Proc. Amer. Math. Soc. 151 (2023), no. 8, 3305-3315.

ON CONGRUENCES INVOLVING APÉRY NUMBERS

WEI XIA AND ZHI-WEI SUN

Abstract

In this paper, we mainly establish a congruence for a sum involving Apéry numbers, which was conjectured by Z.-W. Sun. Namely, for any prime $p>3$ and positive odd

 integer m, we prove that there is a p-adic integer c_{m} only depending on m such that$$
\sum_{k=0}^{p-1}(2 k+1)^{m}(-1)^{k} A_{k} \equiv c_{m} p\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right),
$$

where $A_{k}=\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}$ is the Apéry number and $(\dot{\bar{p}})$ is the Legendre symbol.

1. Introduction

In 1979, Apéry [2] proved that $\zeta(3)$ is irrational. During his proof, he introduced the numbers

$$
A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n+k}{2 k}^{2}\binom{2 k}{k}^{2} \quad(n \in \mathbb{N}),
$$

which are known as Apéry numbers. These numbers have many interesting congruence properties, and attracted the attention of many researchers. In 1987, F. Beukers 3] conjectured that

$$
A_{(p-1) / 2} \equiv a_{p} \quad\left(\bmod p^{2}\right)
$$

for any odd prime p, where $a_{n}\left(n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}\right)$ are given by the power series expansion

$$
q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{4}\left(1-q^{4 n}\right)^{4}=\sum_{n=1}^{\infty} a_{n} q^{n} \quad(|q|<1)
$$

Beukers' conjecture was finally confirmed by S. Ahlgren and K. Ono [1] in 2000. Recently, J.-C. Liu and C. Wang [7] determined A_{p-1} modulo p^{5} for any prime $p>5$, namely,

$$
\begin{equation*}
A_{p-1} \equiv 1+p^{3}\left(\frac{4}{3} B_{p-3}-\frac{1}{2} B_{2 p-4}\right)+\frac{1}{9} p^{4} B_{p-3} \quad\left(\bmod p^{5}\right), \tag{1.1}
\end{equation*}
$$

where $B_{0}, B_{1}, B_{2}, \ldots$ denote the well-known Bernoulli numbers.

2020 Mathematics Subject Classification. Primary 11B65, 11A07; Secondary 05A10, 11B39.
Key words and phrases. Apéry numbers, congruences, binomial coefficients.
Supported by the National Natural Science Foundation of China (Grant No. 11971222).

In 2012, Z.-W. Sun [12] discovered some new divisibility results for certain sums involving Apéry numbers. In particular, he proved that

$$
\sum_{k=0}^{n-1}(2 k+1) A_{k} \equiv 0 \quad(\bmod n)
$$

for all $n \in \mathbb{Z}^{+}$. There are some further studies along this line (see, e.g., [9, 10, 15, 17]). For instance, V.J.W. Guo and J. Zeng [6] proved that

$$
\sum_{k=0}^{n-1}(2 k+1)(-1)^{k} A_{k} \equiv 0 \quad(\bmod n)
$$

for all $n \in \mathbb{Z}^{+}$and

$$
\begin{equation*}
\sum_{k=0}^{p-1}(2 k+1)(-1)^{k} A_{k} \equiv p\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right) \tag{1.2}
\end{equation*}
$$

for any prime $p>3$, which were both conjectured by Sun [12]. By [13, Corollary 2.2], we also have

$$
\begin{equation*}
\sum_{k=0}^{p-1}(2 k+1)^{3}(-1)^{k} A_{k} \equiv-\frac{p}{3}\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right) \tag{1.3}
\end{equation*}
$$

for any prime $p>3$. Motivated by the above work, we obtain the following result conjectured by Sun [13, Remark 2.4].

Theorem 1.1. For any prime $p>3$ and positive odd integer m, there is a p-adic integer c_{m} only depending on m such that

$$
\begin{equation*}
\sum_{k=0}^{p-1}(2 k+1)^{m}(-1)^{k} A_{k} \equiv c_{m} p\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right) \tag{1.4}
\end{equation*}
$$

Sun [13, Remark 2.4] mentioned that he was able to prove (1.4) for any prime $p>3$ in the cases $m=5,7$ with $c_{5}=-13 / 27$ and $c_{7}=5 / 9$. It is worth noting that there exists a parameter m in (1.4) and this is the difficulty of this conjecture. It is unrealistic to check every value of m, so our approach is to treat it uniformly. Firstly, we look for a series of polynomials such that the left-hand side of (1.4) has a closed form if we replace $(2 k+1)^{m}$ by such polynomials. Then we transform $(2 k+1)^{m}$ into a linear combination of such polynomials. We shall prove Theorem 1.1 in the next section.

Our second theorem is motivated by Sun's recent work on π-series [14].
Theorem 1.2. For any $n \in \mathbb{Z}^{+}$, we have

$$
\frac{1}{n(n+1)} \sum_{k=1}^{n}(-1)^{n-k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k} \in\{1,3,5, \ldots\} .
$$

Moreover, for any odd prime p, we have

$$
\begin{equation*}
\sum_{k=1}^{p}(-1)^{k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k} \equiv \frac{p}{3}\left(\frac{p}{3}\right)-15 p^{2} \quad\left(\bmod p^{3}\right) \tag{1.5}
\end{equation*}
$$

2. Proof of Theorem 1.1

For the sake of convenience, we define

$$
P_{m}(x)= \begin{cases}2 x+1 & \text { if } m=1 \\ (x+1)^{3} x^{m-3}+\left(34 x^{3}+51 x^{2}+27 x+5\right)(x-1)^{m-3}+x^{3}(x-2)^{m-3} & \text { if } m \geq 3\end{cases}
$$

Lemma 2.1. Let $p>3$ be a prime and $m \geq 3$ an integer. Then we have

$$
\sum_{k=0}^{p-1} P_{m}(k)(-1)^{k} A_{k} \equiv 0 \quad\left(\bmod p^{3}\right)
$$

Proof. Define

$$
f(k):=(-1)^{k} A_{k} \quad(k \in \mathbb{N})
$$

By Zeilberger's algorithm [11], we obtain the recurrence:

$$
(k+1)^{3} f(k)+(2 k+3)\left(17 k^{2}+51 k+39\right) f(k+1)+(k+2)^{3} f(k+2)=0 \quad(k \in \mathbb{N})
$$

Multiplying both sides of the above formula by k^{m-3}, we get

$$
(k+1)^{3} k^{m-3} f(k)+(2 k+3)\left(17 k^{2}+51 k+39\right) k^{m-3} f(k+1)+(k+2)^{3} k^{m-3} f(k+2)=0 .
$$

Then summing both sides from $k=0$ to $n-2(n \geq 2)$, and then rearranging the summation term, we arrive at

$$
\begin{align*}
\sum_{k=0}^{n} P_{m}(k)(-1)^{k} A_{k}= & (-1)^{n-1}(n-1)^{m-3} n^{3} A_{n-1}+(-1)^{n} n^{m-3}(n+1)^{3} A_{n} \\
& +(-1)^{n}\left(34 n^{3}+51 n^{2}+27 n+5\right)(n-1)^{m-3} A_{n} \tag{2.1}
\end{align*}
$$

Thus (2.1) with $n=p-1$ yields that

$$
\begin{align*}
\sum_{k=0}^{p-1} P_{m}(k)(-1)^{k} A_{k}= & -(p-1)^{3}(p-2)^{m-3} A_{p-2}+p^{3}(p-1)^{m-3} A_{p-1} \\
& +\left(34 p^{3}-51 p^{2}+27 p-5\right)(p-2)^{m-3} A_{p-1} \tag{2.2}
\end{align*}
$$

Recall a classical result of Wolstenholme [16]:

$$
H_{p-1}=\sum_{k=1}^{p-1} \frac{1}{k} \equiv 0 \quad\left(\bmod p^{2}\right) \quad \text { and } \quad H_{p-1}^{(2)}=\sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv 0 \quad(\bmod p)
$$

Thus

$$
\begin{aligned}
A_{p-2} & =\sum_{k=0}^{p-2}\binom{p-2}{k}^{2}\binom{p-2+k}{k}^{2} \\
& =1+(p-2)^{2}(p-1)^{2}+\sum_{k=2}^{p-2}\binom{p-2}{k}^{2}\binom{p-2+k}{k}^{2} \\
& \equiv 5-12 p+13 p^{2}+\sum_{k=2}^{p-2} \frac{(k+1)^{2} p^{2}}{(k-1)^{2} k^{2}} \quad\left(\bmod p^{3}\right) \\
& \equiv 5-12 p+13 p^{2}+p^{2} \sum_{k=2}^{p-2}\left(\frac{4}{(k-1)^{2}}-\frac{4}{k-1}+\frac{1}{k^{2}}+\frac{4}{k}\right) \quad\left(\bmod p^{3}\right) \\
& \equiv 5-12 p+13 p^{2}+p^{2}\left(5 H_{p-1}^{(2)}-\frac{4}{(p-2)^{2}}-\frac{5}{(p-1)^{2}}+\frac{4}{p-2}-5\right) \quad\left(\bmod p^{3}\right) \\
& \equiv 5-12 p \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Combining this with (1.1) and (2.2), we get that

$$
\begin{aligned}
\sum_{k=0}^{p-1} P_{m}(k)(-1)^{k} A_{k} & \equiv-(p-1)^{3}(5-12 p)(p-2)^{m-3}+\left(-51 p^{2}+27 p-5\right)(p-2)^{m-3}\left(\bmod p^{3}\right) \\
& \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Thus we obtain the desired result.
Inspired by L. Ghidelli's nice answer [5] in the MathOverflow, we deduce the following result.
Lemma 2.2. For any positive odd number m, we can write

$$
(2 x+1)^{m}=\sum_{3 \leq k \leq m} a_{k} P_{k}(x)+a_{1} P_{1}(x),
$$

where $a_{1}, a_{3}, \ldots, a_{m} \in \mathbb{Q}$.
Proof. Clearly, the case $m=1$ holds. So we now assume $m \geq 3$. Note that $P_{n}(x)(n \geq 3)$ is a polynomial of degree n with leading coefficient 36. According to the Euclidean division, there is a unique coefficient $a_{m} \in \mathbb{Q}$ and a unique polynomial $r_{m-1}(x) \in \mathbb{Q}[x]$ of degree not exceeding $m-1$ such that $(2 x+1)^{m}=a_{m} P_{m}(x)+r_{m-1}(x)$. Continue to use the Euclidean division, we get a unique coefficient $a_{m-1} \in \mathbb{Q}$ and a unique polynomial $r_{m-2}(x) \in \mathbb{Q}[x]$ of degree not exceeding $m-2$ such that $r_{m-1}(x)=a_{m-1} P_{m-1}(x)+r_{m-2}(x)$. Repeating the process, we finally get $a_{m}, a_{m-1}, \ldots, a_{3} \in \mathbb{Q}$ and $r_{m-1}(x), r_{m-2}(x), \ldots, r_{2}(x) \in \mathbb{Q}(x)$ such that

$$
(2 x+1)^{m}=\sum_{k=3}^{m} a_{k} P_{k}(x)+r_{2}(x) .
$$

It remains to prove that $r_{2}(x)$ is a multiple of $2 x+1$ by a coefficient $a_{1} \in \mathbb{Q}$. Changing the variable $z=2 x+1$, we obtain

$$
z^{m}=\sum_{k=3}^{m} a_{k} P_{k}\left(\frac{z-1}{2}\right)+r_{2}\left(\frac{z-1}{2}\right) .
$$

Noting that $r_{2}(x)$ is a polynomial of degree not exceeding 2 , so it suffices to show that $r_{2}\left(\frac{z-1}{2}\right)$ is an odd function with regard to the variable z.

By the definition of $P_{k}(x)$, we have

$$
\begin{align*}
\sum_{k=3}^{m} a_{k} P_{k}\left(\frac{z-1}{2}\right)= & \sum_{k=3}^{m} a_{k} \frac{(z+1)^{3}}{8}\left(\frac{z-1}{2}\right)^{k-3} \\
& +\sum_{k=3}^{m} a_{k}\left(\frac{17 z^{3}}{4}+\frac{3 z}{4}\right)\left(\frac{z-3}{2}\right)^{k-3}+\sum_{k=3}^{m} a_{k} \frac{(z-1)^{3}}{8}\left(\frac{z-5}{2}\right)^{k-3} . \tag{2.3}
\end{align*}
$$

Define

$$
\begin{equation*}
g(z):=\sum_{k=3}^{m} a_{k}\left(\frac{z-3}{2}\right)^{k-3} . \tag{2.4}
\end{equation*}
$$

Since $g(z) \in \mathbb{Q}(z)$ and $\operatorname{deg} g(z) \leq m-3$, we have $g(z)=\sum_{k=3}^{m} c_{k} z^{k-3}$ for some $c_{3}, c_{4}, \ldots, c_{m} \in$ \mathbb{Q}. Substituting (2.4) into (2.3), we have

$$
\begin{aligned}
\sum_{k=3}^{m} a_{k} P_{k}\left(\frac{z-1}{2}\right) & =\frac{(z+1)^{3}}{8} g(z+2)+\left(\frac{17 z^{3}}{4}+\frac{3 z}{4}\right) g(z)+\frac{(z-1)^{3}}{8} g(z-2) \\
& =\sum_{k=3}^{m} c_{k}\left(\frac{(z+1)^{3}}{8}(z+2)^{k-3}+\left(\frac{17 z^{3}}{4}+\frac{3 z}{4}\right) z^{k-3}+\frac{(z-1)^{3}}{8}(z-2)^{k-3}\right) .
\end{aligned}
$$

For any integer $3 \leq k \leq m$, define

$$
G_{k}(z):=\frac{(z+1)^{3}}{8}(z+2)^{k-3}+\left(\frac{17 z^{3}}{4}+\frac{3 z}{4}\right) z^{k-3}+\frac{(z-1)^{3}}{8}(z-2)^{k-3} .
$$

Thus

$$
\sum_{k=3}^{m} a_{k} P_{k}\left(\frac{z-1}{2}\right)=\sum_{k=3}^{m} c_{k} G_{k}(z)
$$

and hence

$$
\begin{equation*}
z^{m}=\sum_{k=3}^{m} c_{k} G_{k}(z)+r_{2}\left(\frac{z-1}{2}\right) . \tag{2.5}
\end{equation*}
$$

Note that $G_{k}(z)$ is a polynomial of degree k and it satisfies the equation

$$
G_{k}(-z)=(-1)^{k} G_{k}(z)
$$

Thus $G_{k}(z)$ is either an odd function (when k is odd) or an even function (when k is even). We claim that $c_{k}=0$ for all even $3 \leq k \leq m$. If not, we take the biggest even number $3 \leq t \leq m$ such that $c_{t} \neq 0$. Consider the coefficient of z^{t} on both sides of (2.5). Since m is odd, the coefficient of z^{t} on the left-hand side is 0 . Obviously, $r_{2}\left(\frac{z-1}{2}\right)$ has no z^{t} term since its degree is not exceeding 2 . As we know, a polynomial function is an odd function if and only if it has no even terms. Thus $c_{k} G_{k}(z)$ has no z^{t} term when k is odd. In addition, $c_{k} G_{k}(z)$ has no z^{t} term when $k<t$ is even. To sum up, the coefficient of z^{t} on the right-hand size is $c_{t} \neq 0$. That's a contradiction. Therefore $c_{k}=0$ for all even $3 \leq k \leq m$. That is to say, $\sum_{k=3}^{m} c_{k} G_{k}(z)$ is an odd function. Since the function z^{m} is odd, we obtain that $r_{2}\left(\frac{z-1}{2}\right)=z^{m}-\sum_{k=3}^{m} c_{k} G_{k}(z)$ is also an odd function. The proof of Lemma 2.2 is now complete.

Proof of Theorem 1.1. In light of (1.2), (1.4) holds for $m=1$ with $c_{1}=1$. We now assume that $m \geq 3$ is an odd integer and $p>3$ is a prime. By means of Lemma 2.2, we can write

$$
\begin{equation*}
(2 x+1)^{m}=\sum_{k=3}^{m} a_{k} P_{k}(x)+a_{1} P_{1}(x) \tag{2.6}
\end{equation*}
$$

where a_{1} depends only on m. For the sake of clarity, we denote a_{1} by c_{m}. Changing the variable $y=2 x$, we arrive at

$$
(y+1)^{m}=\sum_{k=3}^{m} a_{k} P_{k}\left(\frac{y}{2}\right)+c_{m}(y+1)
$$

Define $Q_{k}(y):=2^{k-2} P_{k}\left(\frac{y}{2}\right)$ for $3 \leq k \leq m$. By some simple calculations, we find that the coefficient of x^{k-1} in $P_{k}(x)$ is even and the leading coefficient is 36 . Therefore $Q_{k}(y) \in \mathbb{Z}[y]$ is of degree k with leading coefficient 9 . Now we have

$$
\begin{equation*}
(y+1)^{m}=\sum_{k=3}^{m} b_{k} Q_{k}(y)+c_{m}(y+1), \tag{2.7}
\end{equation*}
$$

where $b_{k}=a_{k} / 2^{k-2}$ for $3 \leq k \leq m$. Considering the coefficient of y^{m} on both sides of (2.7), we get that $b_{m}=1 / 9$. So b_{m} is a p-adic integer and 3 is the only prime factor of its denominator. Similarly, we can get by induction that $b_{m-1}, b_{m-2}, \ldots, b_{3}, a_{1}=c_{m}$ are all p-adic integers and their denominators are powers of three. Thus $a_{k}=2^{k-2} b_{k}$ are all p-adic integers for $3 \leq k \leq m$. This, together with (1.2), (2.6) and Lemma 2.1, gives that

$$
\begin{aligned}
\sum_{k=0}^{p-1}(2 k+1)^{m}(-1)^{k} A_{k} & =\sum_{k=0}^{p-1}\left(\sum_{j=3}^{m} a_{j} P_{j}(k)+c_{m} P_{1}(k)\right)(-1)^{k} A_{k} \\
& =\sum_{j=3}^{m} a_{j} \sum_{k=0}^{p-1} P_{j}(k)(-1)^{k} A_{k}+c_{m} \sum_{k=0}^{p-1}(2 k+1)(-1)^{k} A_{k} \\
& \equiv c_{m} p\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Note that $Q_{k}(0)=2^{k-2} P_{k}(0)$ is even for $3 \leq k \leq m$. Set $y=0$ in (2.7), and then we obtain $c_{m} \equiv 1(\bmod 2)$. Therefore, we get that c_{m} is a p-adic integer with denominator a power of three and numerator an odd integer. As a result, we complete the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Lemma 3.1. For any $n \in \mathbb{Z}^{+}$, we have

$$
\sum_{k=1}^{n}(-1)^{n-k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k}>0 .
$$

Proof. Let a_{n} denote the left-hand side of the above inequality. Then $a_{1}=110, a_{2}=17118$, and

$$
a_{n+1}-a_{n-1}=\left(9 n^{2}+28 n+22\right)(n+1)^{2} A_{n+1}-\left(9 n^{2}-8 n+2\right)(n-1)^{2} A_{n-1}>0
$$

for all $n \geq 2$. So $a_{n}>0$ for all $n \in \mathbb{Z}^{+}$.
Lemma 3.2. Let $n \in \mathbb{Z}^{+}$. Then

$$
\sum_{m=0}^{n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{n+m+k}{m+k} \equiv(-1)^{n-1} n \quad(\bmod 3)
$$

Proof. Let S_{n} denote the left-hand side of the above congruence. It suffices to prove $S_{3 n} \equiv 0$ $(\bmod 3)$ and $S_{3 n+1} \equiv S_{3 n+2} \equiv(-1)^{n}(\bmod 3)$.

For any $m \in \mathbb{N}$ and $k \in \mathbb{Z}^{+}$, if $m / k \equiv 0(\bmod 3)$, then we get

$$
\binom{m}{k}=\frac{m}{k}\binom{m-1}{k-1} \equiv 0 \quad(\bmod 3) .
$$

By this little trick and direct calculations, we arrive at

$$
\begin{aligned}
S_{3 n} & =\sum_{m=0}^{3 n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{3 n-1}{m+k}\binom{3 n+m+k}{m+k} \\
& \equiv \sum_{m=0}^{n-1}\binom{6 m}{3 m} \sum_{k=0}^{3 m}\binom{3 m}{k}\binom{3 m+k}{k}\binom{3 n-1}{3 m+k}\binom{3 n+3 m+k}{3 m+k}+\sum_{m=0}^{n-1}\binom{6 m+2}{3 m+1} \sigma_{m}(\bmod 3),
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{m}= & \sum_{k=0}^{3 m+1}\binom{3 m+1}{k}\binom{3 m+k+1}{k}\binom{3 n-1}{3 m+k+1}\binom{3 n+3 m+k+1}{3 m+k+1} \\
\equiv & \sum_{k=0}^{m}\binom{3 m+1}{3 k}\binom{3 m+3 k+1}{3 k}\binom{3 n-1}{3 m+3 k+1}\binom{3 n+3 m+3 k+1}{3 m+3 k+1} \\
& +\sum_{k=0}^{m}\binom{3 m+1}{3 k+1}\binom{3 m+3 k+2}{3 k+1}\binom{3 n-1}{3 m+3 k+2}\binom{3 n+3 m+3 k+2}{3 m+3 k+2} \quad(\bmod 3) .
\end{aligned}
$$

By the well-known Lucas congruence [8], we have

$$
\binom{3 a+s}{3 b+t} \equiv\binom{a}{b}\binom{s}{t} \quad(\bmod 3)
$$

for any $a, b \in \mathbb{N}$ and $s, t \in\{0,1,2\}$. Applying this congruence, we deduce from the above that

$$
\begin{aligned}
S_{3 n} \equiv & \sum_{m=0}^{n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{2}{0}\binom{n+m+k}{m+k} \\
& +\sum_{m=0}^{n-1}\binom{2 m}{m}\binom{2}{1} \sum_{k=0}^{m}\binom{m}{k}\binom{1}{0}\binom{m+k}{k}\binom{1}{0}\binom{n-1}{m+k}\binom{2}{1}\binom{n+m+k}{m+k}\binom{1}{1} \\
& +\sum_{m=0}^{n-1}\binom{2 m}{m}\binom{2}{1} \sum_{k=0}^{m}\binom{m}{k}\binom{1}{1}\binom{m+k}{k}\binom{2}{1}\binom{n-1}{m+k}\binom{2}{2}\binom{n+m+k}{m+k}\binom{2}{2}(\bmod 3) \\
\equiv & S_{n}+4 S_{n}+4 S_{n}=9 S_{n} \equiv 0 \quad(\bmod 3) .
\end{aligned}
$$

Similarly, dealing with $S_{3 n+1}$ modulo 3 , we obtain

$$
S_{3 n+1} \equiv \sum_{m=0}^{n}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n}{m+k}\binom{n+m+k}{m+k} \quad(\bmod 3)
$$

Define

$$
B_{n}:=\sum_{m=0}^{n}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n}{m+k}\binom{n+m+k}{m+k} .
$$

Using the same method, we obtain $B_{3 n} \equiv B_{n}(\bmod 3), B_{3 n+1} \equiv-B_{n}(\bmod 3)$ and $B_{3 n+2} \equiv B_{n}$ $(\bmod 3)$. Note that $B_{1}=5 \equiv-1(\bmod 3), B_{2}=73 \equiv 1(\bmod 3)$ and $B_{3}=1445 \equiv-1$ $(\bmod 3)$. By induction, we can get $B_{n} \equiv(-1)^{n}(\bmod 3)$ easily. That is to say, $S_{3 n+1} \equiv(-1)^{n}$ $(\bmod 3)$. In a similar way, we can prove $S_{3 n+2} \equiv(-1)^{n}(\bmod 3)$. This completes the proof of Lemma 3.2.

Recall that Gessel [4] investigated some congruence properties of Apéry numbers. Namely, he proved that $A_{n} \equiv(-1)^{n}(\bmod 3), A_{2 n} \equiv 1(\bmod 8)$ and $A_{2 n+1} \equiv 5(\bmod 8)$ for any $n \in \mathbb{N}$. Thus we immediately obtain $A_{n}+A_{n-1} \equiv 0(\bmod 3)$ and $A_{n}-A_{n-1} \equiv 4(\bmod 8)$ for any $n \in \mathbb{Z}^{+}$. Our next lemma gives a further refinement of these results.

Lemma 3.3. For any $n \in \mathbb{Z}^{+}$with $3 \nmid n$, we have $A_{n}+A_{n-1} \equiv(-1)^{n} 3 n(\bmod 9)$. Similarly, for any $n \in \mathbb{Z}^{+}$with $2 \nmid n$, we have $A_{n}-A_{n-1} \equiv 4(-1)^{(n-1) / 2}(\bmod 16)$.

Proof. These two results can be proved in a similar way even though the second result is a bit more difficult. Here we only prove the first result in detail. The Zeilberger algorithm gives the recurrence relation of A_{n} as follows:

$$
\begin{equation*}
(n+1)^{3} A_{n}-(3+2 n)\left(39+51 n+17 n^{2}\right) A_{n+1}+(n+2)^{3} A_{n+2}=0 \quad(n \in \mathbb{N}) \tag{3.1}
\end{equation*}
$$

Note that $(n+1)^{3},-(3+2 n)\left(39+51 n+17 n^{2}\right)$ and $(n+2)^{3}$ modulo 9 are periodic with period 3 . Let $k \in \mathbb{N}$. Considering the above equation modulo 9 , we find that

$$
\left\{\begin{array}{l}
4 A_{3 k}+A_{3 k+1} \equiv 0 \quad(\bmod 9) \\
-A_{3 k+1}-4 A_{3 k+2} \equiv 0 \quad(\bmod 9) \\
A_{3 k}-A_{3 k+2} \equiv 0 \quad(\bmod 9)
\end{array}\right.
$$

Thus using Gessel's result, we obtain $A_{3 k+1}+A_{3 k} \equiv-3 A_{3 k} \equiv-3(-1)^{3 k}=(-1)^{3 k+1} 3(3 k+1)$ $(\bmod 9)$, and $A_{3 k+2}+A_{3 k+1} \equiv-3 A_{3 k+2} \equiv-3(-1)^{3 k+2}=(-1)^{3 k+2} 3(3 k+2)(\bmod 9)$. These conclude the proof.

Proof of Theorem 1.2. Let $n \in \mathbb{Z}^{+}$. Denote $\sum_{k=1}^{n}(-1)^{n-k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k}$ by T_{n}. First of all, we show that T_{n} / n is an integer, which is odd if $2 \mid n$. It is routine to verify that

$$
\left(9 k^{2}+10 k+3\right) k^{2}=\frac{1}{4} P_{4}(k)+\frac{11}{72} P_{3}(k)+\frac{1}{3} P_{1}(k),
$$

where $P_{m}(x)$ is defined at the beginning of Section 2. Hence (2.1) yields

$$
\begin{equation*}
T_{n}=\frac{(-1)^{n}}{3} \sum_{k=0}^{n-1}(-1)^{k}(2 k+1) A_{k}+\frac{1}{72} n^{2}\left(630 n^{2}+745 n+216\right) A_{n}-\frac{1}{72} n^{3}(18 n-7) A_{n-1} \tag{3.2}
\end{equation*}
$$

Recall that V.J.W. Guo and J. Zeng [6] obtained the following amazing combinatorial identity:

$$
\begin{equation*}
\frac{1}{n} \sum_{k=0}^{n-1}(-1)^{k}(2 k+1) A_{k}=(-1)^{n-1} \sum_{m=0}^{n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{n+m+k}{m+k} . \tag{3.3}
\end{equation*}
$$

With the help of the above identity, we obtain

$$
\begin{aligned}
\frac{T_{n}}{n}= & -\frac{1}{3} \sum_{m=0}^{n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{n+m+k}{m+k} \\
& +\frac{1}{72} n\left(630 n^{2}+745 n+216\right) A_{n}-\frac{1}{72} n^{2}(18 n-7) A_{n-1} .
\end{aligned}
$$

In order to prove $n \mid T_{n}$, we need to show that the right-hand side of the above equation is a 3 -adic integer and also a 2 -adic integer. Firstly, we show that T_{n} / n is a 3 -adic integer. According to Lemma 3.2, it suffices to show that

$$
\frac{1}{24} n^{2}\left(630 n^{2}+745 n+216\right) A_{n}-\frac{1}{24} n^{3}(18 n-7) A_{n-1} \equiv(-1)^{n-1} n \quad(\bmod 3)
$$

By simple calculations, we get

$$
\frac{1}{24} n^{2}\left(630 n^{2}+745 n+216\right) A_{n}-\frac{1}{24} n^{3}(18 n-7) A_{n-1} \equiv \frac{2}{3} n^{2}\left(A_{n}+A_{n-1}\right) \quad(\bmod 3)
$$

Clearly, $2 n^{2}\left(A_{n}+A_{n-1}\right) / 3 \equiv(-1)^{n-1} n \equiv 0(\bmod 3)$ when $n \equiv 0(\bmod 3)$. When $3 \nmid n$, we obtain by Lemma 3.3 that

$$
\frac{2}{3} n^{2}\left(A_{n}+A_{n-1}\right) \equiv \frac{2}{3} n^{2}(-1)^{n} 3 n \equiv(-1)^{n-1} n^{3} \equiv(-1)^{n-1} n \quad(\bmod 3)
$$

where the last congruence follows from Fermat's little theorem. Secondly, we show that T_{n} / n is a 2 -adic integer. In fact, we just need to prove

$$
\frac{1}{36} n\left(630 n^{2}+745 n+216\right) A_{n}-\frac{1}{36} n^{2}(18 n-7) A_{n-1} \equiv 0 \quad(\bmod 2)
$$

It is easy to check that

$$
\frac{n}{36}\left(630 n^{2}+745 n+216\right) A_{n}-\frac{n^{2}}{36}(18 n-7) A_{n-1}
$$

is congruent to

$$
h(n):=\frac{n^{2}}{4}\left(A_{n}-A_{n-1}\right)+\frac{n^{3}}{6}\left(A_{n}-A_{n-1}\right)+n^{3} A_{n-1}+2 n A_{n}
$$

modulo 4. If $2 \mid n$, then $h(n) \equiv 0(\bmod 4)$ by means of Gessel's result $A_{n}-A_{n-1} \equiv 4(\bmod 8)$. If $2 \nmid n$, by Lemma 3.3 and Gessel's result $A_{n} \equiv 1(\bmod 4)$, we have

$$
h(n) \equiv \frac{n^{2}}{4} \times 4(-1)^{(n-1) / 2}+\frac{n^{3}}{6} \times 4(-1)^{(n-1) / 2}+n^{3}+2 n \equiv 2 \quad(\bmod 4)
$$

So far we have got that $n \mid T_{n}$. Now we consider the case $2 \mid n$. Notice that $\binom{2 m}{m}=2\binom{2 m-1}{m-1} \equiv 0$ $(\bmod 2)$ for any $m \in \mathbb{Z}^{+}$. Thus

$$
\sum_{m=0}^{n-1}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{n+m+k}{m+k} \equiv 1 \quad(\bmod 2)
$$

and hence $T_{n} / n \equiv 1(\bmod 2)$.
We now show that $T_{n} /(n+1)$ is also an integer, which is odd if $2 \nmid n$. In view of (3.1), we have

$$
n^{3} A_{n-1}=(2 n+1)\left(17 n^{2}+17 n+5\right) A_{n}-(n+1)^{3} A_{n+1}
$$

Substituting the above expression into (3.2), we deduce

$$
T_{n}=(-1)^{n} \frac{1}{3} \sum_{k=0}^{n}(-1)^{k}(2 k+1) A_{k}+\frac{1}{72}(n+1)^{3}(18 n+11) A_{n}+\frac{1}{72}(n+1)^{3}(18 n-7) A_{n+1}
$$

Then, using V.J.W. Guo and J. Zeng's amazing identity (3.3), we obtain

$$
\begin{aligned}
\frac{T_{n}}{n+1}= & \frac{1}{3} \sum_{m=0}^{n}\binom{2 m}{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}\binom{n-1}{m+k}\binom{n+m+k}{m+k} \\
& +\frac{1}{72}(n+1)^{2}(18 n+11) A_{n}+\frac{1}{72}(n+1)^{2}(18 n-7) A_{n+1}
\end{aligned}
$$

As a result, $(n+1) \mid T_{n}$ if the right-hand size of the above expression is a 3 -adic integer and also a 2-adic integer, which follows in a similar way as done in the case $n \mid T_{n}$. Moreover, $T_{n} /(n+1)$ is odd if $2 \nmid n$.

Since $(n, n+1)=1$, we immediately deduce $n(n+1) \mid T_{n}$. When n is odd, then $T_{n} /(n+1)$ is odd, and hence $T_{n} /(n(n+1))$ is odd. When n is even, then both T_{n} / n and $n+1$ are odd, and hence $T_{n} /(n(n+1))$ is odd. As a result, $T_{n} /(n(n+1))$ is odd. In view of Lemma 3.1, we conclude that $T_{n} /(n(n+1))$ is a positive odd integer.

Let p be an odd prime. We can verify (1.5) for $p=3$ easily. So we assume $p>3$ below. With the aid of Lemma 2.1 and (1.2), we obtain

$$
\begin{aligned}
\sum_{k=1}^{p-1}(-1)^{k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k} & =\sum_{k=0}^{p-1}(-1)^{k}\left(9 k^{2}+10 k+3\right) k^{2} A_{k} \\
& =\sum_{k=0}^{p-1}\left(\frac{1}{4} P_{4}(k)+\frac{11}{72} P_{3}(k)+\frac{1}{3} P_{1}(k)\right)(-1)^{k} A_{k} \\
& \equiv \frac{p}{3}\left(\frac{p}{3}\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Noting that

$$
A_{p}=\sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \equiv 1+\binom{2 p}{p}^{2}=1+4\binom{2 p-1}{p-1}^{2} \equiv 5 \quad(\bmod p)
$$

we obtain from the above the desired result (1.5). Hence we complete the proof of Theorem 1.2 .

Acknowledgment. The authors would like to thank the referee for helpful comments.

References

[1] S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry numbers congruences, J. Reine Angew. Math. 518 (2000), 187-212.
[2] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[3] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), 201-210.
[4] I. Gessel, Some Congruences for Apéry Numbers, J. Number Theory 14 (1982), 362-368.
[5] L. Ghidelli, Answer to Question 369480 at MathOverflow, https://mathoverflow.net/a/369498, August 18, 2020.
[6] V.J.W. Guo and J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry numbers, J. Number Theory 132 (2012), 1731-1740.
[7] J.-C. Liu and C. Wang, Congruences for the $(p-1)$ th Apéry number, Bull. Aust. Math. Soc. 99 (2019), 362-368.
[8] E. Lucas, Sur les congruence des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
[9] G.-S. Mao, On two congruences involving Apéry and Franel numbers, Results Math. 75 (2020), 159-170.
[10] H. Pan, On divisibility of sums of Apéry polynomials, J. Number Theory 143 (2014), 214-223.
[11] M. Petovšek, H.-S. Wilf and D. Zeilberger, $A=B$, A K Peters, Wellesley, 1996.
[12] Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132 (2012), 26732699.
[13] Z.-W. Sun, Congruences involving $g_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k} x^{k}$, Ramanujan J. 40 (2016), 511-533.
[14] Z. -W. Sun, New type series for powers of π, J. Comb. Number Theory 12 (2020), 157-208.
[15] C. Wang, Two congruences concerning Apéry numbers conjectured by Z.-W. Sun, Electron. Res. Arch. 28 (2020), 1063-1075.
[16] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.
[17] Y. Zhang, Three supercongruences for Apéry numbers and Franel numbers, Publ. Math. Debrecen 98 (2021), 493-511.
(Wei Xia) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: wxia@smail.nju.edu.cn
(Zhi-Wei Sun, corresponding author) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

