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REPRESENTING n AS n = x+ y + z
WITH x2 + y2 + z2 A SQUARE

CHAO HUANG AND ZHI-WEI SUN

Abstract. In this paper, we mainly confirm the following conjecture of
Sun posed in 2013: Each positive integer n can be written as n = x+y+z
with x, y, z positive integers such that x2 + y2 + z2 is a square, unless n
has the form n = 2a3b or 2a7 with a and b nonnegative integers.

1. Introduction

Lagrange’s four-square theorem states that each n ∈ N = {0, 1, 2, . . .}
can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N. Z.-W. Sun [13, 14]
refined this classical theorem in various ways by imposing certain restrictions
involving squares. For example, Sun’s 1-3-5 conjecture [13] states that any
n ∈ N can be written as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with x+ 3y+ 5z a
square. This was confirmed by Machiavelo and Tsopanidis [6] via Hamilton
quaternions.

Squares are actually polygonal numbers of order four. In 1813 Cauchy
proved Fermat’s claim that for each integer m ≥ 5, any a ∈ N can be
written as a sum of m polygonal numbers of order m (i.e., those pm(n) =
(m − 2)

(
n
2

)
+ n with n ∈ N). The following lemma plays a central role

in Cauchy’s proof, which can be found in Nathanson [8] and [9, p. 31], or
Moreno and Wagstaff [7, pp. 54-57].

Cauchy’s Lemma. Let a and b be positive odd integers such that

b2 < 4a and 3a < b2 + 2b+ 4. (1.1)

Then there are s, t, u, v ∈ N such that

s+ t+ u+ v = b and s2 + t2 + u2 + v2 = a. (1.2)

In view of Cauchy’s Lemma, it is interesting to investigate partitions of
integers with restrictions involving squares. Namely, given k ∈ {3, 4, 5, . . .},
we investigate for which positive integers n the system of Diophantine e-
quations {

x1 + · · ·+ xk = n,

x21 + · · ·+ x2k = y2
(1.3)

has solutions x1, . . . , xk, y ∈ Z+ = {1, 2, 3, . . .}.
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Our first theorem solves the above problem for k ≥ 4.

Theorem 1.1. Let k ≥ 4 be an integer. Then any integer n > max{20k, 1200}
can be written as n = x1+· · ·+xk with x1, . . . , xk ∈ Z+ such that x21+· · ·+x2k
is a square.

We will prove Theorem 1.1 in the next section using Cauchy’s lemma.
Actually, by our proof we may even taking x5 = · · · = xk = 2 when k ≥ 5
and 2 - n.

Our next theorem handles the case k = 3. It confirms a conjecture of
Sun posed in 2013 (cf. [11] and [12, A230121]).

Theorem 1.2. Let n be a positive integer. We can write n = x+y+z with
x, y, z ∈ Z+ such that x2 + y2 + z2 is a square, if and only if n is neither of
the form 2a3b (a, b ∈ N) nor of the form 2a7 (a ∈ N).

Remark 1.1. This theorem also can be interpreted as the existence of certain
cuboid (i.e., rectangular box) with integer edges and body diagonal. It is
still open whether there exists a so-called perfect cuboid that has integer
edges, face diagonals and body diagonal (cf. Section D18 of [5, pp. 275–283]).

As an example, Dickson [4, p. 259] recorded that Regiomontanus proposed
in the 15th century the problem of solving the pair of equations

x+ y + z = 116, x2 + y2 + z2 = 4624 = 682.

It has a unique solution in positive integers, up to permutations, namely
{x, y, z} = {32, 36, 48}.

In contrast with Theorem 1.2, Sun ([13, Conjecture 4.7] and [15, Con-
jectures 1.31-1.36]) conjectured for many triples of positive integers a, b, c
(such as (a, b, c) = (1, 3, 12)) that any n ∈ N can be written as x2 + y2 +
z2 + w2 (x, y, z, w ∈ N) with ax2 + by2 + cz2 a square, but no progress has
been made on this problem.

Our proof of Theorem 1.2 will be given in Section 4. To find suitable
x, y, z ∈ Z+ in the “if” part, we need a lemma on representing certain
positive integers as x20 + y20 − 3z20 with x0 ≥ z0 > 0 and y0 ≥ 2z0, which will
be provided in Section 3.

For convenience, we set � = {x2 : x ∈ Z}.

2. Proof of Theorem 1.1

Lemma 2.1. Let m and n be positive odd integers with n ≥ 5 and 3m <
n2 < 4m. Then there are s0, t0, u0, v0 ∈ Z+ such that

s0 + t0 + u0 + v0 = n and s20 + t20 + u20 + v20 = m.

Proof. Let a = m − 2n + 4 and b = n − 4. Then it is easy to verify (1.1)
holds. By Cauchy’s Lemma, there are s, t, u, v ∈ N satisfying (1.2). Define

s0 = s+ 1, t0 = t+ 1, u0 = u+ 1, v0 = v + 1.
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Then
s0 + t0 + u0 + v0 = b+ 4 = n

and
s20 + t20 + u20 + v20 = a+ 2b+ 4 = m.

This concludes the proof. �

Proof of Theorem 1.1. If n ∈ N has a desired representation, then so does 2n.
Thus it suffices to prove the theorem for any odd integer n > max{10k, 600}.

Let j = k − 4 and consider the interval I = (n/4 + 7j/2, n/3 + 10j/3).
Suppose that I contains no odd square. Then, for some h ∈ Z we have

(2h− 1)2 ≤ n

4
+

7j

2
<
n

3
+

10j

3
≤ (2h+ 1)2

and hence

4h = (2h+ 1)2 − (2h− 1)2 ≥ n

12
− j

6
>

n

15
> 40,

which implies h > 10. Thus

n

4
+

7j

2
≥ (2h− 1)2 > 19(2h− 1) > 36h > 9

(
n

12
− j

6

)
and hence 10j > n, which contradicts our assumption.

By the above, there exists an odd integer m such that

n

4
+

7j

2
< m2 <

n

3
+

10j

3
, (2.1)

and hence
3(m2 − 4j) < n− 2j < 4(m2 − 4j).

By Lemma 2.1, there are x1, x2, x3, x4 ∈ Z+ such that

x1 + x2 + x3 + x4 = n− 2j and x21 + x22 + x23 + x24 = m2 − 4j.

Set xi = 2 for 4 < i 6 k. Then
∑k

i=1 xi = n and

k∑
i=1

x2i = m2 − 4j + 22j = m2.

In view of the above, we have completed the proof of Theorem 1.1. �

3. A lemma on x2 + y2 − 3z2

In this section, we study the representations by the indefinite anisotropic
form x2 + y2 − 3z2. Note that x2 + y2 − 3z2 has small coefficients among
integral ternary anisotropic forms. In [2, pp. 307–309], it is used to illustrate
how to compute the group of integral automorphs for such forms, and its
group is shown to possess mainly two generators:

φ : (x, y, z) 7→ (x, 3z − 2y, 2z − y) and ψ : (x, y, z) 7→ (3z − 2x, y, 2z − x).

Using this fact, we obtain the following lemma.
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Lemma 3.1. Let n be a positive integer with n, n/6, n/7 6∈ �. Suppose that
the equation

n = x2 + y2 − 3z2 (x, y, z ∈ Z) (3.1)

has solutions. Then, there are x0, y0, z0 ∈ Z+ with x20 + y20 − 3z20 = n
satisfying

x0 ≥ z0 and y0 ≥ 2z0. (3.2)

Furthermore, we may require x0 > z0 if n = x2 − 2z2 for some x, z ∈ Z+

with x/z ∈ (2, 7/2] ∪ (5,+∞).

Proof. If n = x2 + y2 with x, y ∈ N, then we may assume x ≥ y > 0 since
n 6∈ �. Thus n = x2 + (2y)2− 3y2 and (x0, y0, z0) = (x, 2y, y) satisfies (3.2).

Now assume that n is not a sum of two squares. Choose a particular
solution (r, s, t) of (3.1) with r, s ∈ N and

t = min{z ∈ Z+ : n = x2 + y2 − 3z2 for some x, y ∈ Z}.
In view of the integral automorphs φ and ψ, the equation (3.1) has three
other solutions:

φ(r, s, t) = (r, 3t− 2s, 2t− s), (3.3)

ψ(r, s, t) = (3t− 2r, s, 2t− r), (3.4)

φψ(r, s, t) = (3t− 2r, 6t− 3r − 2s, 4t− 2r − s). (3.5)

By the definition of t, we get |2t − s| ≥ t from the solution (3.3). So we
have either s ≤ t or s ≥ 3t. Similarly, by the solution (3.4), either r ≤ t or
r ≥ 3t. Since r2 + s2 − 3t2 = n, one of r and s is greater than t and hence
at least 3t. If r ≥ 3t and s ≥ 3t, then (x0, y0, z0) = (r, s, t) satisfies (3.2).

Now we handle the case r ≤ t and s ≥ 3t. (The case s ≤ t and r ≥ 3t
can be handled similarly.)

Suppose s < 5t− 2r. Then

−t < 4t− 2r − s ≤ t− 2r ≤ t.

By the definition of t and the solution (3.5), we must have |4t− 2r− s| = t
and hence 4t − 2r − s = t − 2r = t. So r = 0 and s = 3t. It follows that
n = r2 + s2 − 3t2 = 6t2, which contradicts n/6 6∈ �.

By the last paragraph, we must have s ≥ 5t− 2r. Note that the solution

(x0, y0, z0) = ψ(r, s, t) = (3t− 2r, s, 2t− r)
satisfies (3.2) since

s ≥ 2(2t− r), 3t− 2r ≥ 2t− r and 2t− r ≥ t > 0.

In view of the above, we have proved the first assertion of Lemma 3.1.
Now we prove the second assertion. Suppose that n = x2 − 2z2 for some

x, z ∈ Z+ with x/z ∈ (2, 7/2]∪ (5,+∞). As n/7 6∈ �, we have x/z 6= 3. We
want to find a solution (x0, y0, z0) of (3.1) satisfying (3.2) and the inequality
x0 > z0.

Case 1. x/z ∈ (2, 3), i.e., 0 < 2z < x < 3z.
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In this case, (x0, y0, z0) = (z, 2x− 3z, x− 2z) meets our purpose since

x2 − 2z2 = z2 + (2x− 3z)2 − 3(x− 2z)2,

x0 − z0 = z − (x− 2z) = 3z − x > 0,

y0 − 2z0 = (2x− 3z)− 2(x− 2z) = z > 0.

Case 2. x/z ∈ (3, 7/2), i.e., 0 < 3z < x ≤ 7/2z.
Using the identity

n = x2 − 2z2 = (3x− 8z)2 + (2x− 3z)2 − 3(2x− 5z)2,

we find that (x0, y0, z0) = (3x− 8z, 2x− 3z, 2x− 5z) meets our purpose as

x0 − z0 = (3x− 8z)− (2x− 5z) = x− 3z > 0,

y0 − 2z0 = (2x− 3z)− 2(2x− 5z) = 7z − 2x ≥ 0.

Case 3. x/z ∈ (5, 6), i.e., 5z < x < 6z.
In this case,

n = x2 − 2z2 = (2x− 9z)2 + (5z)2 − 3(6z − x)2

and hence (x0, y0, z0) = (2x− 9z, 5z, 6z − x) meets our purpose.
Case 4. x/z ∈ [6,+∞), i.e., x ≥ 6z. In this case,

n = x2 − 2z2 = (5z)2 + x2 − 3(3z)2

and hence (x0, y0, z0) = (5z, x, 3z) meets our purpose.
In view of the above, we have completed the proof of Lemma 3.1. �

4. Proof of Theorem 1.2

We need the following known result in the case F (x, y, z) = x2 +y2−3z2.

Lemma 4.1. ([3, p. 164]) Let p be an odd prime with p 6≡ 1 (mod 24). Let
F (x, y, z) be any indefinite, anisotropic ternary quadratic form with integral
coefficient matrix and determinant −p. Then

Z \ {F (x, y, z) : x, y, z ∈ Z}
={4k(8`+ p) : k ∈ N, ` ∈ Z}⋃{

p2k+1(p`+ r2) : k ∈ N, ` ∈ Z, 1 6 r 6
p− 1

2

}
.

Remark 4.1. The reader may consult [10] for a more general result.

To prove Theorem 1.2, we also utilize the following parametrization of
the solutions to the Diophantine equation w2 = x2 + y2 + z2 (which can be
easily proved using Gaussian integers [1, pp. 161–162]):

w =
a2 + b2 + c2 + d2

2
t, x =

a2 + b2 − c2 − d2

2
t,

y =(ac− bd)t, z = (ad+ bc)t.
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Proof of Theorem 1.2. (i) We first prove the “if” direction. If m = x+ y+ z
for some x, y, z ∈ Z+ with x2 + y2 + z2 ∈ �, then for any q ∈ Z+ we have
mq = qx+qy+qz with (qx)2+(qy)2+(qz)2 = q2(x2+y2+z2) ∈ �. Thus any
n ∈ Z+ divisible by 21 or 49 has a desired representation since 21 = 2+5+14
with 22 + 52 + 142 = 152, and 49 = 1 + 18 + 30 with 12 + 182 + 302 = 352.
If n ∈ Z+ does not belong to {2a3b : a, b ∈ N} ∪ {2a7 : a ∈ N}, then n is
divisible by 21 or 49, unless it has a prime divisor p 6= 2, 3, 7.

It suffices to assume that n is an odd prime other than 3, 7. We want to
prove that there are x, y, z ∈ Z+ with

x+ y + z = n and x2 + y2 + z2 ∈ �.
(The assumption n 6= 7 will be useful in (4.3) below.)

Now, if a, b, c, d are integers with

2n = (a+ c+ d)2 + (b+ c− d)2 − 3c2 − 3d2, (4.1)

then, for

x =
a2 + b2 − c2 − d2

2
, y = ac− bd, z = ad+ bc, (4.2)

we can verify x+ y + z = n and

x2 + y2 + z2 = x2 + (a2 + b2)(c2 + d2) =

(
a2 + b2 + c2 + d2

2

)2

.

So, it suffices to find a, b, c, d ∈ Z satisfying (4.1) such that x, y, z given by
(4.2) are positive.

As 2n is neither of the form 32u+1(3v + 1) (u, v ∈ N) nor of the form
4u(8v + 3) (u, v ∈ N), in view of Lemma 4.1 we have 2n ∈ {x2 + y2 −
3z2 : x, y, z ∈ Z}. By Lemma 3.1 there are integers x0, y0, z0 ∈ Z+ with
2n = x20+y20−3z20 for which x0 ≥ 2z0 and y0 ≥ z0; moreover, we may require
y0 > z0 if 2n = r2 − 2s2 for some r, s ∈ Z+ with r/s ∈ (2, 7/2] ∪ [5,+∞).

Case 1. y0 > z0.
In this case, we set

a = x0 − z0, b = y0 − z0, c = z0, d = 0.

It is easy to see that (4.1) holds and also a ≥ c > 0 and b > 0 so that x, y, z
given by (4.2) are positive.

Case 2. y0 = z0.
In this case, 2n = x20 +y20−3z20 = x20−2z20 and x0/z0 6∈ (2, 7/2]∪ (5,+∞).

Clearly, x0/z0 ∈ {2, 5} contradicts the assumption that n is a prime. Hence
x0/z0 ∈ (7/2, 5).

If x0/z0 ∈ (4, 5), then it is easy to see that the integers

a = x0 − 2z0, b = 2z0 and c = d = z0

meet our purpose.
Now we assume that 7/2 < x0/z0 6 4. If x0 = 4z0, then

2n = x20 − 2z20 = 14z20 , (4.3)
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which contradicts n 6= 7. Thus 7z0/2 < x0 < 4z0. Set

a = x0 − 2z0, b = 5z0 − x0, c = a, d = z0.

Then
a+ c+ d = 2x0 − 3z0, b+ c− d = 2z0, c = x0 − 2z0,

and hence (4.1) holds. It is easy to see that x > 0 and z > 0. Note also
that

y =ac− bd = (x0 − 2z0)
2 − (5z0 − x0)z0

=x0
2 − 3x0z0 − z20 =

(
x0 −

3

2
z0

)2

− 13

4
z20

>4z20 −
13

4
z20 > 0.

This concludes our proof of the “if” direction.
(ii) Now we prove the “only if” direction. If n is even and x, y, z are

positive integers with x+ y+ z = n and x2 + y2 + z2 ∈ �, then x2 + y2 + z2

is a multiple of 4 and hence none of x, y, z is odd. Thus n/2 = x0 + y0 + z0
with x20 + y20 + z20 ∈ �, where x0 = x/2, y0 = y/2, z0 = z/2 are positive
integers. So it remains to prove that any n ∈ {7} ∪ {3b : b ∈ N} cannot be
written as x + y + z with x, y, z ∈ Z+ and x2 + y2 + z2 ∈ �. It is easy to
check that this holds for n = 3, 7.

Now assume n = 3b for some integer b ≥ 2. Suppose that n = x + y + z
with x, y, z ∈ Z+ and x2 +y2 +z2 ∈ �. If we don’t have x ≡ y ≡ z (mod 3),
then exactly one of x, y, z is divisible by 3 since x+ y+ z ≡ 0 (mod 3), and
hence x2 + y2 + z2 ≡ 2 (mod 3), which contradicts x2 + y2 + z2 ∈ �. Thus
x ≡ y ≡ z ≡ δ (mod 3) for some δ ∈ {0, 1, 2}. Write x = 3x′ +δ, y = 3y′ +δ
and z = 3z′ +δ with x′, y′, z′ ∈ Z. Then x′ +y′ +z′ = n/3−δ ≡ −δ (mod 3)
and hence

x2 + y2 + z2 ≡ 6(x′ + y′ + z′)δ + 3δ2 ≡ −6δ2 + 3δ2 = −3δ2 (mod 9).

As x2 + y2 + z2 is a square, we must have δ = 0. Thus n/3 = x′ + y′ + z′

with (x′)2 + (y′)2 + (z′)2 = (x2 + y2 + z2)/9 ∈ �. Continuing this process,
we finally get that 3 can be written as x + y + z with x, y, z ∈ Z+ and
x2 + y2 + z2 ∈ �, which is absurd. This contradiction concludes our proof
of the “only if” direction.

In view of the above, we have completed the proof of Theorem 1.2. �
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Equations, Birkhäuser, New York, 2010.

[2] J. W. S. Cassels, Rational Quadratic Forms, Dover Publications, Mineola, New York,
2008.

[3] L. E. Dickson, Modern Elementary Theory of Numbers, Univ. of Chicago Press,
Chicago, 1939.



8 C. HUANG AND Z.-W. SUN

[4] L. E. Dickson, History of the Theory of Numbers, Vol II, Dover Publications, Mine-
ola, New York, 2005.

[5] R. Guy, Unsolved Problems in Number Theory (3rd Edition), Springer, New York,
2004.

[6] A. Machiavelo and N. Tsopanidis, Zhi-Wei Sun’s 1-3-5 conjecture and variations, J.
Number Theory 222 (2021), 1–20.

[7] C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, Chapman & Hal-
l/CRC, New York, 2005.

[8] M. B. Nathanson, A short proof of Cauchy’s polygonal theorem, Proc. Amer. Math.
Soc. 99 (1987), 22–24.

[9] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in
Math, Vol. 164, Springer, New York, 1996.

[10] A. E. Ross, On representation of integers by indefinite ternary quadratic forms of
quadratfrei determinant, Amer. J. Math. 55 (1933), 293–302.

[11] Z.-W. Sun, Diophantine problems involving triangular numbers and squares, a
message to Number Theory List, Oct. 11, 2013, https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;7aed50fa.1310

[12] Z.-W. Sun, Sequence A230121 on OEIS (On-Line Encyclopedia of Integer Se-
quences), Oct. 2013, http://oeis.org.

[13] Z.-W. Sun, Refining Lagrange’s four-square theorem, J. Number Theory 175 (2017),
167–190.

[14] Z.-W. Sun, Restricted sums of four squares, Int. J. Number Theory 15 (2019), 1863–
1893.

[15] Z.-W. Sun, New Conjectures in Number Theory and Combinatorics (in Chinese),
Harbin Institute of Technology Press, Harbin, 2021.

(Chao Huang) School of Mathematics and Physics, Anqing Normal Uni-
versity, Anqing 246133, People’s Republic of China

E-mail address: chao1987@sina.cn

(Zhi-Wei Sun, corresponding author) Department of Mathematics, Nan-
jing University, Nanjing 210093, People’s Republic of China

E-mail address: zwsun@nju.edu.cn


