J. Difference Equ. Appl. 29 (2023), no. 2, 198-207.

A PARAMETRIC CONGRUENCE MOTIVATED BY ORR'S IDENTITY

CHEN WANG ${ }^{1, *}$ AND ZHI-WEI SUN ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, People's Republic of China
${ }^{2}$ Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Abstract. For any $m, n \in \mathbb{N}=\{0,1,2 \ldots\}$, the truncated hypergeometric series ${ }_{m+1} F_{m}$ is defined by

$$
{ }_{m+1} F_{m}\left[\left.\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{m} \\
& y_{1} & \ldots & y_{m}
\end{array} \right\rvert\, z\right]_{n}=\sum_{k=0}^{n} \frac{\left(x_{0}\right)_{k}\left(x_{1}\right)_{k} \cdots\left(x_{m}\right)_{k}}{\left(y_{1}\right)_{k} \cdots\left(y_{m}\right)_{k}} \cdot \frac{z^{k}}{k!},
$$

where $(x)_{k}=x(x+1) \cdots(x+k-1)$ is the Pochhammer symbol. Let p be an odd prime. For $\alpha, z \in \mathbb{Z}_{p}$ with $\langle-\alpha\rangle_{p} \equiv 0(\bmod 2)$, where $\langle x\rangle_{p}$ denotes the least nonnegative residue of x modulo p for any $x \in \mathbb{Z}_{p}$, we mainly prove the following congruence motivated by Orr's identity:

$$
{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{3}{2}-\frac{1}{2} \alpha \\
1
\end{array} \right\rvert\, z\right]_{p-1}{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \\
& 1
\end{array} \right\rvert\, z\right]_{p-1} \equiv{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 2-\alpha & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, z\right]_{p-1} \quad\left(\bmod p^{2}\right) .
$$

As a corollary, for any positive integer b with $p \equiv \pm 1(\bmod b)$ and $\langle-1 / b\rangle_{p} \equiv 0(\bmod 2)$, we deduce that

$$
\sum_{k=0}^{p-1}\left(b^{2} k+b-1\right) \frac{\binom{2 k}{k}}{4^{k}}\binom{-1 / b}{k}\binom{1 / b-1}{k} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

This confirms a conjectural congruence of the second author.
Competing Interests and Funding: The authors are supported by the National Natural Science Foundation of China (grants 12201301 and 11971222, respectively).

1. Introduction

For any $m, n \in \mathbb{N}=\{0,1,2 \ldots\}$, the truncated hypergeometric series ${ }_{m+1} F_{m}$ is defined by

$$
{ }_{m+1} F_{m}\left[\left.\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{m} \\
& y_{1} & \ldots & y_{m}
\end{array} \right\rvert\, z\right]_{n}=\sum_{k=0}^{n} \frac{\left(x_{0}\right)_{k}\left(x_{1}\right)_{k} \cdots\left(x_{m}\right)_{k}}{\left(y_{1}\right)_{k} \cdots\left(y_{m}\right)_{k}} \cdot \frac{z^{k}}{k!},
$$

[^0]where $(x)_{k}=x(x+1) \cdots(x+k-1)$ is the Pochhammer symbol. Clearly, the above truncated hypergeometric series is the truncation of the original hypergeometric series after the z^{n} term.

Summation and transformation formulas for hypergeometric series play an important role in the study of the congruence properties of truncated hypergeometric series (see, e.g., $2,4,6$, [8, 10, 12, 14, 16, 17]). Recall the well-known Clausen's identity (cf. [1, p. 116])

$$
\left({ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2} \beta \tag{1.1}\\
& \frac{1}{2}+\frac{1}{2}(\alpha+\beta)
\end{array} \right\rvert\, z\right]\right)^{2}={ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & \beta & \frac{1}{2}(\alpha+\beta) \\
& \alpha+\beta & \frac{1}{2}+\frac{1}{2}(\alpha+\beta)
\end{array} \right\rvert\, z\right] .
$$

Letting $\beta=1-\alpha$ in (1.1) we obtain

$$
\left({ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \tag{1.2}\\
& 1
\end{array} \right\rvert\, z\right]\right)^{2}={ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 1-\alpha & \left.\frac{1}{2} \right\rvert\, z \\
1 & 1
\end{array} \right\rvert\,\right] .
$$

Let p be an odd prime and let \mathbb{Z}_{p} denote the ring of all p-adic integers. For any $x \in \mathbb{Z}_{p}$ let $\langle x\rangle_{p}$ denote the least nonnegative residue of x modulo p. Mao and Pan [4] proved the following parametric congruence with respect to the identity (1.2):

$$
\left({ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \tag{1.3}\\
& 1
\end{array} \right\rvert\, z\right]_{p-1}\right)^{2} \equiv{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 1-\alpha & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, z\right]_{p-1} \quad\left(\bmod p^{2}\right),
$$

where $\alpha, z \in \mathbb{Z}_{p}$ and $\langle-\alpha\rangle_{p}$ is even.
When Orr discussed the differential equation satisfied by the product of two hypergeometric series, he discovered the following formula (cf. [1, p. 180]) similar to (1.1):

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2} \beta \tag{1.4}\\
& \left.\frac{1}{2}(\alpha+\beta)-\frac{1}{2} \right\rvert\, z
\end{array}\right]{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2} \beta-1 \\
& \left.\frac{1}{2}(\alpha+\beta)-\frac{1}{2} \right\rvert\, z
\end{array}\right]={ }_{3} F_{2}\left[\begin{array}{ccc}
\alpha & \beta-1 & \frac{1}{2}(\alpha+\beta)-1 \\
& \alpha+\beta-2 & \frac{1}{2}(\alpha+\beta)-\frac{1}{2}(z
\end{array}\right] .
$$

Putting $\beta=3-\alpha$ in (1.4) we have

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} \alpha & \frac{3}{2}-\frac{1}{2} \alpha \tag{1.5}\\
& 1
\end{array} \left\lvert\, z{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \\
& 1
\end{array} \right\rvert\, z\right]={ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 2-\alpha & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, z\right] .\right.\right.
$$

The main purpose of this paper is to establish a parametric congruence corresponding to (1.5).

Theorem 1.1. Let p be an odd prime. Then, for $\alpha, z \in \mathbb{Z}_{p}$ with $\langle-\alpha\rangle_{p} \equiv 0(\bmod 2)$ we have

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} \alpha & \frac{3}{2}-\frac{1}{2} \alpha \tag{1.6}\\
1
\end{array}\right.
$$

Recently, the second author [11, Conjecture 19] posed the following conjecture.
Conjecture 1.1. Let $b, n \in \mathbb{Z}^{+}$and let p be a prime with $p \equiv \pm 1(\bmod b)$ and $\langle-1 / b\rangle_{p} \equiv 0$ $(\bmod 2)$. Then

$$
\begin{equation*}
\frac{1}{n^{2}\binom{-1 / b}{n}\binom{1 / b-1}{n}} \sum_{k=0}^{p n-1}\left(b^{2} k+b-1\right) \frac{\binom{2 k}{k}}{4^{k}}\binom{-1 / b}{k}\binom{1 / b-1}{k} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.7}
\end{equation*}
$$

Note that Conjecture 1.1 with $n=1$ and $b \in\{2,3,4,6\}$ was first stated by the second author in [8, Conjecture 5.9]. Our following result confirms Conjecture 1.1 for $n=1$.

Corollary 1.1. Let $b \in \mathbb{Z}^{+}$, and let p be a prime with $p \equiv \pm 1(\bmod b)$ and $\langle-1 / b\rangle_{p} \equiv 0$ (mod 2). Then

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(b^{2} k+b-1\right) \frac{\binom{2 k}{k}}{4^{k}}\binom{-1 / b}{k}\binom{1 / b-1}{k} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.8}
\end{equation*}
$$

The relation between Theorem 1.1 and Corollary 1.1 becomes more evident when we write (1.7) as a difference of truncated hypergeometric series. Note that

$$
(x)_{k} /(1)_{k}=\binom{-x}{k}(-1)^{k},(1 / 2)_{k} /(1)_{k}=\binom{2 k}{k} / 4^{k} \quad \text { and } \quad \frac{\left(1+\frac{1}{b}\right)_{k}}{\left(\frac{1}{b}\right)_{k}}=b k+1
$$

Thus we have

$$
\begin{align*}
& \left.\sum_{k=0}^{p-1}\left(b^{2} k+b-1\right) \frac{(2 k}{k^{k}}\right)\binom{-1 / b}{k}\binom{1 / b-1}{k} \\
= & b_{3} F_{2}\left[\left.\begin{array}{ccc}
1+\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\,\right]_{p-1}-{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} . \tag{1.9}
\end{align*}
$$

In view of (1.3) and Theorem 1.1, in order to show Corollary 1.1, it suffices to evaluate some truncated ${ }_{2} F_{1}$ series modulo p^{2}.

Taking $b=2,3,4,6$ in Corollary 1.1 and noting that

$$
\begin{gathered}
\binom{-1 / 2}{k}=\frac{\binom{2 k}{k}}{(-4)^{k}},\binom{-1 / 3}{k}\binom{-2 / 3}{k}=\frac{\binom{2 k}{k}\binom{3 k}{k}}{27^{k}}, \\
\binom{-1 / 4}{k}\binom{-3 / 4}{k}=\frac{\binom{2 k}{k}\binom{4 k}{2 k}}{64^{k}},\binom{-1 / 6}{k}\binom{-5 / 6}{k}=\frac{\binom{6 k}{3 k}\binom{3 k}{k}}{432^{k}},
\end{gathered}
$$

we obtain the following congruences which confirm [8, Conjecture 5.9] with $a=1$.
Corollary 1.2. Let p be an odd prime. If $p \equiv 1(\bmod 3)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{9 k+2}{108^{k}}\binom{2 k}{k}^{2}\binom{3 k}{k} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.10}
\end{equation*}
$$

If $p \equiv 1,3(\bmod 8)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{16 k+3}{256^{k}}\binom{2 k}{k}^{2}\binom{4 k}{2 k} \equiv 0 \quad\left(\bmod p^{2+\delta_{p, 3}}\right) \tag{1.11}
\end{equation*}
$$

where $\delta_{p, q}$ denotes the Kronecker delta symbol which takes 1 or 0 according as $p=q$ or not. If $p \equiv 1(\bmod 4)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{4 k+1}{64^{k}}\binom{2 k}{k}^{3} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{36 k+5}{12^{3 k}}\binom{6 k}{3 k}\binom{3 k}{k}\binom{2 k}{k} \equiv 0 \quad\left(\bmod p^{2+\delta_{p, 5}}\right) \tag{1.13}
\end{equation*}
$$

In 2019, the authors (15) established the modulus p^{3} congruence for

$$
{ }_{4} F_{3}\left[\left.\begin{array}{cccc}
\alpha & 1+\frac{1}{2} \alpha & \alpha & \alpha \\
\frac{1}{2} \alpha & 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1}
$$

which is a parametric extension of (1.12), where p is an odd prime and α is a p-adic unit.
We shall prove Theorem 1.1 and Corollary 1.1 in the next section.

2. Proofs of Theorem 1.1 and Corollary 1.1

To show Theorem 1.1 we need the following result due to Tauraso [13, Theorem 2].
Lemma 2.1. For any prime $p>3$ and p-adic integer x we have

$$
\begin{equation*}
\left(\sum_{k=1}^{p-1}\binom{2 k}{k} x^{k}\right)\left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right) \equiv 2 \sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) x^{k} \quad(\bmod p), \tag{2.1}
\end{equation*}
$$

where $H_{k}=\sum_{j=1}^{k} 1 / j$ is the k th harmonic number.
Proof of Theorem 1.1. Throughout the proof, we always set $a=\langle-\alpha\rangle_{p}$.
Case 1. $a \leq p-3$.
Let

$$
\begin{aligned}
\Phi(x)= & { }_{2} F_{1}\left[\begin{array}{ccc}
\frac{1}{2}(-a+x) & \frac{1}{2}(a+3-x) \\
1 & \mid z
\end{array}\right]_{p-1}{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2}(-a+x) & \frac{1}{2}(a+1-x) \\
1
\end{array} \right\rvert\, z\right]_{p-1} \\
& -{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
-a+x & a+2-x & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, z\right]_{p-1},
\end{aligned}
$$

where $x \in \mathbb{Z}_{p}$. Expanding $\Phi(x)$ we have

$$
\begin{aligned}
\Phi(x)= & \sum_{k=0}^{p-1} \sum_{l=0}^{p-1} \frac{\left(\frac{1}{2}(-a+x)\right)_{k}\left(\frac{1}{2}(a+3-x)\right)_{k}\left(\frac{1}{2}(-a+x)\right)_{l}\left(\frac{1}{2}(a+1-x)\right)_{l}}{k!^{2}!^{2}} \cdot z^{k+l} \\
& -\sum_{j=0}^{p-1} \frac{(-a+x)_{j}(a+2-x)_{j}\left(\frac{1}{2}\right)_{j}}{j!^{3}} \cdot z^{j} .
\end{aligned}
$$

Clearly, $\Phi(x)$ is a rational function in x and $\Phi(0) \in \mathbb{Z}_{p}$. Therefore, by [6, Lemma 4.1] we have

$$
\begin{equation*}
\Phi(t p) \equiv \Phi(0)+t p \Phi^{\prime}(0) \quad\left(\bmod p^{2}\right) \tag{2.2}
\end{equation*}
$$

for any $t \in \mathbb{Z}_{p}$. In particular, we have

$$
\begin{equation*}
\Phi(p) \equiv \Phi(0)+p \Phi^{\prime}(0) \quad\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

Note that $-a / 2,-a \in\{1-p, \ldots,-1,0\}$. In view of (1.5), we have

$$
\Phi(0)={ }_{2} F_{1}\left[\begin{array}{cc}
-\frac{1}{2} a & \frac{1}{2}(a+3) \\
1
\end{array} \left\lvert\, z{ }_{2} F_{1}\left[\left.\begin{array}{cc}
-\frac{1}{2} a & \frac{1}{2}(a+1) \\
1
\end{array} \right\rvert\, z\right]-{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
-a & a+2 & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, z\right]=0 .\right.\right.
$$

Since $a \leq p-3$ we have $(a+3-p) / 2,(a+1-p) / 2, a+2-p \in\{1-p, \ldots,-1,0\}$. By (1.5) we also have

$$
\begin{aligned}
\Phi(p)= & { }_{2} F_{1}\left[\begin{array}{ccc}
\frac{1}{2}(-a+p) & \frac{1}{2}(a+3-p) \\
1 & \mid z
\end{array}{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2}(-a+p) & \frac{1}{2}(a+1-p) \\
1
\end{array} \right\rvert\, z\right]\right. \\
& -{ }_{3} F_{2}\left[\begin{array}{ccc}
-a+p & a+2-p & \frac{1}{2} \\
1 & 1
\end{array}\right] \\
= & 0 .
\end{aligned}
$$

Substituting these into (2.2) and (2.3), we get

$$
\Phi(t p) \equiv \Phi(0)=0 \quad\left(\bmod p^{2}\right)
$$

Putting $t=(a+\alpha) / p$ we immediately obtain the desired result.
Case 2. $a=p-1$.
We can directly verify this case for $p=3$. Below we assume $p>3$. In this case, we may write $\alpha=1+p t$ for some $t \in \mathbb{Z}_{p}$ since $\alpha \equiv 1(\bmod p)$. Then we have

$$
\begin{align*}
& { }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{3}{2}-\frac{1}{2} \alpha \\
1
\end{array} \right\rvert\, z\right]_{p-1}=\sum_{k=0}^{p-1} \frac{\left(\frac{1}{2}+\frac{1}{2} p t\right)_{k}\left(1-\frac{1}{2} p t\right)_{k}}{k!^{2}} \cdot z^{k} \\
\equiv & \sum_{k=0}^{p-1} \frac{\left(\frac{1}{2}\right)_{k}}{k!}\left(1+p t \sum_{j=0}^{k-1} \frac{1}{2 j+1}-\frac{1}{2} p t H_{k}\right) z^{k} \\
\equiv & \sum_{k=0}^{p-1}\binom{2 k}{k}\left(1+p t H_{2 k}-p t H_{k}\right)\left(\frac{z}{4}\right)^{k} \quad\left(\bmod p^{2}\right) . \tag{2.4}
\end{align*}
$$

Similarly, we also have

$$
{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \tag{2.5}\\
1
\end{array} \right\rvert\, z\right]_{p-1} \equiv 1-\frac{1}{2} p t \sum_{k=1}^{p-1} \frac{\binom{2 k}{k}}{k}\left(\frac{z}{4}\right)^{k} \quad\left(\bmod p^{2}\right)
$$

and

$$
{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 2-\alpha & \frac{1}{2} \tag{2.6}\\
& 1 & 1
\end{array} \right\rvert\, z\right]_{p-1} \equiv \sum_{k=0}^{p-1}\binom{2 k}{k}\left(\frac{z}{4}\right)^{k} \quad\left(\bmod p^{2}\right) .
$$

Combining (2.4)-(2.6) with Lemma 2.1, we arrive at

$$
\begin{aligned}
& { }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{3}{2}-\frac{1}{2} \alpha \\
1
\end{array} \right\rvert\, z\right]_{p-1}{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2} \alpha & \frac{1}{2}-\frac{1}{2} \alpha \\
1
\end{array} \right\rvert\, z\right]_{p-1}-{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\alpha & 2-\alpha & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, z\right]_{p-1} \\
\equiv & -\frac{1}{2} p t\left(\sum_{k=0}^{p-1}\binom{2 k}{k}\left(\frac{z}{4}\right)^{k}\right)\left(\sum_{k=1}^{p-1} \frac{\binom{2 k}{k}}{k}\left(\frac{z}{4}\right)^{k}\right)+p t \sum_{k=0}^{p-1}\binom{2 k}{k}\left(H_{2 k}-H_{k}\right)\left(\frac{z}{4}\right)^{k} \\
\equiv & -\frac{1}{2} p t \sum_{k=1}^{p-1} \frac{\binom{2 k}{k}}{k}\left(\frac{z}{4}\right)^{k}-p t \sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right)\left(\frac{z}{4}\right)^{k}+p t \sum_{k=0}^{p-1}\binom{2 k}{k}\left(H_{2 k}-H_{k}\right)\left(\frac{z}{4}\right)^{k} \\
= & 0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

The proof of Theorem 1.1 is now complete.
Let us recall the definition and the main properties of the p-adic Gamma function introduced by Morita [5] as a p-adic analogue of the classical Gamma function. Let p be an odd prime. For any $n \in \mathbb{N}$ define

$$
\Gamma_{p}(n)=(-1)^{n} \prod_{\substack{1 \leq k<n \\ p \nmid k}} k
$$

In particular, set $\Gamma_{p}(0)=1$. Clearly, the values of $\Gamma_{p}(n)$ belong to the group \mathbb{Z}_{p}^{\times}of p-adic units. It is known that the definition of $\Gamma_{p}(n)$ can be extended to \mathbb{Z}_{p} since \mathbb{N} is a dense subset of \mathbb{Z}_{p} in the sense of p-adic norm $|\cdot|_{p}$. That is, for all $x \in \mathbb{Z}_{p}$ we can define

$$
\Gamma_{p}(x)=\lim _{\substack{n \in \mathbb{N} \\|x-n|_{p} \rightarrow 0}} \Gamma_{p}(n)
$$

Similar to the classical Gamma function, the p-adic Gamma function has some interesting properties. For example, for any $x \in \mathbb{Z}_{p}$ we have

$$
\frac{\Gamma_{p}(x+1)}{\Gamma_{p}(x)}= \begin{cases}-x & \text { if } p \nmid x \tag{2.7}\\ -1 & \text { if } p \mid x\end{cases}
$$

and

$$
\begin{equation*}
\Gamma_{p}(x) \Gamma_{p}(1-x)=(-1)^{p-\langle-x\rangle_{p}} \tag{2.8}
\end{equation*}
$$

The reader may consult $[7$ for more properties of the p-adic Gamma function.
Lemma 2.2 (Mao and Pan [4, Theorem 1.1]). Let p be an odd prime and $\alpha, \beta \in \mathbb{Z}_{p}$. If $\langle-\alpha\rangle_{p}+\langle-\beta\rangle_{p}<p$, then

$$
{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\alpha & \beta \tag{2.9}\\
& 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv-\frac{\Gamma_{p}(1-\alpha-\beta)}{\Gamma_{p}(1-\alpha) \Gamma_{p}(1-\beta)} \quad\left(\bmod p^{2}\right)
$$

$$
\text { If }\langle-\alpha\rangle_{p}+\langle-\beta\rangle_{p} \geq p, \text { then }
$$

$$
{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\alpha & \beta \tag{2.10}\\
& 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv\left(\alpha+\beta+\langle-\alpha\rangle_{p}+\langle-\beta\rangle_{p}-p\right) \frac{\Gamma_{p}(1-\alpha-\beta)}{\Gamma_{p}(1-\alpha) \Gamma_{p}(1-\beta)} \quad\left(\bmod p^{2}\right)
$$

Lemma 2.3. Let $b \in\{2,3,4, \ldots\}$, and let p be a prime with $p \equiv \pm 1(\bmod b)$ and $\langle-1 / b\rangle_{p} \equiv 0$ $(\bmod 2)$. Then

$$
b_{3} F_{2}\left[\left.\begin{array}{ccc}
1+\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \tag{2.11}\\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} \quad\left(\bmod p^{2}\right)
$$

Proof. It is clear that p is odd and

$$
\left\langle\frac{1}{b}-1\right\rangle_{p}=p-1-\left\langle-\frac{1}{b}\right\rangle_{p} \equiv 0 \quad(\bmod 2)
$$

Therefore, by (1.3) and Theorem 1.1 we have

$$
{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2 b} & \frac{1}{2}-\frac{1}{2 b} \\
& 1
\end{array}\right]_{p-1}^{2} \quad\left(\bmod p^{2}\right)
$$

and

$$
{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
1+\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv{ }_{2} F_{1}\left[\left.\begin{array}{cc}
1+\frac{1}{2 b} & \frac{1}{2}-\frac{1}{2 b} \\
& 1
\end{array} \right\rvert\,\right]_{p-1}{ }_{2} F_{1}\left[\left.\begin{array}{cc}
\frac{1}{2 b} & \frac{1}{2}-\frac{1}{2 b} \\
1
\end{array} \right\rvert\, 1\right]_{p-1} \quad\left(\bmod p^{2}\right)
$$

Now we assume $p \equiv 1(\bmod b)$. Note that

$$
\left\langle-\frac{1}{2 b}\right\rangle_{p}+\left\langle\frac{1}{2 b}-\frac{1}{2}\right\rangle_{p}=\frac{p-1}{2 b}+\frac{p-1}{2}-\frac{p-1}{2 b}<p
$$

and

$$
\left\langle-1-\frac{1}{2 b}\right\rangle_{p}+\left\langle\frac{1}{2 b}-\frac{1}{2}\right\rangle_{p}=\frac{p-1}{2 b}-1+\frac{p-1}{2}-\frac{p-1}{2 b}<p
$$

Thus, by Lemma 2.2 we deduce that

$$
\left.\begin{array}{rl}
& b_{3} F_{2}\left[\left.\begin{array}{ccc}
1+\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
1 & 1
\end{array} \right\rvert\, 1\right.
\end{array}\right]_{p-1}-{ }_{3} F_{2}\left[\begin{array}{ccc}
\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
1 & 1 & 1
\end{array}\right]_{p-1} .
$$

where we have used the facts

$$
\Gamma_{p}\left(\frac{1}{2}\right)=\frac{1}{2} \Gamma_{p}\left(-\frac{1}{2}\right) \text { and } \Gamma_{p}\left(1-\frac{1}{2 b}\right)=\frac{1}{2 b} \Gamma_{p}\left(-\frac{1}{2 b}\right) .
$$

Below we suppose that $p \equiv-1(\bmod b)$. Note that

$$
\left\langle-\frac{1}{2 b}\right\rangle_{p}+\left\langle\frac{1}{2 b}-\frac{1}{2}\right\rangle_{p}=\frac{1}{2}\left(p-\frac{p+1}{b}\right)+\frac{p-1}{2}-\frac{1}{2}\left(p-\frac{p+1}{b}\right)<p
$$

and

$$
\left\langle-1-\frac{1}{2 b}\right\rangle_{p}+\left\langle\frac{1}{2 b}-\frac{1}{2}\right\rangle_{p}=\frac{1}{2}\left(p-\frac{p+1}{b}\right)-1+\frac{p-1}{2}-\frac{1}{2}\left(p-\frac{p+1}{b}\right)<p .
$$

Similarly, as in the case $p \equiv 1(\bmod b)$, we also have

$$
b_{3} F_{2}\left[\left.\begin{array}{ccc}
1+\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1}-{ }_{3} F_{2}\left[\left.\begin{array}{ccc}
\frac{1}{b} & 1-\frac{1}{b} & \frac{1}{2} \\
& 1 & 1
\end{array} \right\rvert\, 1\right]_{p-1} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

This completes the proof.
Proof of Corollary 1.1. Clearly, 1.8 holds for $b=1$. If $b \geq 2$, then the desired result easily follows from Lemma 2.3 ,

Acknowledgments. The authors would like to thank the two referees for helpful comments.

References

[1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999.
[2] V.J.W. Guo, Some generalizations of a supercongruence of van Hamme, Integral Transforms Spec. Funct. 28 (2017), 888-899.
[3] J.-C. Liu, A p-adic supercongruence for truncated hypergeometric series ${ }_{7} F_{6}$, Results Math. 72 (2017), 2057-2066.
[4] G.-S. Mao and H. Pan, Congruences corresponding to hypergeometric identities I. ${ }_{2} F_{1}$ transformations, J. Math. Anal. Appl. 505 (2022), Art. 125527.
[5] Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 2, 255-266.
[6] H. Pan, R. Tauraso and C. Wang, A local-global theorem for p-adic supercongruences, J. Reine Angew. Math. 790 (2022), 53-83.
[7] A.M. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics, Vol. 198, Springer-Verlag, New York, 2000.
[8] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), 2509-2535.
[9] Z.-W. Sun, On sums involving products of three binomial coefficients, Acta Arith. 156 (2012), 123-141.
[10] Z.-W. Sun, Supecongruences involving products of two binomial coefficients, Finite Fields Appl. 22 (2013), 24-44.
[11] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquaterly 36 (2019), no.1, 1-99.
[12] R. Tauraso, Supercongruences for a truncated hypergeometric series, Integers 12 (2012), A45.
[13] R. Tauraso, Some congruences for central binomial sums involving Fibonacci and Lucas numbers, J. Integer Seq. 19 (2016), no. 5, Art. 16.5.4.
[14] C. Wang and H. Pan, Supercongruences concerning truncated hypergeometric series, Math. Z. 300 (2022), 161-177.
[15] C. Wang and Z.-W. Sun, p-adic analogues of hypergeometric identities and their applications, preprint, arXiv:1910.06856.
[16] C. Wang and Z.-W. Sun, Proof of some conjectural hypergeometric supercongruences via curious identities, J. Math. Anal. Appl. 505 (2022), Art. 125575.
[17] C. Wang and W. Xia, Divisibility results concerning truncated hypergeometric series, J. Math. Anal. Appl. 491 (2020), Art. 124402.

[^0]: E-mail address: cwang@smail.nju.edu.cn, zwsun@nju.edu.cn.
 2010 Mathematics Subject Classification. Primary 05A10, 33C20; Secondary 11A07, 11B65.
 Key words and phrases. Congruences, truncated hypergeometric series, binomial coefficients, p-adic Gamma function.
 *Corresponding author.

