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EXTENSIONS OF WILSON’S LEMMA
AND THE AX-KATZ THEOREM

ZHI-WEI SUN

ABSTRACT. A classical result of A. Fleck states that if p is a prime, and
n > 0 and r are integers, then

Z (Z) (71)1@ =0 (mod pL(nfl)/(Pfl)J).
k=r (mod p)
In 2006 R. M. Wilson used Fleck’s congruence and Weisman’s exten-
sion to present a useful lemma on polynomials modulo prime powers,
and applied this lemma to re-prove the Ax-Katz theorem on systems
of polynomial equations over finite fields and deduce various results on
codewords in p-ary linear codes with weights. In light of the generaliza-
tions of Fleck’s congruence given by D. Wan, and D. M. Davis and Z.-W.
Sun during 2006-2007, we obtain new extensions of Wilson’s lemma and
the Ax-Katz theorem.

1. INTRODUCTION

Let p be a prime, and let n € N = {0,1,2,...} and r € Z. In 1913 A.
Fleck (cf. [4, p.274]) proved that

ordp< 3 <Z>(_1)k>ZB:”’ (1.1)

k=r (mod p)

where | -] is the well-known floor function, and the p-adic order ord,(«a) of a
p-adic number « is given by sup{a € Z : a/p® € Zp}. (As usual Z, denotes
the ring of p-adic integers in the p-adic field Q,.)

Let a € ZT = {1,2,3,...}. In 1977, motivated by his study of p-adically
continuous functions and unaware of Fleck’s earlier result, C. S. Weisman
[20] extended Fleck’s inequality as follows:

w( T (o))

k=r (mod p2)

where ¢ is Euler’s totient function. See also [14] for another proof of this.
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For a function f from the complex field C to C, let AYf(z) = f(x),
Af(x) = f(x+1)— f(x) and A" f(x) = A(A" 1 f(2)) for n = 2,3,.... Now
we recall a classical interpolation formula due to I. Newton and J. Gregory.

Newton-Gregory Interpolation Formula. Given a function f: C — C,
for any d € N we have

@) =3 e (z) + Ryla),

n=0
where
=250 =3 ()0 )
k=0
and
r 0 - 0 f(0) 1 g2 ... qd
1 11 1d f(].) ;1 ;2 ;d
Rd(m):l dl dd d /
: . g ;Exg aod2 .. 44

Note that the above Ry(z) vanishes if f is a polynomial with deg f < d.

In 2006 R. M. Wilson [21] rediscovered Weisman’s (1.2) in the case n =
p®~! (mod ¢(p?)), and used it to obtain the following lemma (similar to the
Newton-Gregory interpolation formula) and give many applications.

Wilson’s Lemma. Let p be a prime, and let a,b € Z*. Let f be an integer-
valued function on the integers that is periodic modulo p*. Then there exists
a polynomial

T T
w($)260+611‘+62<2> +...+cd<d> (co,€1y-..,cq EZ)

of degree smaller than bo(p®) + p*~1 such that

_ a—1
ord,(c,) > Vl(pa)J foralln=20,...,d,
PP

and w(z) = f(x) (mod p?) for all x € Z.

In this paper, for a prime p we let @p be the algebraic closure of the field
Qp and let Zp be the ring of p-adic algebraic integers in @p. For m,n € N
we use [m, n] to denote the set {x € Z: m <z < n}.

In view of the generalizations of Fleck’s and Weisman’s results given in
[10, 18, 3, 13, 11, 15]), we are able to present the following further extension
of Wilson’s Lemma.
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Theorem 1.1. Let p be a prime, and leta € N andb € ZT. Let f(x) € @p[x}
with deg f <1 € N and f(m) € Z, for all m € Z, and let g be a function
from [0,p* — 1] to Z,. Let d € N be the mazimal integer with My < b, where

[ [ ) -l 4]}

Then there exists a polynomial

P(z) = zd:cn (x) (Co,---rca € Zp) (1.3)

with ordy(cy) > My, for alln =0,...,d, such that
P(p%q+71) = f(q)g(r) (mod p°) for allq e Z andr € [0,p* —1]. (1.4)

The following celebrated theorem (cf. C. Chevally [2], E. Warning [19]
and Theorem 2.6 of M. B. Nathanson [9, pp. 50-51]) is well known and quite
useful.

Chevalley-Warning Theorem. Let fi(z,...,xpn),..., fm(x1,...,2,) be
polynomials over a finite field F of characteristic p with deg fi + --- +
deg fi, < n. Then the number of solutions to the system of equations

............ (1.5)

over F™ is a multiple of p.

Here is a further refinement of the Chevalley-Warning theorem due to J.
Ax [1] in the case m = 1, and N. Katz [7] in the general case.

Ax-Katz Theorem. Let [F, be the finite field with ¢ = p® elements where
p is a prime and a € Z*. Let fi(x,...,xn), .., fm(21,...,2n) be nonzero
polynomials over Fy with degrees di > ... > d,, respectively. Then, for any
positive integer b satisfying n > (b — 1)dy + (dy + - -- + dn), ¢° divides the
number of solutions to the system (1.5) over Fy.

D. Wan [16, 17] gave a new proof of the Ax-Katz theorem via the Stickel-
berger theorem. In 2005 X.-D. Hou [6] reduced the Ax-Katz theorem to the
Ax theorem on a single polynomial equation. In 2006 Wilson [21] re-proved
the Ax-Katz theorem for prime fields by using Wilson’s Lemma.

With the help of Theorem 1.1, we establish the following theorem.

Theorem 1.2. Let p be a prime, and let Fi(x),..., F(z) € @p[x] with
deg Fy, <l € N and Fy(a) € Z, for all a € Z. Let ay,...,an € N, and let
filxr, ..y zn), ooy fm(x1, .o, ) be monzero polynomials with integer coef-
ficients. Assume that dip(p*') = maxi<k<m dpp(p*) where dy, = deg fi, for
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k=1,...,m. Let b€ Z" and suppose that
dyp(p™ 1 &
n> (b—1)max {1;’{1’1), 1} i ;((lk + 1)p™ — [ag, # 0])di, (1.6)
where [ay, # 0] takes 1 or 0 according as a # 0 or not. Then

Z H £, <fk(x1’ — ,a:n)) =0 (mod pb). (1.7)
k=1

TLyeens zn €[0,p—1] pak
p%k [ (@1seees xn) for all kE[l,m]

In the case Fi(z) = --- = Fj,(xz) = 1, Theorem 1.2 yields an extension of
the Ax-Katz theorem for prime fields. In 1995 O. Moreno and C. J. Moreno
[8] introduced a method to reduce the general case of the Ax-Katz theorem
to the prime field case.

Corollary 1.1. Let fi(z1,...,@n), .-, fm(21,...,Ty) be nonzero polynomi-
als with integer coefficients having degrees di > --- > d,, respectively. If p
is a prime, a,b € Z, l1,...,l,, € N and

- a_lm pa m
b—Ddp® '+ 22N+ 2 N4 1.
n > (b—1)dip +p_1kzlk+p_1;kka (1.8)

then we have

3 ﬁ <fk(ac1,..l.

21,...,en €[0,p—1] k=1 k
P2 f(z1,...,zn) for all k€[l,m]

,xn)/p“> =0 (mod p%. (1.9)

Proof. Just apply Theorem 1.2 with ap = a and Fy(z) = (li) for k£ =
1,...,m. g

Let ¢ = p® with p prime and a € Z*, and let (;—1 € Zp be a primitive
(g —1)-th roots of unity. It is well known that Zy[(,—1]/(p) is a finite field of
q elements. The finite field F, of ¢ = p® elements is an extension of the prime
field ), with [F; : Fp] = a. Thus F is isomorphic to Fj and the Chevalley-
Warning theorem can be reduced to the prime field case. Corollary 1.1 in the
case a=b=1and [y =... =1, =0 yields the Chevalley-Warning theorem
for F), = Z/pZ and hence the general case of the Chevalley-Warning theorem.

To end this section, we mention an open conjecture posed by the author
in 2007 which also appeared in [12, Conjecture 40].

Conjecture 1.1. Let p be a prime, and let ,n € N and r € Z. If n orr is
not divisible by p, then we have

(2, ()

k=r (mod p)

S [ P (G A )]



EXTENSIONS OF WILSON’S LEMMA AND THE AX-KATZ THEOREM 5

2. PROOFS OF THEOREMS 1.1 AND 1.2

Lemma 2.1. Let p be a prime, and let f(x) € @p[x] with deg f <1 €N and
f(m) € Zy, for allm € Z. For any a,n € N and r € Z, we have

oo 2 @ ()= =] e

k=r (mod p%)

w5 (e (50)

k=r (mod p2) 2'2)

zordp< L?“n‘lJ !) — ord,(I!) — min {z, {;J } .

Proof. Let ¢; = g:o (z)(—l)]ﬂf(z) €Zyfor j=0,...,1. Asdeg f <l and
f(z) — Zgzo cj (j) vanishes at 0,...,l, we have f(z) = Z;':o cj (j) So it

suffices to consider the case f(z) = (7) only.

If a € ZT then

O::ordp< 3 (Z)(_l)k<<k—;~>/pa)>4wJ

k=r (mod p2)

and

by D. Wan [18, Theorem 1.3] (see also [15] for a combinatorial proof). This
is also true in the case a = 0, since

;i:o <Z> (—1)F <k ; 7") =l >n](-1)" <l :rn>

by a known identity (cf. [5, (5.24)]).
As I!(7) € Z[x], by [3, Theorem 1.5] we have

oz [2)- 5 2] 2) L5

By [13, Theorem 1.2], we also have

0> ordp< Ly”lJ !) — 1 — ord,(I).

Combining the above we obtain both (2.1) and (2.2). O

Proof of Theorem 1.1. Let F(x) = f(|z/p®])g({x}pe) for x € Z, where
{z}pe denotes the least nonnegative residue of x modulo p®. For

Cn 1= Zn: (Z) (—1)"*F(k)

k=0

'S ) > (Z)(—l)kf(kl;r),

r= k=r (mod p%)
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we have ord,(c,) > M, by Lemma 2.1. If n > d, then ord,(c,) > M, > b.
Set P(z) = ZZ:O cn(Z). Then, for each m € N we have

o E (- (g (2o

k:LO . 0 n=~k
EOEG -5 ()
= zd: <’:> ¢n = P(m) (mod pP).

Therefore P(p%q 4+ 1) = F(p®q+ 1) = f(¢)g(r) (mod p°) for all ¢ € N and
r e [0,p® —1].

Choose N € N such that N —b > ord,(k) for all k£ € [1, max{d,{}]. For
any * € Z and n € [0,max{d,[}], by the Chu-Vandermonde convolution
identity (cf. [5, (5.27)]) we have

(7))
0 £ RO () e

Therefore P(z + p"V) = P(z) (mod p®) and f(z + pV) = f(z) (mod p?)
for all z € Z. For m = —p%q + r with ¢ € ZT and r € [0,p* — 1], clearly
m 4 p®t9tN > 0 and hence

P(m) =P(m + p*+0+N) = F(m 4 p*a+N)
=1 (|5 ]+ ) attmbe)
=7 (| %) attmbye) = Flm) (o 51,

By the above, we do have P(p%q + 1) = F(p®q + 1) = f(q)g(r) (mod p?)
for all ¢ € Z and r € [0,p* — 1]. O

Lemma 2.2. Let p be a prime, and let

Flar, ... 1) = <f1(a;1,jl..,a:n)> <fm(x1;7.n. . ,xn)>’

where j € N and fe(x1,...,2,) € Zplx1,... 28] for k =1,...,m. If the
total degree of F(x1,...,xy) is smaller than (n—c+1)(p—1) for some c € N,
then

Z F(z1,...,2,) =0 (mod p°).

w1,...,$n€[0,p—1]
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Proof. See [21, Lemma 4] and its proof. O

Proof of Theorem 1.2. Given k € [1,m], by Theorem 1.1 there is a poly-
nomial

n
k(T k —
Py(x) = Zc§ )<j> (cg ), .. .,c;’;;) € Zp)

such that

_ ekl

k J—lp™ —p

for all j =0,...,n, and

Py(z) = [p*™ | z] Fy (291:%) (mod p°) for all z € Z.

Therefore
m
Pk
L yeeey zn €[0,p—1] k=1
p?k | fi(@1,....,zn) for all kE[l,m]
m
= Y AU
Z1,.,2n €[0,p—1] k=1
ni Nm
1 ] .
=S el Y S ) (mod ),
71=0 Jm=0
where
T (el )
) - k Tyeeesy
*1,...,n €[0,p—1] k=1 Jk
Fix J1€ [0777‘1]’ .o, Jm € [O,Tlm], and let
y l ar _ ak—1
ak:max{vk kP P J,O} for k=1,...,m.
@ (p™)
Then

ord,, (Cﬁ) e cg-:)) = i ord,, (cy:)) > zm: .
k=1 k=1

So it suffices to show that ord,(S(ji1,...,Jm)) = c=b—> " .
Assume that ¢ > 0. By the definition of ay, we have j; — l[p%* — p®*—1 <
(o + 1)(p*) and hence

Ji < Uep™ + (ag + D)o (p™) + [ar, # 0] (™~ 1.
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Thus

Ms

(lkp™ + [ar # 0)(p™ " — 1) + (g + 1)p(p™)) di.

ijd <

e
Il
—

(Ixp™ + p™* — [ay # 0] + cr(p™*)) dy,

M-

B
Il
—

oL

(I + D)p™ — [ar # 0]) di + o (p™ )dr Y

~
I
—_
x>
Il
—_

and hence
ijdk <n(p—1) — (b—1)max{d1p(p™),p — 1} + (b — ¢)d1p(p™)

<n(p—1) — (¢ — 1) max {d1o(p™),p — 1}.

Therefore

degH (fk fL‘l,]--, ) Z]kdk< —Dn—c+1)

and hence S(jl, oy Jm) = 0 (mod pc) by Lemma 2.2. This concludes the
proof. ([l
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