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REPRESENTING n AS n=z+y+ 2
WITH 2% +y*> + 22 A SQUARE

CHAO HUANG AND ZHI-WEI SUN

ABSTRACT. In this paper, we mainly confirm the following conjecture of
Sun posed in 2013: Each positive integer n can be written as n = x+y-+=z
with x,y, z positive integers such that z2 + y? + 22 is a square, unless n
has the form n = 223" or 2%7 with a and b nonnegative integers.

1. INTRODUCTION

Lagrange’s four-square theorem states that each n € N = {0,1,2,...}
can be written as 2% + y* + 2% + w? with z,y, 2, w € N. Z.-W. Sun [13, 14]
refined this classical theorem in various ways by imposing certain restrictions
involving squares. For example, Sun’s 1-3-5 conjecture [13] states that any
n € N can be written as 2? +y* + 22 +w? (z,y,2,w € N) with z + 3y + 5z a
square. This was confirmed by Machiavelo and Tsopanidis [6] via Hamilton
quaternions.

Squares are actually polygonal numbers of order four. In 1813 Cauchy
proved Fermat’s claim that for each integer m > 5, any a € N can be
written as a sum of m polygonal numbers of order m (i.e., those p,,(n) =
(m —2)(3) + n with n € N). The following lemma plays a central role
in Cauchy’s proof, which can be found in Nathanson [8] and [9, p.31], or
Moreno and Wagstaff [7, pp. 54-57].

Cauchy’s Lemma. Let a and b be positive odd integers such that

b < 4a and 3a < b* + 20+ 4. (1.1)
Then there are s,t,u,v € N such that
s+t+u+v=>band s +t*+u’+ v’ =a. (1.2)

In view of Cauchy’s Lemma, it is interesting to investigate partitions of
integers with restrictions involving squares. Namely, given k € {3,4,5,...},
we investigate for which positive integers n the system of Diophantine e-
quations

{:c1+~~+xk:n, (1.3)

a4+ =y
has solutions x1, ...,z y € Z+ ={1,2,3,...}.
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Our first theorem solves the above problem for k£ > 4.

Theorem 1.1. Let k > 4 be an integer. Then any integer n > max{20k, 1200}
can be written asn = x1+- - -+xp withx1, ..., 1x € Z* such that x3+- - -+x3
1S a square.

We will prove Theorem 1.1 in the next section using Cauchy’s lemma.
Actually, by our proof we may even taking x5 = -+ = x, = 2 when k > 5
and 2 1 n.

Our next theorem handles the case k£ = 3. It confirms a conjecture of
Sun posed in 2013 (cf. [11] and [12, A230121]).

Theorem 1.2. Let n be a positive integer. We can write n = x+y+ 2z with
x,y,2 € LT such that x° + y* + 2% is a square, if and only if n is neither of
the form 243% (a,b € N) nor of the form 2°7 (a € N).

Remark 1.1. This theorem also can be interpreted as the existence of certain
cuboid (i.e., rectangular box) with integer edges and body diagonal. Tt is
still open whether there exists a so-called perfect cuboid that has integer
edges, face diagonals and body diagonal (cf. Section D18 of [5, pp. 275-283)).

As an example, Dickson [4, p. 259] recorded that Regiomontanus proposed
in the 15th century the problem of solving the pair of equations

r4+y+z=116, 2°+y?+ 2% = 4624 = 68°.

It has a unique solution in positive integers, up to permutations, namely
{z,y, 2} = {32,36,48}.

In contrast with Theorem 1.2, Sun ([13, Conjecture 4.7] and [15, Con-
jectures 1.31-1.36]) conjectured for many triples of positive integers a,b,c
(such as (a,b,c) = (1,3,12)) that any n € N can be written as x? + y* +
22 +w? (z,y,z,w € N) with az® + by* + c2? a square, but no progress has
been made on this problem.

Our proof of Theorem 1.2 will be given in Section 4. To find suitable
x,y,z € Z* in the “if” part, we need a lemma on representing certain
positive integers as z2 + y2 — 322 with z¢ > 29 > 0 and yy > 220, which will
be provided in Section 3.

For convenience, we set (1 = {z? : x € Z}.

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let m and n be positive odd integers with n > 5 and 3m <
n? < 4m. Then there are sg,ty, ug, Vo € Z such that

so+to+up+vo =n and sg+tp +ug +vg = m.

Proof. Let a = m —2n + 4 and b = n — 4. Then it is easy to verify (1.1)
holds. By Cauchy’s Lemma, there are s, ¢, u,v € N satisfying (1.2). Define

Sso=s+1, tg=t+1, uyg=u+1, vog=v+ 1.



REPRESENTING n AS n=x 4y + 2 WITH 2 + 3% 4 2> A SQUARE 3

Then
So+to+uyt+vo=b+4=n
and
se+titud vl =a+2b+4=m.
This concludes the proof. O

Proof of Theorem 1.1. If n € N has a desired representation, then so does 2n.

Thus it suffices to prove the theorem for any odd integer n > max{10k, 600}.
Let j = k — 4 and consider the interval [ = (n/4+ 75/2, n/3 + 105/3).

Suppose that I contains no odd square. Then, for some h € Z we have

7 10
(2h—1)2§g+7‘7<g+?‘7§(2h+1)2

and hence
Ah = (2h+1)2—(2h—12 >~ Lo Sy
(2h+1) ( ) — 12 6>15> ’
which implies A > 10. Thus
-+ = 2h — 1 19(2h — 1 h — =
4+2_( )7 > 19( ) > 36 >9<12 6)

and hence 105 > n, which contradicts our assumption.
By the above, there exists an odd integer m such that

7j 10
D emr Ly 2

— 2.1
4 2 3 3 (21)

and hence
3(m?* — 4j) < n —2j < 4(m? — 4j).
By Lemma 2.1, there are 1, 29, x3, 4 € Z" such that
T+ Ty + a3 +ay=n—2j and 27 + a3+ 23 + 27 = m* — 4j.

Set x; = 2 for 4 < i < k. Then Zle r; = n and
k
fo =m? — 45+ 2% = m?.
i=1
In view of the above, we have completed the proof of Theorem 1.1. [

3. A LEMMA ON 22 + y% — 322

In this section, we study the representations by the indefinite anisotropic
form 22 + y? — 322. Note that 22 + y? — 322 has small coefficients among
integral ternary anisotropic forms. In [2, pp. 307-309], it is used to illustrate
how to compute the group of integral automorphs for such forms, and its
group is shown to possess mainly two generators:

¢: (r,y,2) — (2,32 — 2y,2z —y) and ¥ : (z,y,2) — (32 — 2x,y,22 — x).

Using this fact, we obtain the following lemma.
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Lemma 3.1. Let n be a positive integer with n,n/6,n/7 ¢ 0. Suppose that
the equation
n=az’4+y*—32% (z,y,2 € Z) (3.1

has solutions. Then, there are xg,vo,20 € ZT with x3 + y2 — 322 = n
satisfying

xo > 29 and Yo > 22p. (3.2)
Furthermore, we may require o > zy if n = x? — 22> for some x,z € Z+
with x/z € (2, 7/2] U (5, +00).

Proof. If n = 2% 4 y? with z,y € N, then we may assume x > y > 0 since
n ¢ 0. Thus n = 22+ (2y)? — 3y? and (o, vo, 20) = (z, 2y, y) satisfies (3.2).

Now assume that n is not a sum of two squares. Choose a particular
solution (r,s,t) of (3.1) with r, s € N and

t=min{z € Z* : n =2+ y*> — 32 for some z,y € Z}.

In view of the integral automorphs ¢ and %, the equation (3.1) has three
other solutions:

o(r, s, t) = (r,3t — 25,2t — s), (3.3)
W(r,s,t) = (3t — 2r, 8,2t —r), (3.4)
op(r, s, t) = (3t — 2r,6t — 3r — 25,4t — 2r — s). (3.5)

By the definition of ¢, we get |2t — s| > t from the solution (3.3). So we
have either s <t or s > 3t. Similarly, by the solution (3.4), either r <t or
r > 3t. Since r? + s2 — 3t> = n, one of r and s is greater than ¢ and hence
at least 3t. If » > 3t and s > 3¢, then (xo, yo, 20) = (1, s, 1) satisfies (3.2).
Now we handle the case r < t and s > 3t. (The case s <t and r > 3t
can be handled similarly.)
Suppose s < 5t — 2r. Then

—t<d4t—2r—s<t—2r<t.

By the definition of ¢ and the solution (3.5), we must have |4t — 2r — s| = ¢
and hence 4t — 2r —s =t —2r =t. Sor = 0 and s = 3t. It follows that
n =r?+ s® — 3t = 6t%, which contradicts n/6 & .

By the last paragraph, we must have s > 5t — 2r. Note that the solution

(0, Yo, 20) = U(r,s,t) = (3t — 2r, 8,2t — 1)
satisfies (3.2) since
§s>22t—r), 3t—2r>2t—rand 2t—r>1t>0.

In view of the above, we have proved the first assertion of Lemma 3.1.

Now we prove the second assertion. Suppose that n = 22 — 222 for some
xr,z € ZT with x/z € (2,7/2]U(5,+00). Asn/7 ¢ O, we have x/z # 3. We
want to find a solution (zg, yo, z0) of (3.1) satisfying (3.2) and the inequality
Ty > 2.

Case 1. z/z € (2,3),1e.,0< 2z <z < 3z
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In this case, (z, Yo, 20) = (2,22 — 3z, x — 22) meets our purpose since
1? — 227 = 22 + (22 — 32)* — 3(z — 22),
rg—20=2—(r—22)=32—2>0,

Yo — 220 = (22 — 32) — 2(x — 22) = 2 > 0.
Case 2. z/z € (3,7/2),1e.,0<3z<x <7/2z.
Using the identity
n=1%—22" = 3z — 82) + (2x — 32)* — 3(2v — 52)?,
we find that (zo,yo, 20) = (3z — 82,22 — 3z, 2x — 5z) meets our purpose as
x9g— 20 = (3 —82) — (20 — 5z) =2 — 32 > 0,
Yo — 220 = (22 — 3z) — 2(2x — 5z) =Tz — 22 > 0.
Case 3. x/z € (5,6), i.e., bz < x < 62.
In this case,
n=12*—22% = (20 — 92)* + (52)* — 3(62 — x)?
and hence (xg, Yo, 20) = (22 — 92, 52,6z — x) meets our purpose.
Case 4. x/z € [6,4+0), i.e., > 6z. In this case,
n =x? — 222 = (52)% + 2* — 3(32)?

and hence (xo, Yo, 20) = (52, x, 3z) meets our purpose.
In view of the above, we have completed the proof of Lemma 3.1. U

4. PROOF OF THEOREM 1.2
We need the following known result in the case F(z,y, z) = z* +y* — 322

Lemma 4.1. ([3, p. 164]) Let p be an odd prime with p #Z 1 (mod 24). Let
F(z,y, z) be any indefinite, anisotropic ternary quadratic form with integral
coefficient matriz and determinant —p. Then

Z\A{F(z,y,2): x,y,2 € L}
={4"80+p): keN, (€7}

-1
U{p2k+1(p€+r2): keN, LeZ, 1<7’<p—2 }

Remark 4.1. The reader may consult [10] for a more general result.

To prove Theorem 1.2, we also utilize the following parametrization of
the solutions to the Diophantine equation w? = x? + 3? + 2% (which can be
easily proved using Gaussian integers [1, pp. 161-162]):

a+ 0+ A+ d? a4+ b — & — d?
= t, *= t,
2 2
y =(ac — bd)t, z= (ad+ bc)t.
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Proof of Theorem 1.2. (i) We first prove the “if” direction. If m =z 4+y+ 2
for some x,y, 2 € Z* with 22 + y*> + 2% € [, then for any ¢ € Z" we have
mq = qr+qy+qz with (¢z)*+(qy)?+(¢2)* = ¢*(2*+y*+2?) € 0. Thus any
n € Z* divisible by 21 or 49 has a desired representation since 21 = 2+5+14
with 22 + 5% 4 142 = 152, and 49 = 1 + 18 4 30 with 12 + 182 4 302 = 352
If n € Z* does not belong to {223° : a,b € N} U {2°7 : a € N}, then n is
divisible by 21 or 49, unless it has a prime divisor p # 2,3, 7.

It suffices to assume that n is an odd prime other than 3,7. We want to
prove that there are x,y, 2 € Z* with

r4+y+z=nand 2® +9*+ 22 €0
(The assumption n # 7 will be useful in (4.3) below.)
Now, if a, b, ¢, d are integers with
2n=(a+c+d)?+ (b+c—d)?—3c* - 3d°, (4.1)
then, for
a>+ b —c*—d?

x = 5 , y=ac—bd, z=ad-+ be, (4.2)

we can verify x +y + 2z = n and

Pyt ="+ (@ + V) (P + ) =

a2+b2+02+d2>2
5 .

So, it suffices to find a, b, c,d € Z satisfying (4.1) such that z,y, z given by
(4.2) are positive.

As 2n is neither of the form 3?**1(3v + 1) (u,v € N) nor of the form
44(8v + 3) (u,v € N), in view of Lemma 4.1 we have 2n € {z* + y* —
322 1 x,y,2 € Z}. By Lemma 3.1 there are integers g, yo, 20 € Z" with
2n = x2+y2 — 322 for which xy > 224 and yy > zp; moreover, we may require
Yo > 2o if 2n = r? — 2s? for some r, s € ZT with r/s € (2,7/2] U [5, +00).

Case 1. yo > 2.

In this case, we set

a=1x9— 2y, b=1yo— 20, ¢ =29, d=0.
It is easy to see that (4.1) holds and also a > ¢ > 0 and b > 0 so that z,y, 2
given by (4.2) are positive.

Case 2. yo = 2.

In this case, 2n = 23 +y2 — 322 = 12 — 222 and xo/20 & (2,7/2]U (5, +00).
Clearly, zq/z0 € {2,5} contradicts the assumption that n is a prime. Hence
xo/20 € (7/2,5).

If xg/z0 € (4,5), then it is easy to see that the integers

a=x9— 229, b=2zpand c =d = z

meet our purpose.
Now we assume that 7/2 < xg/zp < 4. If 2y = 4z, then

2n = xj — 225 = 1427, (4.3)
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which contradicts n # 7. Thus 72¢/2 < x¢ < 42. Set
a=xy— 22y, b=5z0—x9, c=a, d= z.

Then

a+c+d=2xy—3z, b+c—d=2zy, c=1x9— 22,
and hence (4.1) holds. It is easy to see that x > 0 and z > 0. Note also
that

y =ac — bd = (w9 — 229)* — (520 — 70)20

3 \* 13
=10> — 3T020 — zg = (mo - 520) — ZZ(Q)

13
>428 — Zzg > 0.

This concludes our proof of the “if” direction.

(ii) Now we prove the “only if” direction. If n is even and x,y,z are
positive integers with x +y + 2z = n and 2% + 9% + 22 € O, then 22 + 3% + 22
is a multiple of 4 and hence none of z,y, z is odd. Thus n/2 = xy + yo + 20
with 3 + y2 + 23 € O, where zy = /2, yo = y/2, z = z/2 are positive
integers. So it remains to prove that any n € {7} U {3": b € N} cannot be
written as  +y + z with x,y,2 € Z" and 2% + y* + 22 € 0. It is easy to
check that this holds for n = 3, 7.

Now assume n = 3° for some integer b > 2. Suppose that n =z 4+ y + 2
with z,y,z € Z* and 22 +y*+ 2% € 0. If we don’t have x = y = z (mod 3),
then exactly one of x,y, z is divisible by 3 since x +y + z = 0 (mod 3), and
hence 2% + y* + 22 = 2 (mod 3), which contradicts 22 + y? + 2% € 0. Thus
r=y=z=0¢ (mod 3) for some § € {0,1,2}. Write x = 32"+6,y =3y +0
and z = 32'+d with 2/, ¢/, 2’ € Z. Then 2’ +y' 4+ 2 =n/3—0 = —§ (mod 3)
and hence

2+ 22 =6(2' 4y + )0+ 30% = —682 + 362 = —362 (mod 9).

As 2% + y* + 2% is a square, we must have § = 0. Thus n/3 = 2’ + ¢ + 2/
with (/)2 + (v/)? + () = (2* + y* + 2%)/9 € 0. Continuing this process,
we finally get that 3 can be written as  + y + 2z with z,y,2 € Z* and
2% + y? + 2% € O, which is absurd. This contradiction concludes our proof
of the “only if” direction.

In view of the above, we have completed the proof of Theorem 1.2. [
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