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ON CONGRUENCES INVOLVING APÉRY NUMBERS

WEI XIA AND ZHI-WEI SUN

Abstract. In this paper, we mainly establish a congruence for a sum involving Apéry num-
bers, which was conjectured by Z.-W. Sun. Namely, for any prime p > 3 and positive odd
integer m, we prove that there is a p-adic integer cm only depending on m such that

p−1∑
k=0

(2k + 1)m(−1)kAk ≡ cmp
(p

3

)
(mod p3),

where Ak =
∑k

j=0

(
k
j

)2(k+j
j

)2
is the Apéry number and ( .

p ) is the Legendre symbol.

1. Introduction

In 1979, Apéry [2] proved that ζ(3) is irrational. During his proof, he introduced the numbers

An =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

=
n∑

k=0

(
n+ k

2k

)2(
2k

k

)2

(n ∈ N),

which are known as Apéry numbers. These numbers have many interesting congruence prop-
erties, and attracted the attention of many researchers. In 1987, F. Beukers [3] conjectured
that

A(p−1)/2 ≡ ap (mod p2)

for any odd prime p, where an (n ∈ Z+ = {1, 2, 3, . . .}) are given by the power series expansion

q
∞∏
n=1

(1− q2n)4(1− q4n)4 =
∞∑
n=1

anq
n (|q| < 1).

Beukers’ conjecture was finally confirmed by S. Ahlgren and K. Ono [1] in 2000. Recently,
J.-C. Liu and C. Wang [7] determined Ap−1 modulo p5 for any prime p > 5, namely,

Ap−1 ≡ 1 + p3
(

4

3
Bp−3 −

1

2
B2p−4

)
+

1

9
p4Bp−3 (mod p5), (1.1)

where B0, B1, B2, . . . denote the well-known Bernoulli numbers.
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In 2012, Z.-W. Sun [12] discovered some new divisibility results for certain sums involving
Apéry numbers. In particular, he proved that

n−1∑
k=0

(2k + 1)Ak ≡ 0 (mod n)

for all n ∈ Z+. There are some further studies along this line (see, e.g., [9, 10, 15, 17]). For
instance, V.J.W. Guo and J. Zeng [6] proved that

n−1∑
k=0

(2k + 1)(−1)kAk ≡ 0 (mod n)

for all n ∈ Z+ and
p−1∑
k=0

(2k + 1)(−1)kAk ≡ p
(p

3

)
(mod p3) (1.2)

for any prime p > 3, which were both conjectured by Sun [12]. By [13, Corollary 2.2], we also
have

p−1∑
k=0

(2k + 1)3(−1)kAk ≡ −
p

3

(p
3

)
(mod p3) (1.3)

for any prime p > 3. Motivated by the above work, we obtain the following result conjectured
by Sun [13, Remark 2.4].

Theorem 1.1. For any prime p > 3 and positive odd integer m, there is a p-adic integer cm
only depending on m such that

p−1∑
k=0

(2k + 1)m(−1)kAk ≡ cmp
(p

3

)
(mod p3). (1.4)

Sun [13, Remark 2.4] mentioned that he was able to prove (1.4) for any prime p > 3 in the
cases m = 5, 7 with c5 = −13/27 and c7 = 5/9. It is worth noting that there exists a parameter
m in (1.4) and this is the difficulty of this conjecture. It is unrealistic to check every value of
m, so our approach is to treat it uniformly. Firstly, we look for a series of polynomials such
that the left-hand side of (1.4) has a closed form if we replace (2k+ 1)m by such polynomials.
Then we transform (2k + 1)m into a linear combination of such polynomials. We shall prove
Theorem 1.1 in the next section.

Our second theorem is motivated by Sun’s recent work on π-series [14].

Theorem 1.2. For any n ∈ Z+, we have

1

n(n+ 1)

n∑
k=1

(−1)n−k(9k2 + 10k + 3)k2Ak ∈ {1, 3, 5, . . .}.
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Moreover, for any odd prime p, we have

p∑
k=1

(−1)k(9k2 + 10k + 3)k2Ak ≡
p

3

(p
3

)
− 15p2 (mod p3). (1.5)

2. Proof of Theorem 1.1

For the sake of convenience, we define

Pm(x) =

{
2x+ 1 if m = 1,

(x+ 1)3xm−3 + (34x3 + 51x2 + 27x+ 5)(x− 1)m−3 + x3(x− 2)m−3 if m ≥ 3.

Lemma 2.1. Let p > 3 be a prime and m ≥ 3 an integer. Then we have

p−1∑
k=0

Pm(k)(−1)kAk ≡ 0 (mod p3).

Proof. Define

f(k) := (−1)kAk (k ∈ N).

By Zeilberger’s algorithm [11], we obtain the recurrence:

(k + 1)3f(k) + (2k + 3)(17k2 + 51k + 39)f(k + 1) + (k + 2)3f(k + 2) = 0 (k ∈ N).

Multiplying both sides of the above formula by km−3, we get

(k + 1)3km−3f(k) + (2k + 3)(17k2 + 51k + 39)km−3f(k + 1) + (k + 2)3km−3f(k + 2) = 0.

Then summing both sides from k = 0 to n− 2 (n ≥ 2), and then rearranging the summation
term, we arrive at

n∑
k=0

Pm(k)(−1)kAk =(−1)n−1(n− 1)m−3n3An−1 + (−1)nnm−3(n+ 1)3An

+ (−1)n(34n3 + 51n2 + 27n+ 5)(n− 1)m−3An. (2.1)

Thus (2.1) with n = p− 1 yields that

p−1∑
k=0

Pm(k)(−1)kAk =− (p− 1)3(p− 2)m−3Ap−2 + p3(p− 1)m−3Ap−1

+ (34p3 − 51p2 + 27p− 5)(p− 2)m−3Ap−1. (2.2)

Recall a classical result of Wolstenholme [16]:

Hp−1 =

p−1∑
k=1

1

k
≡ 0 (mod p2) and H

(2)
p−1 =

p−1∑
k=1

1

k2
≡ 0 (mod p).
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Thus

Ap−2 =

p−2∑
k=0

(
p− 2

k

)2(
p− 2 + k

k

)2

= 1 + (p− 2)2(p− 1)2 +

p−2∑
k=2

(
p− 2

k

)2(
p− 2 + k

k

)2

≡ 5− 12p+ 13p2 +

p−2∑
k=2

(k + 1)2p2

(k − 1)2k2
(mod p3)

≡ 5− 12p+ 13p2 + p2
p−2∑
k=2

(
4

(k − 1)2
− 4

k − 1
+

1

k2
+

4

k

)
(mod p3)

≡ 5− 12p+ 13p2 + p2
(

5H
(2)
p−1 −

4

(p− 2)2
− 5

(p− 1)2
+

4

p− 2
− 5

)
(mod p3)

≡ 5− 12p (mod p3).

Combining this with (1.1) and (2.2), we get that

p−1∑
k=0

Pm(k)(−1)kAk ≡− (p− 1)3(5− 12p)(p− 2)m−3 + (−51p2 + 27p− 5)(p− 2)m−3 (mod p3)

≡ 0 (mod p3).

Thus we obtain the desired result. �

Inspired by L. Ghidelli’s nice answer [5] in the MathOverflow, we deduce the following result.

Lemma 2.2. For any positive odd number m, we can write

(2x+ 1)m =
∑

3≤k≤m

akPk(x) + a1P1(x),

where a1, a3, . . . , am ∈ Q.

Proof. Clearly, the case m = 1 holds. So we now assume m ≥ 3. Note that Pn(x) (n ≥ 3) is a
polynomial of degree n with leading coefficient 36. According to the Euclidean division, there is
a unique coefficient am ∈ Q and a unique polynomial rm−1(x) ∈ Q[x] of degree not exceeding
m − 1 such that (2x + 1)m = amPm(x) + rm−1(x). Continue to use the Euclidean division,
we get a unique coefficient am−1 ∈ Q and a unique polynomial rm−2(x) ∈ Q[x] of degree not
exceeding m−2 such that rm−1(x) = am−1Pm−1(x)+rm−2(x). Repeating the process, we finally
get am, am−1, . . . , a3 ∈ Q and rm−1(x), rm−2(x), . . . , r2(x) ∈ Q(x) such that

(2x+ 1)m =
m∑
k=3

akPk(x) + r2(x).
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It remains to prove that r2(x) is a multiple of 2x + 1 by a coefficient a1 ∈ Q. Changing the
variable z = 2x+ 1, we obtain

zm =
m∑
k=3

akPk

(
z − 1

2

)
+ r2

(
z − 1

2

)
.

Noting that r2(x) is a polynomial of degree not exceeding 2, so it suffices to show that r2(
z−1
2

)
is an odd function with regard to the variable z.

By the definition of Pk(x), we have

m∑
k=3

akPk

(
z − 1

2

)
=

m∑
k=3

ak
(z + 1)3

8

(
z − 1

2

)k−3

+
m∑
k=3

ak

(
17z3

4
+

3z

4

)(
z − 3

2

)k−3

+
m∑
k=3

ak
(z − 1)3

8

(
z − 5

2

)k−3

.

(2.3)
Define

g(z) :=
m∑
k=3

ak

(
z − 3

2

)k−3

. (2.4)

Since g(z) ∈ Q(z) and deg g(z) ≤ m− 3, we have g(z) =
∑m

k=3 ckz
k−3 for some c3, c4, . . . , cm ∈

Q. Substituting (2.4) into (2.3), we have

m∑
k=3

akPk

(
z − 1

2

)
=

(z + 1)3

8
g(z + 2) +

(
17z3

4
+

3z

4

)
g(z) +

(z − 1)3

8
g(z − 2)

=
m∑
k=3

ck

(
(z + 1)3

8
(z + 2)k−3 +

(
17z3

4
+

3z

4

)
zk−3 +

(z − 1)3

8
(z − 2)k−3

)
.

For any integer 3 ≤ k ≤ m, define

Gk(z) :=
(z + 1)3

8
(z + 2)k−3 +

(
17z3

4
+

3z

4

)
zk−3 +

(z − 1)3

8
(z − 2)k−3.

Thus
m∑
k=3

akPk

(
z − 1

2

)
=

m∑
k=3

ckGk(z),

and hence

zm =
m∑
k=3

ckGk(z) + r2

(
z − 1

2

)
. (2.5)

Note that Gk(z) is a polynomial of degree k and it satisfies the equation

Gk(−z) = (−1)kGk(z).
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Thus Gk(z) is either an odd function (when k is odd) or an even function (when k is even). We
claim that ck = 0 for all even 3 ≤ k ≤ m. If not, we take the biggest even number 3 ≤ t ≤ m
such that ct 6= 0. Consider the coefficient of zt on both sides of (2.5). Since m is odd, the
coefficient of zt on the left-hand side is 0. Obviously, r2

(
z−1
2

)
has no zt term since its degree is

not exceeding 2. As we know, a polynomial function is an odd function if and only if it has no
even terms. Thus ckGk(z) has no zt term when k is odd. In addition, ckGk(z) has no zt term
when k < t is even. To sum up, the coefficient of zt on the right-hand size is ct 6= 0. That’s
a contradiction. Therefore ck = 0 for all even 3 ≤ k ≤ m. That is to say,

∑m
k=3 ckGk(z) is an

odd function. Since the function zm is odd, we obtain that r2
(
z−1
2

)
= zm −

∑m
k=3 ckGk(z) is

also an odd function. The proof of Lemma 2.2 is now complete. �

Proof of Theorem 1.1. In light of (1.2), (1.4) holds for m = 1 with c1 = 1. We now assume
that m ≥ 3 is an odd integer and p > 3 is a prime. By means of Lemma 2.2, we can write

(2x+ 1)m =
m∑
k=3

akPk(x) + a1P1(x), (2.6)

where a1 depends only on m. For the sake of clarity, we denote a1 by cm. Changing the
variable y = 2x, we arrive at

(y + 1)m =
m∑
k=3

akPk

(y
2

)
+ cm(y + 1).

Define Qk(y) := 2k−2Pk

(
y
2

)
for 3 ≤ k ≤ m. By some simple calculations, we find that the

coefficient of xk−1 in Pk(x) is even and the leading coefficient is 36. Therefore Qk(y) ∈ Z[y] is
of degree k with leading coefficient 9. Now we have

(y + 1)m =
m∑
k=3

bkQk(y) + cm(y + 1), (2.7)

where bk = ak/2
k−2 for 3 ≤ k ≤ m. Considering the coefficient of ym on both sides of (2.7), we

get that bm = 1/9. So bm is a p-adic integer and 3 is the only prime factor of its denominator.
Similarly, we can get by induction that bm−1, bm−2, . . . , b3, a1 = cm are all p-adic integers and
their denominators are powers of three. Thus ak = 2k−2bk are all p-adic integers for 3 ≤ k ≤ m.
This, together with (1.2), (2.6) and Lemma 2.1, gives that

p−1∑
k=0

(2k + 1)m(−1)kAk =

p−1∑
k=0

(
m∑
j=3

ajPj(k) + cmP1(k)

)
(−1)kAk

=
m∑
j=3

aj

p−1∑
k=0

Pj(k)(−1)kAk + cm

p−1∑
k=0

(2k + 1)(−1)kAk

≡ cmp
(p

3

)
(mod p3).
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Note that Qk(0) = 2k−2Pk(0) is even for 3 ≤ k ≤ m. Set y = 0 in (2.7), and then we obtain
cm ≡ 1 (mod 2). Therefore, we get that cm is a p-adic integer with denominator a power of
three and numerator an odd integer. As a result, we complete the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

Lemma 3.1. For any n ∈ Z+, we have
n∑

k=1

(−1)n−k(9k2 + 10k + 3)k2Ak > 0.

Proof. Let an denote the left-hand side of the above inequality. Then a1 = 110, a2 = 17118,
and

an+1 − an−1 = (9n2 + 28n+ 22)(n+ 1)2An+1 − (9n2 − 8n+ 2)(n− 1)2An−1 > 0

for all n ≥ 2. So an > 0 for all n ∈ Z+. �

Lemma 3.2. Let n ∈ Z+. Then
n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
n+m+ k

m+ k

)
≡ (−1)n−1n (mod 3).

Proof. Let Sn denote the left-hand side of the above congruence. It suffices to prove S3n ≡ 0
(mod 3) and S3n+1 ≡ S3n+2 ≡ (−1)n (mod 3).

For any m ∈ N and k ∈ Z+, if m/k ≡ 0 (mod 3), then we get(
m

k

)
=
m

k

(
m− 1

k − 1

)
≡ 0 (mod 3).

By this little trick and direct calculations, we arrive at

S3n =
3n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
3n− 1

m+ k

)(
3n+m+ k

m+ k

)

≡
n−1∑
m=0

(
6m

3m

) 3m∑
k=0

(
3m

k

)(
3m+ k

k

)(
3n− 1

3m+ k

)(
3n+ 3m+ k

3m+ k

)
+

n−1∑
m=0

(
6m+ 2

3m+ 1

)
σm (mod 3),

where

σm =
3m+1∑
k=0

(
3m+ 1

k

)(
3m+ k + 1

k

)(
3n− 1

3m+ k + 1

)(
3n+ 3m+ k + 1

3m+ k + 1

)

≡
m∑
k=0

(
3m+ 1

3k

)(
3m+ 3k + 1

3k

)(
3n− 1

3m+ 3k + 1

)(
3n+ 3m+ 3k + 1

3m+ 3k + 1

)

+
m∑
k=0

(
3m+ 1

3k + 1

)(
3m+ 3k + 2

3k + 1

)(
3n− 1

3m+ 3k + 2

)(
3n+ 3m+ 3k + 2

3m+ 3k + 2

)
(mod 3).
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By the well-known Lucas congruence [8], we have(
3a+ s

3b+ t

)
≡
(
a

b

)(
s

t

)
(mod 3)

for any a, b ∈ N and s, t ∈ {0, 1, 2}. Applying this congruence, we deduce from the above that

S3n ≡
n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
2

0

)(
n+m+ k

m+ k

)

+
n−1∑
m=0

(
2m

m

)(
2

1

) m∑
k=0

(
m

k

)(
1

0

)(
m+ k

k

)(
1

0

)(
n− 1

m+ k

)(
2

1

)(
n+m+ k

m+ k

)(
1

1

)

+
n−1∑
m=0

(
2m

m

)(
2

1

) m∑
k=0

(
m

k

)(
1

1

)(
m+ k

k

)(
2

1

)(
n− 1

m+ k

)(
2

2

)(
n+m+ k

m+ k

)(
2

2

)
(mod 3)

≡Sn + 4Sn + 4Sn = 9Sn ≡ 0 (mod 3).

Similarly, dealing with S3n+1 modulo 3, we obtain

S3n+1 ≡
n∑

m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n

m+ k

)(
n+m+ k

m+ k

)
(mod 3).

Define

Bn :=
n∑

m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n

m+ k

)(
n+m+ k

m+ k

)
.

Using the same method, we obtain B3n ≡ Bn (mod 3), B3n+1 ≡ −Bn (mod 3) and B3n+2 ≡ Bn

(mod 3). Note that B1 = 5 ≡ −1 (mod 3), B2 = 73 ≡ 1 (mod 3) and B3 = 1445 ≡ −1
(mod 3). By induction, we can get Bn ≡ (−1)n (mod 3) easily. That is to say, S3n+1 ≡ (−1)n

(mod 3). In a similar way, we can prove S3n+2 ≡ (−1)n (mod 3). This completes the proof of
Lemma 3.2. �

Recall that Gessel [4] investigated some congruence properties of Apéry numbers. Namely,
he proved that An ≡ (−1)n (mod 3), A2n ≡ 1 (mod 8) and A2n+1 ≡ 5 (mod 8) for any n ∈ N.
Thus we immediately obtain An + An−1 ≡ 0 (mod 3) and An − An−1 ≡ 4 (mod 8) for any
n ∈ Z+. Our next lemma gives a further refinement of these results.

Lemma 3.3. For any n ∈ Z+ with 3 - n, we have An + An−1 ≡ (−1)n3n (mod 9). Similarly,
for any n ∈ Z+ with 2 - n, we have An − An−1 ≡ 4(−1)(n−1)/2 (mod 16).

Proof. These two results can be proved in a similar way even though the second result is a bit
more difficult. Here we only prove the first result in detail. The Zeilberger algorithm gives the
recurrence relation of An as follows:

(n+ 1)3An − (3 + 2n)(39 + 51n+ 17n2)An+1 + (n+ 2)3An+2 = 0 (n ∈ N). (3.1)
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Note that (n+ 1)3, −(3 + 2n)(39 + 51n+ 17n2) and (n+ 2)3 modulo 9 are periodic with period
3. Let k ∈ N. Considering the above equation modulo 9, we find that

4A3k + A3k+1 ≡ 0 (mod 9),

−A3k+1 − 4A3k+2 ≡ 0 (mod 9),

A3k − A3k+2 ≡ 0 (mod 9).

Thus using Gessel’s result, we obtain A3k+1 + A3k ≡ −3A3k ≡ −3(−1)3k = (−1)3k+13(3k + 1)
(mod 9), and A3k+2 + A3k+1 ≡ −3A3k+2 ≡ −3(−1)3k+2 = (−1)3k+23(3k + 2) (mod 9). These
conclude the proof.

�

Proof of Theorem 1.2. Let n ∈ Z+. Denote
∑n

k=1(−1)n−k(9k2 + 10k + 3)k2Ak by Tn. First of
all, we show that Tn/n is an integer, which is odd if 2 | n. It is routine to verify that

(9k2 + 10k + 3)k2 =
1

4
P4(k) +

11

72
P3(k) +

1

3
P1(k),

where Pm(x) is defined at the beginning of Section 2. Hence (2.1) yields

Tn =
(−1)n

3

n−1∑
k=0

(−1)k(2k + 1)Ak +
1

72
n2(630n2 + 745n+ 216)An −

1

72
n3(18n− 7)An−1. (3.2)

Recall that V.J.W. Guo and J. Zeng [6] obtained the following amazing combinatorial identity:

1

n

n−1∑
k=0

(−1)k(2k+1)Ak = (−1)n−1
n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
n+m+ k

m+ k

)
. (3.3)

With the help of the above identity, we obtain

Tn
n

=− 1

3

n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
n+m+ k

m+ k

)
+

1

72
n(630n2 + 745n+ 216)An −

1

72
n2(18n− 7)An−1.

In order to prove n | Tn, we need to show that the right-hand side of the above equation
is a 3-adic integer and also a 2-adic integer. Firstly, we show that Tn/n is a 3-adic integer.
According to Lemma 3.2, it suffices to show that

1

24
n2(630n2 + 745n+ 216)An −

1

24
n3(18n− 7)An−1 ≡ (−1)n−1n (mod 3).

By simple calculations, we get

1

24
n2(630n2 + 745n+ 216)An −

1

24
n3(18n− 7)An−1 ≡

2

3
n2(An + An−1) (mod 3).
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Clearly, 2n2(An + An−1)/3 ≡ (−1)n−1n ≡ 0 (mod 3) when n ≡ 0 (mod 3). When 3 - n, we
obtain by Lemma 3.3 that

2

3
n2(An + An−1) ≡

2

3
n2(−1)n3n ≡ (−1)n−1n3 ≡ (−1)n−1n (mod 3),

where the last congruence follows from Fermat’s little theorem. Secondly, we show that Tn/n
is a 2-adic integer. In fact, we just need to prove

1

36
n(630n2 + 745n+ 216)An −

1

36
n2(18n− 7)An−1 ≡ 0 (mod 2).

It is easy to check that

n

36
(630n2 + 745n+ 216)An −

n2

36
(18n− 7)An−1

is congruent to

h(n) :=
n2

4
(An − An−1) +

n3

6
(An − An−1) + n3An−1 + 2nAn

modulo 4. If 2 | n, then h(n) ≡ 0 (mod 4) by means of Gessel’s result An−An−1 ≡ 4 (mod 8).
If 2 - n, by Lemma 3.3 and Gessel’s result An ≡ 1 (mod 4), we have

h(n) ≡ n2

4
× 4(−1)(n−1)/2 +

n3

6
× 4(−1)(n−1)/2 + n3 + 2n ≡ 2 (mod 4).

So far we have got that n | Tn. Now we consider the case 2 | n. Notice that
(
2m
m

)
= 2
(
2m−1
m−1

)
≡ 0

(mod 2) for any m ∈ Z+. Thus

n−1∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
n+m+ k

m+ k

)
≡ 1 (mod 2),

and hence Tn/n ≡ 1 (mod 2).
We now show that Tn/(n + 1) is also an integer, which is odd if 2 - n. In view of (3.1), we

have

n3An−1 = (2n+ 1)(17n2 + 17n+ 5)An − (n+ 1)3An+1.

Substituting the above expression into (3.2), we deduce

Tn = (−1)n
1

3

n∑
k=0

(−1)k(2k + 1)Ak +
1

72
(n+ 1)3(18n+ 11)An +

1

72
(n+ 1)3(18n− 7)An+1.

Then, using V.J.W. Guo and J. Zeng’s amazing identity (3.3), we obtain

Tn
n+ 1

=
1

3

n∑
m=0

(
2m

m

) m∑
k=0

(
m

k

)(
m+ k

k

)(
n− 1

m+ k

)(
n+m+ k

m+ k

)
+

1

72
(n+ 1)2(18n+ 11)An +

1

72
(n+ 1)2(18n− 7)An+1.
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As a result, (n + 1) | Tn if the right-hand size of the above expression is a 3-adic integer and
also a 2-adic integer, which follows in a similar way as done in the case n | Tn. Moreover,
Tn/(n+ 1) is odd if 2 - n.

Since (n, n+ 1) = 1, we immediately deduce n(n+ 1) | Tn. When n is odd, then Tn/(n+ 1)
is odd, and hence Tn/(n(n + 1)) is odd. When n is even, then both Tn/n and n + 1 are odd,
and hence Tn/(n(n+ 1)) is odd. As a result, Tn/(n(n+ 1)) is odd. In view of Lemma 3.1, we
conclude that Tn/(n(n+ 1)) is a positive odd integer.

Let p be an odd prime. We can verify (1.5) for p = 3 easily. So we assume p > 3 below.
With the aid of Lemma 2.1 and (1.2), we obtain

p−1∑
k=1

(−1)k(9k2 + 10k + 3)k2Ak =

p−1∑
k=0

(−1)k(9k2 + 10k + 3)k2Ak

=

p−1∑
k=0

(
1

4
P4(k) +

11

72
P3(k) +

1

3
P1(k)

)
(−1)kAk

≡p
3

(p
3

)
(mod p3).

Noting that

Ap =

p∑
k=0

(
p

k

)2(
p+ k

k

)2

≡ 1 +

(
2p

p

)2

= 1 + 4

(
2p− 1

p− 1

)2

≡ 5 (mod p),

we obtain from the above the desired result (1.5). Hence we complete the proof of Theorem
1.2. �
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