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SOME PARAMETRIC CONGRUENCES INVOLVING
GENERALIZED CENTRAL TRINOMIAL COEFFICIENTS

CHEN WANG AND ZHI-WEI SUN∗

Abstract. For n = 0, 1, 2, . . . and b, c ∈ Z, the nth generalized central trinomial coeffi-
cient Tn(b, c) is the coefficient of xn in the expansion of (x2 + bx + c)n. In particular,
Tn = Tn(1, 1) (n = 0, 1, 2, . . .) are central trinomial coefficients. Let p be an odd prime.
For any b, c ∈ Z with p - bc(b + 2c), we determine

p−1∑
k=0

(
2k
k

)
Tk(b, c2)

4k(b + 2c)k
and

p−1∑
k=0

(
2k
k

)
Tk(b, c)

(4b)k

modulo p2. As consequences,

p−1∑
k=0

(
2k
k

)
12k

Tk ≡
(p

3

) 3p−1 + 3

4
(mod p2)

provided p > 3 (where (−) denotes the Legendre symbol), and

p−1∑
k=0

(
2k
k

)
Tk(2,−1)

8k
≡

2x− p/(2x) (mod p2) if p = x2 + 4y2 (x, y ∈ Z) and 4 | x− 1,

0 (mod p2) if p ≡ 3 (mod 4).

1. Introduction

For any n ∈ N = {0, 1, 2, . . .} and b, c ∈ Z, the generalized central trinomial coefficient
Tn(b, c) (cf. [12]) is defined as the coefficient of xn in the expansion of (x2 + bx + c)n (or the
constant term in the expansion of (x+ b+ c/x)n). By the multinomial theorem, it is clear that

Tn(b, c) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck, (1.1)

where bxc is the floor function. The generalized central trinomial coefficients have many
interesting combinatorial interpretations; for example, from (1.1), it is easy to see that Tn(b, c)
with b, c ∈ N counts the colored lattice paths from (0, 0) to (n, 0) using only steps U = (1, 1),
D = (1,−1) and H = (1, 0), where H and D may have b and c colors, respectively. Note
that Tn := Tn(1, 1) is the nth central trinomial coefficient and Tn(2, 1) is exactly the central
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binomial coefficient
(
2n
n

)
. The generalized central trinomial coefficients are also related to the

well-known Legendre polynomials

Pn(x) :=
n∑
k=0

(
n

k

)(
n+ k

k

)(
x− 1

2

)k
=

n∑
k=0

(
n
k

)(
2k
k

)
2k

(
√
x2 − 1)k(x−

√
x2 − 1)n−k (1.2)

(cf. [4, p. 38]) via the following identity (see [12, 16, 15]):

Tn(b, c) = (
√
d)nPn

(
b√
d

)
, (1.3)

where d = b2 − 4c 6= 0.

It is known that sums involving products of the binomial coefficients (e.g.,
(
2k
k

)
,
(
2k
k

)2
,(

2k
k

)(
3k
k

)
,
(
2k
k

)3
) usually have some interesting congruence properties. Since Tn(b, c) is a natural

extension of
(
2n
n

)
, Z.-W. Sun [16, 15] investigated congruences for sums involving generalized

central trinomial coefficients systematically. In particular, Sun [16, Theorem 2.1] determined

p−1∑
k=0

(
2k
k

)
Tk(b, c)

mk
(mod p)

for any b, c,m ∈ Z and odd prime p with p - m. As a corollary, he obtained that

p−1∑
k=0

(
2k
k

)
Tk

12k
≡
(

6

p

) p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

≡
(p

3

)
(mod p), (1.4)

where (−) denotes the Legendre symbol. For more congruence properties of the generalized
central trinomial coefficients, one may consult [2, 5, 6, 10, 16, 15].

As in [7], for any n ∈ N and x ∈ C, we define

wn(x) :=


(α+1)αn−(α−1+1)α−n

α−α−1 , if x 6= ±1,

2n+ 1, if x = 1,

(−1)n, if x = −1,

where α = x+
√
x2 − 1.

The first purpose of this paper is to establish the following parametric congruence as a
generalization of (1.4).

Theorem 1.1. Let p be an odd prime and let b, c ∈ Z with p - c(b+ 2c). Then

p−1∑
k=0

(
2k
k

)
Tk(b, c

2)

4k(b+ 2c)k
≡ w(p−1)/2

(
b− 6c

b+ 2c

)
(mod p2). (1.5)

Applying Theorem 1.1 with b = c = 1, we obtain the following result conjectured by Sun
[16, Conjecture 2.1].
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Corollary 1.1. For any prime p > 3, we have
p−1∑
k=0

(
2k
k

)
Tk

12k
≡
(p

3

) 3p−1 + 3

4
(mod p2). (1.6)

Now we state our second theorem.

Theorem 1.2. Let p be an odd prime. For any b, c ∈ Z with p - b, we have

p−1∑
k=0

(
2k
k

)
Tk(b, c)

(4b)k
≡ p

(p−1)/2∑
k=0

(
2k
k

)
4k + 1

( c
b2

)k
(mod p2). (1.7)

Consequently,

p−1∑
k=0

(
2k
k

)
Tk(2,−1)

8k
≡

{
2x− p/(2x) (mod p2) if p = x2 + 4y2 (x, y ∈ Z) and 4 | x− 1,

0 (mod p2) if p ≡ 3 (mod 4).

(1.8)

To deduce (1.8) from (1.7), we need the following auxiliary result.

Theorem 1.3. Let p be an odd prime. Then

p

(p−1)/2∑
k=0

(
2k
k

)
(−4)k(4k + 1)

≡

{
2x− p/(2x) (mod p2) if p = x2 + 4y2 (x, y ∈ Z) and 4 | x− 1,

0 (mod p2) if p ≡ 3 (mod 4).

(1.9)

We are going to prove Theorem 1.1 and Corollary 1.1 in the next section, and show Theorems
1.2 and 1.3 in Section 3.

2. Proofs of Theorem 1.1 and Corollary 1.1

In order to show Theorem 1.1, we need the following transformation of Tn(b, c2) which follows
from (1.3) and [4, (3.136)].

Lemma 2.1. For n ∈ N and b, c ∈ Z we have

Tn(b, c2) =
n∑
k=0

(
n

k

)(
2k

k

)
(b+ 2c)n−k(−c)k. (2.1)

Proof. Denote the right-hand side of (2.1) by an. Via the Zeilberger algorithm (cf. [13]), we
find the following recurrence :

−(b− 2c)(b+ 2c)(n+ 1)an + b(2n+ 3)an+1 − (n+ 2)an+2 = 0 (n ∈ N).

Note that the same recurrence holds for Tn(b, c2). Moreover, it is easy to see that T0(b, c
2) = a0

and T1(b, c
2) = a1. Thus (2.1) follows by induction on n. �
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Lemma 2.2. Let n, j ∈ N with n ≥ j. Then we have

n∑
k=j

(
2k
k

)(
k
j

)
4k

=
n+ 1

22n+1(2j + 1)

(
n

j

)(
2n+ 2

n+ 1

)
. (2.2)

Proof. This can be easily proved by induction on n. �

Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso [7, Theorem 2] completely
determined

(p−3)/2∑
k=0

(
2k
k

)
tk

2k + 1
(mod p3),

where p is an odd prime and t is a p-adic unit. We need their result in the modulus p case.

Lemma 2.3 (cf. [7, Theorem 2]). For any odd prime p and t ∈ Z×p , we have

(p−3)/2∑
k=0

(
2k
k

)
tk

2k + 1
≡
w(p−1)/2(1− 8t)− (−16t)(p−1)/2

p
(mod p). (2.3)

Lemma 2.4. For any odd prime p, we have(
2p

p

)
≡ 2 (mod p2) and

(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p2).

Proof. These can be verified directly for p = 3. For p > 3, we even have
(
2p
p

)
≡ 2 (mod p3) by

J. Wolstenholme [18] and
(

p−1
(p−1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3) by F. Morley [11]. �

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, we have

p−1∑
k=0

(
2k
k

)
Tk(b, c

2)

4k(b+ 2c)k
=

p−1∑
k=0

(
2k
k

)
4k

k∑
l=0

(
k

l

)(
2l

l

)(
−c

b+ 2c

)l
=

p−1∑
l=0

(
2l

l

)(
−c

b+ 2c

)l p−1∑
k=l

(
2k
k

)(
k
l

)
4k

=
p
(
2p
p

)
22p−1

p−1∑
l=0

(
2l
l

)(
p−1
l

)( −c
b+2c

)l
2l + 1

.

Note that
(
2l
l

)
/(2l + 1) ≡ 0 (mod p) for l ∈ {(p+ 1)/2, . . . , p− 1} and

(
p−1
l

)
≡ (−1)l (mod p)

for 0 ≤ l < p. Thus we have

p−1∑
k=0

(
2k
k

)
Tk(b, c

2)

4k(b+ 2c)k
≡

(
2p
p

)(
p−1

(p−1)/2

)2( −c
b+2c

)(p−1)/2
22p−1 +

p
(
2p
p

)
22p−1

(p−3)/2∑
l=0

(
2l
l

)(
c

b+2c

)l
2l + 1

(mod p2).
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In view of Lemma 2.4, we arrive at

p−1∑
k=0

(
2k
k

)
Tk(b, c

2)

4k(b+ 2c)k
≡
(
−16c

b+ 2c

)(p−1)/2

+
p

4p−1

(p−3)/2∑
l=0

(
2l
l

)(
c

b+2c

)l
2l + 1

(mod p2).

Then we complete the proof by Lemma 2.3 and Fermat’s little theorem. �

Proof of Corollary 1.1. To show (1.6), it remains to prove

w(p−1)/2

(
−5

3

)
≡
(p

3

) 3p−1 + 3

4
(mod p2). (2.4)

It is easy to see that

w(p−1)/2

(
−5

3

)
=

(−1)(p−1)/2

4

(
(1/3)(p−1)/2 + 3× 3(p−1)/2) .

From [8, p. 51], we know that a(p−1)/2 ≡ (a
p
) (mod p) for any integer a 6≡ 0 (mod p). Thus we

may write 3(p−1)/2 as (3
p
)(1 + ph), where h is a p-adic integer. In view of this,

3p−1 = (3(p−1)/2)2 ≡ 1 + 2ph (mod p2).

By the above and with the help of the law of quadratic reciprocity (cf. [8]), we get

w(p−1)/2

(
−5

3

)
=

(−1)(p−1)/2

4

(
1

(3
p
)(1 + ph)

+ 3

(
3

p

)
(1 + ph)

)

≡ (−1)(p−1)/2

4

(
3

p

)
(4 + 2ph)

≡ 3p−1 + 3

4

(
3

p

)(
−1

p

)
=
(p

3

) 3p−1 + 3

4
(mod p2).

This proves (2.4). �

3. Proofs of Theorems 1.2 and 1.3

To show Theorem 1.3, we need the following identity due to Kummer (cf. [1, p. 126]).

Lemma 3.1. For any a, b ∈ C with a, a− b, a/2− b 6∈ {−1,−2,−3, . . .}, we have
∞∑
k=0

(−1)k(a)k(b)k
(1)k(a− b+ 1)k

=
Γ(a− b+ 1)Γ(a

2
+ 1)

Γ(a+ 1)Γ(a
2
− b+ 1)

,

where (x)k =
∏

0≤j<k(x+ j) is the Pochhammer symbol and Γ(·) stands for the Gamma func-
tion.
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We also need Morita’s p-adic Gamma function Γp (cf. [14]), where p is an odd prime. Recall
that Γp(0) := 1 and

Γp(n) := (−1)n
∏

1≤k<n
p-k

k for n = 1, 2, 3, . . . .

Let Zp denote the ring of all p-adic integers. The definition of Γp can be extended to Zp since
N is a dense subset of Zp with respect to the p-adic norm. It follows that

Γp(x+ 1)

Γp(x)
=

{
−x, if x 6≡ 0 (mod p),

−1, if x ≡ 0 (mod p).

It is known (cf. [14, p. 369]) that for any x ∈ Zp we have

Γp(x)Γp(1− x) = (−1)〈−x〉p−1, (3.1)

where 〈x〉p is the least nonnegative residue of x modulo p. It is also known (cf. [17]) that for
α, t ∈ Zp we have

Γp(α + tp) ≡ Γp(α)
(
1 + tp(Γ′p(0) +Hp−1−〈−α〉p)

)
(mod p2), (3.2)

where Hn =
∑n

k=1 1/k denotes the nth harmonic number.

Proof of Theorem 1.3. It is easy to verify that

(p−1)/2∑
k=0

(
2k
k

)
(−4)k(4k + 1)

=

(p−1)/2∑
k=0

(1
2
)k(

1
4
)k(−1)k

(1)k(
5
4
)k

. (3.3)

We first assume that p ≡ 1 (mod 4). In this case, ordp(p/(5/4)k) ≥ 0 for all k among
0, 1, . . . , (p− 1)/2, where ordp(·) stands for the p-adic order. It is easy to verify that

p

(p−1)/2∑
k=0

(1−p
2

)k(
1−2p
4

)k(−1)k

(1)k(
5
4
)k

≡ p

(p−1)/2∑
k=0

(1
2
)k(

1
4
)k(−1)k

(1)k(
5
4
)k

(
1− p

2

k−1∑
j=0

1

1/2 + j
− p

2

k−1∑
j=0

1

1/4 + j

)
(mod p2)

and

p

(p−1)/2∑
k=0

(2−p
4

)k(
1−p
4

)k(−1)k

(1)k(
5
4
)k

≡ p

(p−1)/2∑
k=0

(1
2
)k(

1
4
)k(−1)k

(1)k(
5
4
)k

(
1− p

4

k−1∑
j=0

1

1/2 + j
− p

4

k−1∑
j=0

1

1/4 + j

)
(mod p2).
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On the other hand, by Lemma 3.1 we have

(p−1)/2∑
k=0

(1−p
2

)k(
1−2p
4

)k(−1)k

(1)k(
5
4
)k

= lim
t→1

∞∑
k=0

(1−tp
2

)k(
1−2tp

4
)k(−1)k

(1)k(
5
4
)k

= lim
t→1

Γ(5
4
)Γ(5−tp

4
)

Γ(3−tp
2

)Γ(4+tp
4

)
=

Γ(5
4
)Γ(p−1

2
)

Γ(p−1
4

)Γ(4+p
4

)
lim
t→1

sin(3−tp
2
π)

sin(5−tp
4
π)

= (−1)(p−1)/4
2Γ(5

4
)Γ(p−1

2
)

Γ(p−1
4

)Γ(4+p
4

)
,

where we have used the well-known formula Γ(x)Γ(1−x) = π/ sin(πx) (cf. [14, p. 371]). Also,

(p−1)/2∑
k=0

(2−p
4

)k(
1−p
4

)k(−1)k

(1)k(
5
4
)k

=
Γ(5

4
)Γ(10−p

8
)

Γ(6−p
4

)Γ(8+p
8

)
.

Combining the above we obtain

p

(p−1)/2∑
k=0

(1
2
)k(

1
4
)k(−1)k

(1)k(
5
4
)k

≡ σ1 − σ2 (mod p2),

where

σ1 :=
2pΓ(5

4
)Γ(10−p

8
)

Γ(6−p
4

)Γ(8+p
8

)
and σ2 := (−1)(p−1)/4

2pΓ(5
4
)Γ(p−1

2
)

Γ(p−1
4

)Γ(4+p
4

)
.

By [9], we have

Hbp/2c ≡ −2qp(2) (mod p) and Hbp/4c ≡ −3qp(2) (mod p),

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p. It is easy to see that

Γ(10−p
8

)

Γ(8+p
8

)
= (−1)(p−1)/4

8Γp(
10−p
8

)

pΓp(
8+p
8

)
.

Thus, by (3.1) and (3.2) we have

σ1 =
16Γp(

5
4
)Γp(

5
4
− p

8
)

Γp(
3
2
− p

4
)Γp(1 + p

8
)

≡−
16Γp(

5
4
)2

Γp(
3
2
)

(
1− p

8
Hbp/4c +

p

4
Hbp/2c

)
≡− 2Γp

(
1

4

)2

Γp

(
1

2

)(
1− p

8
qp(2)

)
(mod p2).

Similarly, it is not hard to find that

Γ(5
4
)

Γ(4+p
4

)
= (−1)(p−1)/4

4Γp(
5
4
)

pΓp(
4+p
4

)
.
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Thus, by (3.1) and (3.2) we arrive at

σ2 = (−1)(p−1)/4
8Γp(

5
4
)Γp(

p−1
2

)

Γp(
p−1
4

)Γp(
4+p
4

)

≡ (−1)(p+3)/48Γp(
5
4
)Γp(−1

2
)

Γp(−1
4
)

(
1 +

p

2
Hbp/2c −

p

4
Hbp/4c

)
≡ − Γp

(
1

4

)2

Γp

(
1

2

)(
1− p

4
qp(2)

)
(mod p2).

In view of the above, we have

p

(p−1)/2∑
k=0

(1
2
)k(

1
4
)k(−1)k

(1)k(
5
4
)k

≡ −Γp

(
1

4

)2

Γp

(
1

2

)
(mod p2).

By [3], if p = x2 + 4y2 (x, y ∈ Z) with x ≡ 1 (mod 4) then

−Γp

(
1

4

)2

Γp

(
1

2

)
≡ 2x− p

2x
(mod p2).

Thus, with aid of (3.3), we have (1.9) in the case p ≡ 1 (mod 4).
Now we consider the remaining case p ≡ 3 (mod 4). Note that ordp(4k + 1) = 0 for

k = 0, 1, . . . , (p− 1)/2. Therefore, by Lemma 3.1 we have

p

(p−1)/2∑
k=0

(−1)k(1
2
)k(

1
4
)k

(1)k(
5
4
)k

≡ p

(p−1)/2∑
k=0

(−1)k(1−p
2

)k(
1−2p
4

)k

(1)k(
5
4
)k

= p lim
u→(1−p)/2

(p−1)/2∑
k=0

(−1)k(u)k(u− 1
4
)k

(1)k(
5
4
)k

= p lim
u→(1−p)/2

Γ(5
4
)Γ(u

2
+ 1)

Γ(u+ 1)Γ(5
4
− u

2
)

=
pΓ(5

4
)Γ(5−p

4
)

Γ(4+p
4

)
lim

u→(1−p)/2

1

Γ(u+ 1)
= 0 (mod p2),

where in the last step we have used the fact that

lim
u→n

1

Γ(−u)
=

1

π
lim
u→n

Γ(1 + u) sin((u+ 1)π) = 0 for each n ∈ N.

Combining this with (3.3), we find that (1.9) also holds in the case p ≡ 3 (mod 4).
By the above, we have completed the proof of Theorem 1.3. �
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Proof of Theorem 1.2. In view of (1.1) and Lemma 2.2, we have

p−1∑
k=0

(
2k
k

)
Tk(b, c)

(4b)k
=

p−1∑
k=0

(
2k
k

)
4k

bk/2c∑
j=0

(
k

2j

)(
2j

j

)( c
b2

)j
=

(p−1)/2∑
j=0

(
2j

j

)( c
b2

)j p−1∑
k=2j

(
2k
k

)(
k
2j

)
4k

=
p
(
2p
p

)
22p−1

(p−1)/2∑
j=0

(
2j
j

)(
p−1
2j

)
4j + 1

( c
b2

)j
.

If p ≡ 3 (mod 4), then p - (4j + 1) for all j = 0, 1, . . . , (p − 1)/2. In this case, by Lemma
2.4 and Fermat’s little theorem, we have

p−1∑
k=0

(
2k
k

)
Tk(b, c)

(4b)k
≡ p

(p−1)/2∑
j=0

(
2j
j

)
4j + 1

( c
b2

)j
(mod p2).

Now suppose p ≡ 1 (mod 4). Then, by Lemma 2.4, we have

p−1∑
k=0

(
2k
k

)
Tk(b, c)

(4b)k
=
p
(
2p
p

)
22p−1

∑
0≤j≤(p−1)/2
j 6=(p−1)/4

(
2j
j

)(
p−1
2j

)
4j + 1

( c
b2

)j
+

(
2p
p

)(
(p−1)/2
(p−1)/4

)(
p−1

(p−1)/2

)
22p−1

( c
b2

)(p−1)/4

≡ p
∑

0≤j≤(p−1)/2
j 6=(p−1)/4

(
2j
j

)
4j + 1

( c
b2

)j
+

(
(p− 1)/2

(p− 1)/4

)( c
b2

)(p−1)/4

= p

(p−1)/2∑
j=0

(
2j
j

)
4j + 1

( c
b2

)j
(mod p2).

Combining the above, we have proved (1.7).
In light of Theorem 1.3,

p−1∑
k=0

(
2k
k

)
Tk(2,−1)

8k
≡ p

(p−1)/2∑
k=0

(
2k
k

)
(−4)k(4k + 1)

(mod p2).

Combining this with (1.7), we immediately obtain (1.8). This ends our proof. �
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