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ON CONGRUENCES INVOLVING APERY NUMBERS
WEI XIA AND ZHI-WEI SUN

ABSTRACT. In this paper, we mainly establish a congruence for a sum involving Apéry num-
bers, which was conjectured by Z.-W. Sun. Namely, for any prime p > 3 and positive odd
integer m, we prove that there is a p-adic integer c,, only depending on m such that

p—1
> k1" () A= cup (£)  (mod p?),
k=0
where A = Z?:o (1;)2(kj3)2 is the Apéry number and (;) is the Legendre symbol.

1. INTRODUCTION

In 1979, Apéry [2] proved that ((3) is irrational. During his proof, he introduced the numbers
n 2 2 n 2 2
n n—+k n—+k 2k
A, = = N),

which are known as Apéry numbers. These numbers have many interesting congruence prop-
erties, and attracted the attention of many researchers. In 1987, F. Beukers [3] conjectured
that

Ap-12 =a, (mod p?)

for any odd prime p, where a,, (n € ZT = {1,2,3,...}) are given by the power series expansion

g[Ta=) =) =D ang” (gl < ).

n=1

Beukers’ conjecture was finally confirmed by S. Ahlgren and K. Ono [I] in 2000. Recently,
J.-C. Liu and C. Wang [7] determined A,_; modulo p° for any prime p > 5, namely,

4 1 1
Ay =1+p° (ng—s - §B2p—4) + §p4Bp—3 (mod p°), (1.1)
where By, By, Bs, ... denote the well-known Bernoulli numbers.
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In 2012, Z.-W. Sun [12] discovered some new divisibility results for certain sums involving
Apéry numbers. In particular, he proved that

n—1

Z(Qk + 1A, =0 (mod n)

k=0
for all n € Z*. There are some further studies along this line (see, e.g., [9, [10, 15, 17]). For
instance, V.J.W. Guo and J. Zeng [6] proved that

n—1
Z(2k +1)(=1)FA, =0 (mod n)
k=0
for all n € Z* and
p—1
(2k + 1)(=1)% Ay, = p (g) (mod p®) (1.2)
k=0

for any prime p > 3, which were both conjectured by Sun [12]. By [13, Corollary 2.2], we also
have

;(% +1)°(=1)" A, = —g <§> (mod p?) (1.3)

for any prime p > 3. Motivated by the above work, we obtain the following result conjectured
by Sun [13, Remark 2.4].

Theorem 1.1. For any prime p > 3 and positive odd integer m, there is a p-adic integer ¢,
only depending on m such that

p—1
3 @k 4+ 1) (~1)F A = cp (1—’> (mod p?). (1.4)
k=0 3
Sun [I3, Remark 2.4] mentioned that he was able to prove for any prime p > 3 in the
cases m = 5,7 with ¢; = —13/27 and ¢; = 5/9. It is worth noting that there exists a parameter
m in and this is the difficulty of this conjecture. It is unrealistic to check every value of
m, so our approach is to treat it uniformly. Firstly, we look for a series of polynomials such
that the left-hand side of has a closed form if we replace (2k 4+ 1)™ by such polynomials.
Then we transform (2k 4+ 1)™ into a linear combination of such polynomials. We shall prove
Theorem [L.1] in the next section.
Our second theorem is motivated by Sun’s recent work on m-series [14].

Theorem 1.2. For any n € Z*, we have

n

D (1)K + 10k + 3)k*A, € {1,3,5,.. .},
k=1

1
n(n+1)
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Moreover, for any odd prime p, we have

p

;:;(—1)’f(91<:2 + 10k +3)k2 4, = £ (£) —15p*  (mod p). (1.5)

2. PROOF OF THEOREM [L.1]

For the sake of convenience, we define

() 2 + 1 ifm=1,
m\T) = .
(x4 1)32™73 + (342® + 512% + 27Tx + 5)(z — D)™ 3 + 23(x — 2)™3  if m > 3.

Lemma 2.1. Let p > 3 be a pm’me and m > 3 an integer. Then we have
Z P(k)(—=1)FA, =0 (mod p*).

Proof. Define

f(k):==(=1)"4x (k€N).
By Zeilberger’s algorithm [I1], we obtain the recurrence:

(k+1)°f(k)+ (2k +3)(17Tk* + 51k + 39) f(k + 1) + (k +2)°f(k+2) =0 (k € N).
Multiplying both sides of the above formula by k™3, we get
(k+1)°k™ 2 f(k) + (2k + 3)(17k* + 51k + 39)k™ 3 f(k + 1) + (k + 2)°k™ 2 f(k + 2) = 0.

Then summing both sides from & = 0 to n — 2 (n > 2), and then rearranging the summation
term, we arrive at

D Pu(k)(—D)F A =(=1)" " (n = )" PR A, L + (1) (n+ 1) A,

+ (—=1)"(34n* + 51n% +27n + 5)(n — 1) 3 A,,. (2.1)
Thus (2.1) with n = p — 1 yields that
p—1
Pn(k) (1) Ay == (p = 1)*(p = 2)" Ay +p°(p — 1) A,
k=0
+ (34p* — 51p* +27Tp — 5)(p — 2)™ 3 A, .. (2.2)

Recall a classical result of Wolstenholme [16]:

—_

=

bS]

H, = =0 (modp*) and H}@l = =0 (mod p).

1
k:

dyH

T
I
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Thus

- (p;2>2(p—z+kz)2
:1+(p_2)2(p_1)2+§<p22>2(p—2+k>2

=5—12p+ 13p* +

Ap_g ==

=5—12p + 13p* + p?

2
p—2
4 41 4
((k—1)2_k—1+ﬁ+z> (mod p%)

4 5 4 ;

=5—12p+ 13p> + p? (5H1§2)1 -
=5-—12p (mod p?).
Combining this with (L.1)) and (2.2)), we get that

p—1

> Pu(k)(=1)* A == (p— 1)*(5 = 12p)(p — 2)™* + (=51p* + 27p — 5)(p — 2)"* (mod p°)
=0 (mod p*).

Thus we obtain the desired result. 0J
Inspired by L. Ghidelli’s nice answer [5] in the MathOverflow, we deduce the following result.

Lemma 2.2. For any positive odd number m, we can write

Qe+ 1)"= Y aP(x)+aPi(x),

3<k<m
where aq,as, . .., a, € Q.

Proof. Clearly, the case m = 1 holds. So we now assume m > 3. Note that P,(z) (n > 3) is a
polynomial of degree n with leading coefficient 36. According to the Fuclidean division, there is
a unique coefficient a,, € Q and a unique polynomial r,,_1(x) € Q[z]| of degree not exceeding
m — 1 such that (2z + 1)™ = a,,,Pn(x) + rm—1(z). Continue to use the Euclidean division,
we get a unique coefficient a,, 1 € Q and a unique polynomial r,, o(z) € Q[x] of degree not
exceeding m —2 such that r,,_1(x) = ay_1Pn_1(2) +7m_2o(z). Repeating the process, we finally
get am, A1, ... a3 € Q and 1,1 (), ry—o(x),...,r2(x) € Q(x) such that
(21‘ + 1)m = akPk(x) + TQ(.T).
k=3
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It remains to prove that ro(z) is a multiple of 2z 4+ 1 by a coefficient a; € Q. Changing the
variable z = 2z + 1, we obtain

" z—1 z—1

k=3

Noting that r5(x) is a polynomial of degree not exceeding 2, so it suffices to show that 7“2(2;1)
is an odd function with regard to the variable z.
By the definition of Py (x), we have

m

z—1 (2413 21\
o (50) - X5 ()
k=3 k=3
- 1724 32\ (2-3\"" & (z—183 [z-5\""
+kzak(4 +2) (552 DI (5°) -

’ (2.3)

9z) = a (Z 5 3)k3 . (2.4)

Since g(z) € Q(z) and deg g(z) < m — 3, we have g(z) = > /" cx2"? for some c3, ¢4, ..., 0 €

Q. Substituting (2.4)) into (2.3)), we have

“ -1 +1)3 172 3 —1)®
San (S5 ) =5 et 2+ (4 5 ) a0+ B e -2
— 2 8 4 4 8

> o <@(z +2)F3 ¢ (%23 - ??TZ) AR (= _8 D’ (z — 2)k3) .

m
k=3

Define

For any integer 3 < k < m, define

Gk(z) — (Z + 1)3 (z I 2)k_3 + (i’zg + 3_’2) k=3 + (Z - 1)3 (Z B 2)k_3‘

8 4 4 8

Thus

. a Py 21 = Y Cka(Z>,

£ 2

=3 k=3
and hence

m = v Cka(Z)—F’f‘Q z-1 (2 5)

) k=3 2

Note that Gi(z) is a polynomial of degree k and it satisfies the equation
Gr(—2) = (=DFGi(2).
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Thus G(2) is either an odd function (when & is odd) or an even function (when & is even). We
claim that ¢, = 0 for all even 3 < k < m. If not, we take the biggest even number 3 <t <m
such that ¢, # 0. Consider the coefficient of 2! on both sides of . Since m is odd, the
coefficient of 2! on the left-hand side is 0. Obviously, ry (z;l) has no 2! term since its degree is
not exceeding 2. As we know, a polynomial function is an odd function if and only if it has no
even terms. Thus ¢;G(z) has no z* term when k is odd. In addition, ¢;Gx(z) has no z* term
when k < ¢ is even. To sum up, the coefficient of z* on the right-hand size is ¢; # 0. That’s
a contradiction. Therefore ¢; = 0 for all even 3 < k < m. That is to say, > ;- cxGk(2) is an
odd function. Since the function z™ is odd, we obtain that ry (52) = 2™ — Y71, ¢xGr(2) is

2
also an odd function. The proof of Lemma [2.2]is now complete. O]

Proof of Theorem |1 . In light of (| - (1.4) holds for m = 1 with ¢; = 1. We now assume
that m > 3 is an odd integer and p > 3 is a prime. By means of Lemma [2.2] we can write

25(] + 1 ZakPk + CL1P1(I), (26)

where a; depends only on m. For the sake of clarity, we denote a; by ¢,. Changing the
variable y = 2z, we arrive at

(y+1)™ Zakpk( >+cm(y+1).

Define Qx(y) := 2872P, (¥) for 3 < k < m. By some simple calculations, we find that the
coefficient of 2*~1 in Py (z) is even and the leading coefficient is 36. Therefore Qx(y) € Z[y] is
of degree k with leading coefficient 9. Now we have

(y+1)" Zkak +eml(y + 1), (2.7)

where b, = ax /2872 for 3 < k < m. Considering the coefficient of y™ on both sides of (2.7)), we
get that b,, = 1/9. So b, is a p-adic integer and 3 is the only prime factor of its denominator.
Similarly, we can get by induction that b,,_1,b,,_2,...,b3,a1 = ¢, are all p-adic integers and
their denominators are powers of three. Thus a;, = 2~2b;, are all p-adic integers for 3 < k < m.

This, together with (|1.2)), ( and Lemma [2.1], gives that

pZ(2k+1) m(—1)F Ay, = Z (Za] +cmP1(k:)> (=1)*A,
iaijPj ’“Ak+cmpz (2k + 1)(=1)F A,

Il
w

i 0

Il
o

k=
2(2) (o)
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Note that Qx(0) = 2¥72P,(0) is even for 3 < k < m. Set y = 0 in (2.7)), and then we obtain
¢m = 1 (mod 2). Therefore, we get that ¢, is a p-adic integer with denominator a power of
three and numerator an odd integer. As a result, we complete the proof of Theorem [I.1 O

3. PROOF OF THEOREM [I.2]

Lemma 3.1. For any n € Z", we have

n

> (=1)" (9K + 10k + 3)k* 4, > 0.
k=1

Proof. Let a, denote the left-hand side of the above inequality. Then a; = 110, ay = 17118,
and

Uni1 — Ano1 = (9> + 280+ 22)(n + 1)*4,01 — (In® —8n +2)(n — 1)*A,_; > 0
for all n > 2. So a, > 0 for all n € Z*. O
Lemma 3.2. Let n € Z*. Then

S (NG (o) = o meas,

m=0

Proof. Let S,, denote the left-hand side of the above congruence. It suffices to prove Ss, = 0
(mod 3) and Ss3,4+1 = Szpie = (—1)" (mod 3).
For any m € N and k£ € Z*, if m/k =0 (mod 3), then we get

(TID B %(7;;__11) =0 (mod 3).

By this little trick and direct calculations, we arrive at
3n—1 m
2m m\ (m+k\ (3n—1\/3n+m+k
=2 (R0 G ) ()

SEEECEDO)S

Where

,_A

om + 2
3m+1

)o—m (mod 3),

0
& Bmr 3m+k:+1 3n—1 \[3n+3m+k+1

N — k Im+k+1 3m+k+1
:i 3m+1 3m+3k—|—1 3n—1 3n+3m+3k+1
o —~ 3k 3m+3k+1 3m+3k+1

3m+1\/3m+3k+2 3n—1 3n+3m+3k+2 (mod 3)
0 3k+1 3k+1 3m + 3k + 2 3m + 3k + 2 '

3
]

+
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By the well-known Lucas congruence [8], we have
()= () () o
for any a,b € N and s,t € {0,1,2}. Applying this congruence, we deduce from the above that
=2 (RGO
= \m — \k m+k)\0 m+k
EEI0ZEOCHECIOEI0
—\m)\1) &= k 0/ \m+£k/)\1 m+k 1
ZEIOZEOCOCDEOC ) ma s
=S, +45,+4S, =95, =0 (mod 3).
Similarly, dealing with S3,,1 modulo 3, we obtain

S S

m=0 k=0

w2 G2 0 G O
—\m )= k k m+k m+ k
Using the same method, we obtain Bs, = B,, (mod 3), Bs,+1 = —B, (mod 3) and Bs,2 = B,
(mod 3). Note that By = 5 = —1 (mod 3), B, = 73 = 1 (mod 3) and By = 1445 = —1
(mod 3). By induction, we can get B, = (—1)" (mod 3) easily. That is to say, Sz,11 = (—1)"
(mod 3). In a similar way, we can prove Sz, o = (—1)" (mod 3). This completes the proof of
Lemma 3.2 O

Define

Recall that Gessel [4] investigated some congruence properties of Apéry numbers. Namely,
he proved that A, = (—1)" (mod 3), Ay, =1 (mod 8) and As, 11 =5 (mod 8) for any n € N.
Thus we immediately obtain A, + A,_1 = 0 (mod 3) and A, — A,,_1 = 4 (mod 8) for any
n € Z*. Our next lemma gives a further refinement of these results.

Lemma 3.3. For any n € Z* with 3t n, we have A, + A,_1 = (—=1)"3n (mod 9). Similarly,
for any n € ZF with 2{n, we have A, — A,_1 = 4(=1)""V/2 (mod 16).

Proof. These two results can be proved in a similar way even though the second result is a bit
more difficult. Here we only prove the first result in detail. The Zeilberger algorithm gives the
recurrence relation of A,, as follows:

(n+1)°A, — (3+2n)(39+51n+17Tn*) A + (n+2)*4,,0 =0 (n €N). (3.1)
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Note that (n+1)3, —(3+2n)(39+51n+ 17n?) and (n+ 2)3 modulo 9 are periodic with period
3. Let k € N. Considering the above equation modulo 9, we find that

4A3k + A3k+1 =0 (HlOd 9),
—A3k+1 — 4A3k+2 =0 (mod 9),
Agk — A3k+2 =0 (mod 9)

Thus using Gessel’s result, we obtain Az 1 + Asp = —3A3, = —3(—1)3* = (=1)3*13(3k + 1)
(mod 9), and Asgyo + Aspy1 = —3Aspge = —3(—1)3%+2 = (=1)3*23(3k + 2) (mod 9). These
conclude the proof.

UJ

Proof of Theorem. Let n € Z". Denote > ,_,(—1)""*(9k* 4+ 10k + 3)k? Ay by T,,. First of

all, we show that T,,/n is an integer, which is odd if 2 | n. It is routine to verify that
1 11 1
(9K? + 10k + 3)k* = T Pa(k) + — Pa(k) + 2 Pa(k),

where P, (z) is defined at the beginning of Section 2. Hence ({2.1)) yields

n—1

1 1
k=0

Recall that V.J.W. Guo and J. Zeng [6] obtained the following amazing combinatorial identity:

s e S () () (D) e

With the help of the above identity, we obtain

5__171_1 2m i m\ /m+k\/n—1 n+m-+k
n 3= \m /)= \k k m+k m+k

1
+ —=n(630n* + 745n + 216)A,, — —n*(18n — T)A,_;.

1

72 72

In order to prove n | T,, we need to show that the right-hand side of the above equation

is a 3-adic integer and also a 2-adic integer. Firstly, we show that T}, /n is a 3-adic integer.
According to Lemma (3.2} it suffices to show that

1
51" n?(630n> + 745n + 216) A, — 24n3(18n ~NA,1=(=1)""'n (mod 3).

By simple calculations, we get

1 2
21" n?(630n* + 7451 + 216) A, — 24n3(18n —TNA,1 = §n2(An +A,—1) (mod 3).
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Clearly, 2n%(A, + A,_1)/3 = (=1)"'n = 0 (mod 3) when n = 0 (mod 3). When 3 n, we
obtain by Lemma [3.3] that

2

2 .
gnQ(An +A,4)= 3n2(—1)”3n =(-D)"'n*=(-1)""'n (mod 3),

where the last congruence follows from Fermat’s little theorem. Secondly, we show that T,,/n
is a 2-adic integer. In fact, we just need to prove

1 1
%n(630n2 + 7451 + 216) A,, — %nz(l&z —7NA,_1 =0 (mod 2).

It is easy to check that

2
%(630712 4 7450 + 216) A, — g—6(18n ) A

is congruent to
2 3

h(n) := %(An A+ %(An — A1) 0P A, + 2nA,

modulo 4. If 2 | n, then h(n) =0 (mod 4) by means of Gessel’s result A, —A,,_1 =4 (mod 8).
If 2 4 n, by Lemma [3.3] and Gessel’s result A,, =1 (mod 4), we have

TL2

’I’LB
h(n) = Z X 4<—1)(n_1)/2 + g

So far we have got that n | T,,. Now we consider the case 2 | n. Notice that (*") = 2(*"")
(mod 2) for any m € Z*. Thus
n—1 m
> COR () C) G = o
~\m )= m+k m+k
and hence T,,/n =1 (mod 2).

We now show that 7,,/(n + 1) is also an integer, which is odd if 2 { n. In view of (3.1, we
have

x 4(—1)"V2 4 p3 1 2n =2 (mod 4).

0

n*A, 1= 2n+1)(1mT* +1Tn +5)A, — (n+ 1)* 4,41
Substituting the above expression into (3.2]), we deduce

. 1 1
o n k 3 3
T, = (—1) 3 kZ:O(—l) (2k + 1)Ax + 5(n +1)°(18n + 11)A, + i(n +1)°(18n — 7) Ap1.
Then, using V.J.W. Guo and J. Zeng’s amazing identity (3.3)), we obtain
T, _li 2m Xm: m\/(m+k\/n—1\/n+m+k
n+1_3m:0 m ) k k m+k m+k

1 1
+ i(n +1)*(18n + 11) A, + ﬁ(n +1)*(18n — T) A, 1.
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As a result, (n+ 1) | T, if the right-hand size of the above expression is a 3-adic integer and
also a 2-adic integer, which follows in a similar way as done in the case n | T,,. Moreover,
T,/(n+1)is odd if 2 { n.

Since (n,n + 1) = 1, we immediately deduce n(n + 1) | T,,. When n is odd, then T,,/(n + 1)
is odd, and hence T},/(n(n + 1)) is odd. When n is even, then both 7,,/n and n + 1 are odd,
and hence T,,/(n(n + 1)) is odd. As a result, T,,/(n(n + 1)) is odd. In view of Lemma [3.1], we
conclude that T, /(n(n + 1)) is a positive odd integer.

Let p be an odd prime. We can verify for p = 3 easily. So we assume p > 3 below.
With the aid of Lemma and , we obtain

p—1 p—1

(—1)F(9K? + 10k + 3)k* A = Y (—1)" (9K + 10k + 3)k2Ay,
k=1 k=0
p—1

<2P4(k) + %Pg(k) + %P1(/€)) (—1)k A,

=0

WIS »

B) (mod p?).
3
Noting that
p 2 2 2 2
D p+k 2p 2p—1
@) () = () =
we obtain from the above the desired result (1.5). Hence we complete the proof of Theorem
1.2 OJ

5 (mod p),
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