2 is an mth power residue modulo p. For any integer a not
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divisible by p, we have

11 <1+tamak>:<—2> (_2)<p1>/<2m>:<2> o(p—1)/(2m)

k€ERm (p)

To prove Theorem 1.1, we need the following auxiliary result.

Theorem 1.2. Let m be a positive integer, and let p be a prime with p =
1 (mod 2m). Suppose that 2 is an mth power residue modulo p. For any
integer a Z 0 (mod p), we have

] G- emiwr) = <—2> S(0=1)/(2m) (1.4)
k€ Rm (p) P/ am
and
[ G+ emiakin) = <2> i(0-1)/(2m). (1.5)
ke R (p) P/ om

Let p be an odd prime with p = 1 (mod m), where m is 3 or 4. Then there
are unique z,y € Z* such that p = 22 + my? (cf. [2, pp.7-12]). It is well
known that 2 € R,,(p) if and only if p = 22 + m(my)? for some z,y € Z*
(cf. Prop. 9.6.2 of [3, p.119] and Exer. 26 of [3, p. 64]).

Theorem 1.1 with m = 3 has the following consequence.

Corollary 1.1. Let p = 2% + 27y? be a prime with x,y € ZT. For any
integer a # 0 (mod p), we have

11 <1 + tan7rak> = (—1)™/2(=2)(P=1/6, (1.6)
keR3(p) b

From Theorem 1.1 in the case m = 4, we can deduce the following result.

Corollary 1.2. Let p = 22 + 64y> be a prime with x,y € ZT. For any
integer a Z 0 (mod p), we have

11 (1 + tanwak) = (—1)Y(—2)P~ /8, (1.7)
keR4(p) p

We will prove Theorems 1.1-1.2 in the next section, and deduce Corollaries
1.1-1.2 in Section 3.

2. PROOFS OF THEOREMS 1.1 AND 1.2

Lemma 2.1. Let m be a positive integer, and let p be a prime with p =
1 (mod 2m). Then we have

_plp—1)
>, k=—g —

k€ERm, (p)
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Proof. Note that —1 is an mth power residue modulo p since (p — 1)/m is
even. For k € {1,...,p—1}, clearly p—k € R,,,(p) if and only if k € R,,,(p).
Thus

2 3 k= 3 (h+(p—k) =px [Ru(p)| = P2,

m
k€Rm (p) kE€ERm (p)
This ends the proof of Lemma 2.1. O
Proof of Theorem 1.2. Let
c = H (2 o eQﬂ'iak/p) )
kE€ERm (p)

As k € Z is an mth power residue modulo p if and only if —k is an mth
power residue modulo p, we also have

= H (l _ e27ria(—k)/p) .

k€Rm (p)
Thus
2= H (z _ 627riak/p> <z _ 6—27rz'ak/p)
kERm (p)

_ -2 o ,2miak/p —2miak/p

= H “+1—1e +e

_ (_i)|Rm(P)| H (eQﬂ'iak’/p + e—27riak/p)
k€Rm (p)

— (_Z')(pfl)/m H 672m'ak/p (1 + 647riak/p>
k€Rm (p)

. _ p2mia(4k)/p
= (1) P=1)/@m) =27 Tie ) ak/ 1=
=(=D¥ € Hestm @) S H 1 — e2mia(2k)/p

k€Rm (p)
Note that

6727”'21661?7”(1)) ak/p _ €—2m'a(p—1)/(2m) -1
by Lemma 2.1. As 2 is an mth power residue modulo p, we also have

H <1 _ 627m'ak/p) _ H (1 _ eZm’a(Zk)/p) _ H (1 _ 627ria(4k)/p> '

k€ R (p) k€Rm (p) k€ R (p)
Combining the above, we see that

2 = (—1)E-D/@m) | | = (—1)P-D/Cm)

Write ¢ = §i®=1/™) with § € {£1}. In the ring of all algebraic integers,

we have
P = H (Z o 627riak/p)p

k€Rm(p)
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= H (i — 1) = (¥ — 1)~ D/m

k€Rm(p)
= ((i7 — 1)?)P=D/Cm) — (_9iP)(P=1)/(m) (104 p).

Thus
siPP=1/@m) — o = (_2)(p=1)/Cm)pr=1)/Cm) (16q p)
and hence 5
5= (—2)F=D/m) = (‘) (mod p).
P Jom
Therefore § = (_72)2,” and hence (1.4) holds.

Taking conjugates of both sides of (1.4), we get

I (_i_e—zmk/p):(—2> (—i)o-D/2m)
2m

ke R (p) b
and hence
(C)@-Dm [ i+ eriaw-brry = <—2> (—1> (p-1)/(2m).
k€ R (p) P Jom NP/ om
This is equivalent to (1.5) since {p —k: k € Rn(p)} = Rn(p).
In view of the above, we have completed the proof of Theorem 1.2. ([

Proof of Theorem 1.1. For any k € Z, we have
sinmk/p 1 (e"mk/p — e=imk/PY /(24)

k
1+tanm— =1+
p

cosmk/p (eimk/p 4 e=imk/p) /2
e2mik/p 41— 2 , 2
=l —i— T =1t
e2mi /p +1 627Tzk/p+ 1
, i—1 . e2mik/p 4
=(1-1) <1 + e2mik/p | 1) =(1-1) e2mik/p _ ;2
i—1 e?ﬂ'i(Zk:)/p _ i2
- 5 — e2mik/p X e2mik/p _ 52 7
Therefore
k i — 1)IBm(P)
I1 (1 + tam“> - (i ) prae (2.1)
kERm(p) p HkERm(p) (Z —€ )

Recall (1.4) and note that
(i — 1)|Rm(p)| = ((i — 1)2)(p—1)/(2m) - (_gi)(p—l)/@m).
So (2.1) yields that

ak (—2i) =1/ (2m)
11 <1+ tamp> B (=2)ami@=D/Cm)

k€Rm(p)
_ <—2> (— )=/ (2m)
p 2m
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_<2) o(p-1)/(2m)
p 2m

This concludes our proof of Theorem 1.1. O

3. PROOFS OF COROLLARIES 1.1-1.2

Lemma 3.1. For any prime p = % + 27y? with x,y € ZT, we have
-2
—) = (—1)™/2, 3.1
( p ) (1) (3.1)

Proof. Clearly p =1 (mod 6) and = # y (mod 2) since p = 2 + 27y>. Note
that (3.1) has the equivalent form:

4|2y <= p=1,3 (mod 8). (3.2)

Case 1. x is odd and y is even.

In this case,

2 2
p:x2—|—27y251—|—3y2:1—|—12(%) 51+4<%) (mod 8)

and hence

p=1,3 (mod 8) <= p=1(mod 8) < 2|% = 4|y <= 4|y

Case 2. x is even and y is odd.

In this case,
p=a%+27y% = 2% + 3y° :4(§)Q+3 (mod 8)
and hence
p=1,3 (mod 8) <= p=3 (mod 8) <= 2[; = 4|z = 4|uzy.
In view of the above, we have completed the proof of Lemma 3.1. O

Proof of Corollary 1.1. As p = x> 4+ 27y?, we see that p = 1 (mod 6) and 2
is a cubic residue modulo p. By Lemma 3.1 and (1.2) with m = 3, we have

2),-()-cr

Combining this with Theorem 1.1 in the case m = 3, we immediately obtain
the desired (1.6). O

Proof of Corollary 1.2. As p = 2% + 64y>, we see that p = 1 (mod 8) and
2 is a quartic residue modulo p. By Theorem 7.5.7 or Corollary 7.5.8 of [1,

pp. 227-228], we have
—2
().
D /g
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Combining this with Theorem 1.1 in the case m = 4, we immediately obtain
the desired (1.7). O
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