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p-ADIC ANALOGUES OF HYPERGEOMETRIC IDENTITIES
AND THEIR APPLICATIONS

CHEN WANG AND ZHI-WEI SUN

Abstract. In this paper, we confirm several conjectures of Z.-W. Sun on p-adic congruences.
For example, for any odd prime p we prove that

p−1∑
k=0

Ak ≡

{
4x2 − 2p (mod p2) if p = x2 + 2y2 with x, y ∈ Z,
0 (mod p2) if p ≡ 5, 7 (mod 8),

where An :=
∑n

k=0

(
n
k

)2(n+k
k

)2
(n = 0, 1, 2, . . .) are the Apéry numbers.

1. Introduction

For n, r ∈ N = {0, 1, 2, . . .}, we define

r+1Fr

[
α0 α1 · · · αr

β1 · · · βr

∣∣∣∣ z]
n

:=
n∑
k=0

(α0)k · · · (αr)k
(β1)k · · · (βr)k

· z
k

k!
,

where α0, . . . , αr, β1, . . . , βr, z ∈ C, and the Pochhammer symbol (α)k is given by

(α)k :=


k−1∏
j=0

(α + j) if k ≥ 1,

1 if k = 0.

Such truncated hypergeometric series are sums of the first finite terms of the corresponding
hypergeometric series. In the past decades, the arithmetic properties of the truncated hyper-
geometric series have been widely studied (cf. [1, 4, 7–17,20,21,24,26–29]).

The well-known Apéry numbers given by

An :=
n∑
k=0

(
n

k

)2(
n+ k

k

)2

=
n∑
k=0

(
n+ k

2k

)2(
2k

k

)2

(n ∈ N = {0, 1, . . .}),

were first introduced by Apéry to prove the irrationality of ζ(3) =
∑∞

n=1 1/n3 (see [2, 19]). In
2012, Sun [22] studied finite sums involving Apéry numbers systematically and posed some
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conjectures; for example, he conjectured that for any odd prime p we have

p−1∑
k=0

Ak ≡

{
4x2 − 2p (mod p2) if p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).
(1.1)

Note that the above conjecture was also collected in [25, Conjecture 55]. We now state our
first theorem.

Theorem 1.1. For any odd prime p, the congruence (1.1) holds.

Remark 1.1. In [22], Sun proved that (1.1) holds modulo any odd prime p.

In 2019, Sun [25, Conjectures 35 and 36] proposed a series of conjectural congruences in-
volving the following polynomial in x:

n−1∑
k=0

εk(2k + 1)2l−1
k∑
j=0

(
−x
j

)m(
x− 1

k − j

)m
,

where ε ∈ {±1} and n, l,m ∈ Z+ = {1, 2, 3, . . .}. For any odd prime p and m ∈ {3, 4, . . .},
clearly

p−1∑
k=0

εk(2k + 1)
k∑
j=0

(
−x
j

)m(
x− 1

k − j

)m
=

p−1∑
j=0

εj
(
−x
j

)m p−1−j∑
k=0

εk(2k + 2j + 1)

(
x− 1

k

)m
.

Denote by 〈−x〉p the least nonnegative residue of −x modulo p. Clearly,(
−x
j

)
≡ 0 (mod p) for j ∈ {〈−x〉p + 1, . . . , p− 1}

and (
x− 1

k

)
≡ 0 (mod p) for k ∈ {p− 〈−x〉p, . . . , p− 1}.

Therefore, by noting that p− 1− j ≥ p− 1− 〈−x〉p for any j ∈ {0, . . . , a}, we get

p−1∑
k=0

εk(2k + 1)
k∑
j=0

(
−x
j

)m(
x− 1

k − j

)m

≡
p−1∑
j=0

εj
(
−x
j

)m p−1∑
k=0

εk(2k + 2j + 1)

(
x− 1

k

)m
= (1− x)Σ1 + xΣ2 (mod pm),

(1.2)

where

Σ1 := m+1Fm

[
1− x 1 + 1−x

2
1− x · · · 1− x

1−x
2

1 · · · 1

∣∣∣∣ (−1)mε

]
p−1

× mFm−1

[
x x · · · x

1 · · · 1

∣∣∣∣ (−1)mε

]
p−1
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and

Σ2 := m+1Fm

[
x 1 + x

2
x · · · x

x
2

1 · · · 1

∣∣∣∣ (−1)mε

]
p−1

× mFm−1

[
1− x 1− x · · · 1− x

1 · · · 1

∣∣∣∣ (−1)mε

]
p−1

.

In view of the above, we are led to consider congruences concerning the truncated m+1Fm and

mFm−1 hypergeometric series. This is the motivation of the remaining part of this paper.
Let p be an odd prime. Our results involve Morita’s p-adic gamma function Γp (cf. [18])

which is the p-adic analogue of the classical gamma function Γ. Define Γp(0) := 1, and

Γp(n) := (−1)n
∏

1≤k<n
p-k

k for n = 1, 2, 3, . . . .

We may regard Γp as a continuous function on the ring Zp of p-adic integers, since N is a dense
subset of Zp with respect to p-adic norm. It follows that

Γp(x+ 1)

Γp(x)
=

{
−x if p - x,

−1 if p | x.
(1.3)

For more properties of the p-adic gamma function, one may consult [13, 14,17,18].
We now state our second theorem.

Theorem 1.2. Let p be an odd prime. Let α ∈ Z×p = {x ∈ Zp | p - x}, s = (α+ 〈−α〉p)/p and

hp(α) =
Γp
(
1+α
2

)
Γp
(
1−3α

2

)
Γp(1 + α)Γp(1− α)Γp

(
1−α
2

)2 .
Then the following congruence holds modulo p3,

4F3

[
α 1 + α

2
α α

α
2

1 1

∣∣∣∣ 1

]
p−1
≡



2hp(α), if 〈−α〉p is odd and 〈−α〉p < 2p+1
3

,

(2− 3s)php(α), if 〈−α〉p is odd and 〈−α〉p ≥ 2p+1
3

,

sphp(α), if 〈−α〉p is even and 〈−α〉p < p+1
3
,

(s− 3s2)p2hp(α)

2
, if 〈−α〉p is even and 〈−α〉p ≥ p+1

3
.

Remark 1.2. In 2017, He [9] studied the congruences modulo p2 for primes p ≥ 5 and α =
1/2, 1/3, 1/4.

Let p be an odd prime. Mao and Pan [14] obtained a number of congruences modulo p2 in-
volving truncated hypergeometric identities and the p-adic gamma functions. For instance,they
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proved that for any α, β ∈ Zp with 〈−α〉p ≤ 〈−β〉p ≤ (p+ 〈−α〉p−1)/2 and (α−β+ 1)p−1 6≡ 0
(mod p2) we have

4F3

[
α 1 + α

2
α β

α
2

1 α− β + 1

∣∣∣∣− 1

]
p−1
≡ −(α + 〈−α〉p) ·

Γp(α− β + 1)

Γp(1 + α)Γp(1− β)
(mod p2).

Letting β = α in the above congruence we get that

4F3

[
α 1 + α

2
α α

α
2

1 1

∣∣∣∣− 1

]
p−1
≡ α + 〈−α〉p

Γp(1 + α)Γp(1− α)
(mod p2). (1.4)

Our next theorem is stronger than (1.4).

Theorem 1.3. Let p be an odd prime and α ∈ Z×p . Then we have

4F3

[
α 1 + α

2
α α

α
2

1 1

∣∣∣∣− 1

]
p−1
≡ α + 〈−α〉p

Γp(1 + α)Γp(1− α)
(mod p3).

Remark 1.3. When d ∈ {2, 3, 4}, α = 1/d and p ≡ 1 (mod d), the result was conjectured by
van Hamme [28] and confirmed by Swisher [26].

The proofs of Theorems 1.2 and 1.3 depend on the local-global theorem for p-adic super-
congruences established by Pan, Tauraso and Wang [17]. Here we illustrate the local-global
theorem briefly (the reader may refer to [17, Theorem 1.1] for details). For any prime p >

(
r+1
2

)
the local-global theorem says that if a congruence modulo pr holds over some r admissible hy-
perplanes of Znp , then it also holds over the whole Znp . In view of this, to show our theorems,
we only need to prove them ‘locally’.

We are going to show Theorem 1.1 in the next section. Theorems 1.2 and 1.3 will be proved
in Section 3. In Section 4, we shall confirm some conjectures of Sun in [25, Conjectures 35 and
36] as applications of Theorems 1.2 and 1.3. In the last section, we will prove more conjectures
of Z.-W. Sun by some known results.

2. Proof of Theorem 1.1

In order to show Theorem 1.1 we need the following lemmas.

Lemma 2.1 (Guo [6, (2.5)]). We have the following identity(
k

i

)(
k + i

i

)(
k

j

)(
k + j

j

)
=

i+j∑
s=max{i,j}

(
s

i

)(
s

j

)(
i+ j

s

)(
k

s

)(
k + s

s

)
.

The following result can be easily proved by induction.

Lemma 2.2. For any j ∈ N, we have

2j∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1
=

(
2j
j

)2
(4j + 1)

(
4j
2j

) .
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The following lemma gives the well-known Euler’s reflection formula and its p-adic analogue.

Lemma 2.3 ([18, pp. 369–371]). (i) For any z ∈ C \ Z, we have

Γ(z)Γ(1− z) =
π

sin πz
. (2.1)

(ii) Let p be an odd prime. Then

Γp(z)Γp(1− z) = (−1)p−〈−z〉p (2.2)

for all z ∈ Zp.

Lemma 2.4 ([3, Theorem 3.5.5]). If a+ b = 1 and e+ f = 2c+ 1, then we have

3F2

[
a b c

e f

∣∣∣∣ 1

]
=

πΓ(e)Γ(f)

22c−1Γ((a+ e)/2)Γ((a+ f)/2)Γ((b+ e)/2)Γ((b+ f)/2)
.

The classical gamma function has the following Gauss multiplication formula [18, Page 371].

Lemma 2.5. For any m ∈ Z+ and z ∈ C with mz 6∈ −N, we have∏
0≤j<m

Γ

(
z +

j

m

)
= (2π)(m−1)/2m(1−2mz)/2Γ(mz).

We obtain the following result.

Theorem 2.1. Let p be an odd prime p. Then

p−1∑
k=0

Ak ≡

{
−
(
−1
p

)
Γp
(
1
8

)2
Γp
(
3
8

)2
(mod p2) if p ≡ 1, 3 (mod 8),

0 (mod p2) if p ≡ 5, 7 (mod 8).

Remark 2.1. Theorem 2.1 is actually equivalent to Theorem 1.1. Let p be an odd prime with
p ≡ 1, 3 (mod 8), and write p = x2 + 2y2 with x, y ∈ Z. By [16] and [23],

4F3

[
1
2

1
4

3
4

1 1

∣∣∣∣ 1

]
p−1
≡ 4x2 − 2p (mod p2).

From [17] we have

4F3

[
1
2

1
4

3
4

1 1

∣∣∣∣ 1

]
p−1
≡ −

(
−1

p

)
Γp

(
1

8

)2

Γp

(
3

8

)2

(mod p2).

Combining the above, we get

4x2 − 2p ≡ −
(
−1

p

)
Γp

(
1

8

)2

Γp

(
3

8

)2

(mod p2).

Proof of Theorem 2.1. In view of Lemma 2.1, we have
p−1∑
k=0

Ak =

p−1∑
k=0

k∑
j=0

(
k + j

j

)2(
k

j

)2
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=

p−1∑
k=0

k∑
j=0

2j∑
s=j

(
s

j

)2(
2j

s

)(
k

s

)(
k + s

s

)

=

p−1∑
j=0

2j∑
s=j

(
s

j

)2(
2j

s

) p−1∑
k=j

(
k + s

s

)(
k

s

)

=

p−1∑
j=0

2j∑
s=j

(
s

j

)2(
2j

s

)
p

2s+ 1

(
p+ s

s

)(
p− 1

s

)
,

where in the last step we use the identity

n−1∑
k=s

(
k + s

s

)(
k

s

)
=

n

2s+ 1

(
n+ s

s

)(
n− 1

s

)
which can be proved easily by induction on n. For each s ∈ {0, . . . , p− 1}, clearly

ordp(2s+ 1) ≤ 1 and

(
p+ s

s

)(
p− 1

s

)
≡ (−1)s (mod p2).

Therefore, by Lemma 2.2 we have

p−1∑
k=0

Ak ≡ p

p−1∑
j=0

min{p−1,2j}∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1

= p

(p−1)/2∑
j=0

2j∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1
+ p

p−1∑
j=(p+1)/2

p−1∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1

= p

(p−1)/2∑
j=0

(
2j
j

)2
(4j + 1)

(
4j
2j

) + p

p−1∑
j=(p+1)/2

p−1∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1

= p · 3F2

[
1
2

1
2

1
2

3
4

5
4

∣∣∣∣ 1

]
(p−1)/2

+ p

p−1∑
j=(p+1)/2

p−1∑
s=j

(
s

j

)2(
2j

s

)
(−1)s

2s+ 1
(mod p2).

It is easy to see that ordp(2s+ 1) = 0 and(
2j

s

)(
s

j

)
=

(
2j

j

)(
j

s− j

)
≡ 0 (mod p)

provided that s, j ∈ {(p+ 1)/2, . . . , p− 1}. Hence we have

p−1∑
k=0

Ak ≡ p · 3F2

[
1
2

1
2

1
2

3
4

5
4

∣∣∣∣ 1

]
(p−1)/2

(mod p2).
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Clearly, at most one of 〈−3/4〉p and 〈−5/4〉p is smaller than (p− 1)/2. Thus

p

(1)k
(
3
4

)
k

(
5
4

)
k

∈ Zp for all k = 0, 1, . . . ,
p− 1

2
.

In view of Lemmas 2.4 and 2.5, and noting that ((1 + p)/2)k((1 − p)/2)k ≡ (1/2)2k (mod p2),
we obtain further that

p−1∑
k=0

Ak ≡ p · 3F2

[
1
2

1
2

1
2

3
4

5
4

∣∣∣∣ 1

]
p−1
2

≡ p · 3F2

[
1−p
2

1+p
2

1
2

3
4

5
4

∣∣∣∣ 1

]
p−1
2

=
pΓ
(
3
4

)
Γ
(
5
4

)
Γ
(
1
2

)2
Γ
(
5−2p
8

)
Γ
(
7−2p
8

)
Γ
(
5+2p
8

)
Γ
(
7+2p
8

)
=

pΓ
(
3
8

)
Γ
(
5
8

)
Γ
(
7
8

)
Γ
(
9
8

)
Γ
(
5−2p
8

)
Γ
(
7−2p
8

)
Γ
(
5+2p
8

)
Γ
(
7+2p
8

) (mod p2).

Case 1. p ≡ 1 (mod 8).
In this case, we have

Γ
(
3
8

)
Γ
(
5−2p
8

) =
Γp
(
3
8

)
Γp
(
5−2p
8

) · (−1)(p−1)/4,
Γ
(
5
8

)
Γ
(
7−2p
8

) =
Γp
(
5
8

)
Γp
(
7−2p
8

) · (−1)(p−1)/4,

Γ
(
7
8

)
Γ
(
5+2p
8

) =
Γp
(
7
8

)
Γp
(
5+2p
8

) · (−1)(p−1)/4,
Γ
(
9
8

)
Γ
(
7+2p
8

) =
Γp
(
9
8

)
p
8
· Γp

(
7+2p
8

) · (−1)(p−1)/4.

It follows that
p−1∑
k=0

Ak ≡
8Γp

(
3
8

)
Γp
(
5
8

)
Γp
(
7
8

)
Γp
(
9
8

)
Γp
(
5−2p
8

)
Γp
(
7−2p
8

)
Γp
(
5+2p
8

)
Γp
(
7+2p
8

)
≡−

Γp
(
3
8

)
Γp
(
1
8

)
Γp
(
5
8

)
Γp
(
7
8

) (mod p2).

With the aid of (2.2), we have

1

Γp
(
5
8

)
Γp
(
7
8

) = Γp

(
3

8

)
Γp

(
1

8

)
(−1)2p−(5p−5)/8−(7p−7)/8 = Γp

(
3

8

)
Γp

(
1

8

)
.

Therefore
p−1∑
k=0

Ak ≡ −Γp

(
1

8

)2

Γp

(
3

8

)2

(mod p2).

Case 2. p ≡ 3 (mod 8).
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By similar arguments as in Case 1, we arrive at

Γ
(
3
8

)
Γ
(
5+2p
8

) =
Γp
(
3
8

)
p
8
Γp
(
5+2p
8

)(−1)(p+1)/4,
Γ
(
5
8

)
Γ
(
7+2p
8

) =
Γp
(
5
8

)
Γp
(
7+2p
8

)(−1)(p+1)/4,

Γ
(
7
8

)
Γ
(
5−2p
8

) =
Γp
(
7
8

)
Γp
(
5−2p
8

)(−1)(p+1)/4,
Γ
(
9
8

)
Γ
(
7−2p
8

) =
Γp
(
9
8

)
Γp
(
7−2p
8

)(−1)(p+1)/4.

Therefore
p−1∑
k=0

Ak ≡ −
Γp
(
3
8

)
Γp
(
1
8

)
Γp
(
5
8

)
Γp
(
7
8

) (mod p2).

On the other hand,

1

Γp
(
5
8

)
Γp
(
7
8

) = Γp

(
3

8

)
Γp

(
1

8

)
(−1)2p−(7p−5)/8−(5p−7)/8 = −Γp

(
3

8

)
Γp

(
1

8

)
.

Therefore
p−1∑
k=0

Ak ≡ Γp

(
1

8

)2

Γp

(
3

8

)2

(mod p2).

The remaining cases p ≡ 5, 7 (mod 8) can be proved similarly. So our proof of Theorem 2.1
is completed. �

3. Proofs of Theorems 1.2 and 1.3

Theorem 1.2 is actually a p-aidc analogue of the following 4F3 identity.

Lemma 3.1 ([3, p. 182, 25(a)]). For any α, β, γ ∈ C with <((1 + α)/2− β − γ) > 0, we have

4F3

[
α 1 + α

2
β γ

α
2

1 + α− β 1 + α− γ

∣∣∣∣ 1

]
=

Γ(1 + α− β)Γ(1 + α− γ)Γ
(
1+α
2

)
Γ
(
1+α
2
− β − γ

)
Γ(1 + α)Γ(1 + α− β − γ)Γ

(
1+α
2
− β

)
Γ(1+α

2
− γ)

. (3.1)

Proof of Theorem 1.2. Let a = 〈−α〉p.
(i) We now handle the case 2 - a and a < 2p+1

3
in details. Set

Ψ(x, y, z) :=4F3

[
−a+ x 1 + −a+x

2
−a+ y −a+ z

−a+x
2

1 + x− y 1 + x− z

∣∣∣∣ 1

]
p−1

−
2Γp(1 + x− y)Γp(1 + x− z)Γp

(
1−a+x

2

)
Γp
(
1+3a+x−2y−2z

2

)
Γp(1− a+ x)Γp(1 + a+ x− y − z)Γp

(
1+a+x−2y

2

)
Γp
(
1+a+x−2z

2

) .
It is easy to see that

4F3

[
α 1 + α

2
α α

α
2

1 1

∣∣∣∣ 1

]
p−1
≡ 2gp(α) (mod p3)
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is equivalent to
Ψ(sp, sp, sp) ≡ 0 (mod p3), (3.2)

where s = (α + a)/p.
For p = 3, 5 we can verify (3.2) for any 1 ≤ α ≤ p3 numerically.
Now we assume that p ≥ 7. In view of the local-global theorem from [17], we only need to

show that
Ψ(rp, sp, tp) ≡ 0 (mod p3) (3.3)

provided that r, s, t ∈ Zp and at least one of r, s, t is zero. We first show that

Ψ(0, sp, tp) = 0 (3.4)

for each s, t ∈ Zp. In fact, we may assume that sp, tp, (s + t)p ∈ Q \ Z (since any x ∈ Z ∩ Zp
can be approximated by a sequence of p-adic integers (xm)m≥0 in (Q \ Z) ∩ Zp). In light of
(3.1),

4F3

[
−a 1 + −a

2
−a+ sp −a+ tp

−a
2

1− sp 1− tp

∣∣∣∣ 1

]
p−1

= lim
z→0

4F3

[
−a+ z 1 + −a+z

2
−a+ sp −a+ tp

−a+z
2

1 + z − sp 1 + z − tp

∣∣∣∣ 1

]
=

Γ(1− sp)
Γ
(
1+a−2sp

2

) · Γ(1− tp)
Γ
(
1+a−2tp

2

) · Γ
(
1+3a−2sp−2tp

2

)
Γ(1 + a− sp− tp)

· lim
z→0

Γ
(
1−a+z

2

)
Γ(1− a+ z)

.

Since a is odd and a < (2p+ 1)/3, by (1.3) we have

Γ(1− sp)
Γ
(
1+a−2sp

2

) =

a−1
2∏
j=1

1

j + sp
= (−1)

a−1
2

Γp(1− sp)
Γp
(
1+a−2sp

2

) ,
Γ(1− tp)

Γ
(
1+a−2tp

2

) =

a−1
2∏
j=1

1

j + tp
= (−1)

a−1
2

Γp(1− tp)
Γp
(
1+a−2tp

2

) ,
Γ
(
1+3a−2sp−2tp

2

)
Γ(1 + a− sp− tp)

=

a−1
2∏
j=1

(a+ j − sp− tp) = (−1)
a−1
2

Γp
(
1+3a−2sp−2tp

2

)
Γp(1 + a− sp− tp)

.

In view of (2.1),

Γ

(
1− a+ z

2

)
Γ

(
1 + a− z

2

)
=

π

sinπ 1−a+z
2

and
Γ(1− a+ z)Γ(a− z) =

π

sin π(1− a+ z)
.

Furthermore,

lim
z→0

Γ
(
1−a+z

2

)
Γ(1− a+ z)

= lim
z→0

Γ(a− z)

Γ(1+a−z
2

)
· sin π(1− a+ z)

sin π 1−a+z
2
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= 2(−1)
a−1
2

Γp(a)

Γp(
1+a
2

)
· cosπ(a− 1)

cos π a−1
2

=
2Γp(a)

Γp(
1+a
2

)
.

In view of (2.2), we have

2Γp(a)

Γp(
1+a
2

)
= (−1)

a−1
2

2Γp
(
1−a
2

)
Γp(1− a)

.

By the above, we arrive at

4F3

[
−a 1 + −a

2
−a+ sp −a+ tp

−a
2

1− sp 1− tp

∣∣∣∣ 1

]
p−1

=
Γp(1− sp)

Γp
(
1+a−2sp

2

) · Γp(1− tp)
Γp
(
1+a−2tp

2

) · Γp
(
1+3a−2sp−2tp

2

)
Γp(1 + a− sp− tp)

·
2Γp

(
1−a
2

)
Γp(1− a)

.

This proves (3.4).
Now we turn to show

Ψ(rp, 0, tp) = 0 (3.5)

for any r, t ∈ Zp. Also, we may assume that rp, tp, rp− tp ∈ Q \ Z. By (3.1), we have

4F3

[
−a+ rp 1 + −a+rp

2
−a −a+ tp

−a+rp
2

1 + rp 1 + rp− tp

∣∣∣∣ 1

]
p−1

=4F3

[
−a+ rp 1 + −a+rp

2
−a −a+ tp

−a+rp
2

1 + rp 1 + rp− tp

∣∣∣∣ 1

]
=

Γ(1 + rp)

Γ(1− a+ rp)
· Γ(1 + rp− tp)

Γ(1 + a+ rp− tp)
·

Γ
(
1−a+rp

2

)
Γ
(
1+a+rp

2

) · Γ
(
1+3a+rp

2
− tp

)
Γ
(
1+a+rp

2
− tp

)
=
rp · Γp(1 + rp)

Γp(1− a+ rp)
· Γp(1 + rp− tp)

Γp(1 + a+ rp− tp)
·

Γp
(
1−a+rp

2

)
1
2
rp · Γp

(
1+a+rp

2

) · Γp
(
1+3a+rp

2
− tp

)
Γp
(
1+a+rp

2
− tp

) .
Thus (3.5) holds. Due to the symmetry reason, we also have Ψ(rp, sp, 0) = 0 for any r, s ∈ Zp.

(ii) For the other cases, we set

Φ(x, y, z) := 4F3

[
−a+ x 1 + −a+x

2
−a+ y −a+ z

−a+x
2

1 + x− y 1 + x− z

∣∣∣∣ 1

]
p−1

− f(x, y, z)
Γp(1 + x− y)Γp(1 + x− z)Γp

(
1−a+x

2

)
Γp
(
1+3a+x−2y−2z

2

)
Γp(1− a+ x)Γp(1 + a+ x− y − z)Γp

(
1+a+x−2y

2

)
Γp
(
1+a+x−2z

2

) ,
where

f(x, y, z) =


2p+ x− 2y − 2z if a is odd and a ≥ 2p+1

3
,

x if a is even and a < p+1
3

,

x · p+ x− 2y − 2z

2
if a is even and a ≥ p+1

3
.
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We only need to show that Φ(rp, sp, tp) = 0 for any r, s, t ∈ Zp with 0 ∈ {r, s, t}. This can be
proved by similar arguments, so we leave it to the reader as an exercise.

In view of the above, we have completed our proof of Theorem 1.2. �

The following identity is due to Whipple.

Lemma 3.2 ([30, (5.1)]). For any α, β, γ ∈ C with β − α, γ − α 6∈ Z+, we have

4F3

[
α 1 + α

2
β γ

α
2

1 + α− β 1 + α− γ

∣∣∣∣− 1

]
=

Γ(1 + α− β)Γ(1 + α− γ)

Γ(1 + α)Γ(1 + α− β − γ)
.

Proof of Theorem 1.3. Let a = 〈−α〉p. Set

Ω(x, y, z) := 4F3

[
−a+ x 1 + −a+x

2
−a+ y −a+ z

−a+x
2

1 + x− y 1 + x− z

∣∣∣∣− 1

]
p−1

− xΓp(1 + x− y)Γp(1 + x− z)

Γp(1− a+ x)Γp(1 + a+ x− y − z)
.

As in the proof of Theorem 1.2, it suffices to show that

Ω(rp, sp, tp) ≡ 0 (mod p3) (3.6)

provided r, s, t ∈ Zp and 0 ∈ {r, s, t}. Again, we may assume p ≥ 7.
We first consider the case r = 0. Also, assume that sp, tp, (s+ t)p ∈ Q \ Z. By Lemma 3.2,

4F3

[
−a 1 + −a

2
−a+ sp −a+ tp

−a
2

1− sp 1− tp

∣∣∣∣− 1

]
p−1

= 4F3

[
−a 1 + −a

2
−a+ sp −a+ tp

−a
2

1− sp 1− tp

∣∣∣∣− 1

]
=

Γ(1− sp)Γ(1− tp)
Γ(1− a)Γ(1 + a− sp− tp)

.

Since α ∈ Z×p , we have a − 1 ∈ {1, . . . , p − 2}. By (2.1) we know that 1/Γ(−n) = 0 for any
nonnegative integer n. Thus Ω(0, sp, tp) = 0.

Below we consider the case s = 0. Assume that rp, (r − t)p ∈ Q \ Z. With the help of
Lemma 3.2, we get

4F3

[
−a+ rp 1 + −a+rp

2
−a −a+ tp

−a+rp
2

1 + rp 1 + rp− tp

∣∣∣∣− 1

]
p−1

= 4F3

[
−a+ rp 1 + −a+rp

2
−a −a+ tp

−a
2

1 + rp 1 + rp− tp

∣∣∣∣− 1

]
=

Γ(1 + rp)Γ(1 + rp− tp)
Γ(1− a+ rp)Γ(1 + a+ rp− tp)

.
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By (1.3), we have
Γ(1 + rp)

Γ(1− a+ rp)
= (−1)a

rpΓp(1 + rp)

Γp(1− a+ rp)

and
Γ(1 + rp− tp)

Γ(1 + a+ rp− tp)
= (−1)a

Γp(1 + rp− tp)
Γp(1 + a+ rp− tp)

.

Thus Ω(rp, 0, tp) = 0. By symmetry, we also have Ω(rp, sp, 0) = 0.
Combining the above we get (3.6). The proof of Theorem 1.3 is now complete. �

4. Applications of Theorems 1.2 and 1.3

Sun [25, Conjecture 35] posed many conjectural congruences, here we confirm [25, Conjecture
35] partially.

Theorem 4.1 ([25, Conjecture 35]). (i) Let p > 3 be a prime. For any x ∈ Zp with 3x 6≡ 1, 2
(mod p), we have

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−x
j

)3(
x− 1

k − j

)3

≡ 0 (mod p2). (4.1)

For any x ∈ Zp with x ≡ 1/3 (mod p), we have

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−x
j

)3(
x− 1

k − j

)3

≡ x+
p
(
p
3

)
− 1

3
(mod p2). (4.2)

(ii) Let p be an odd prime. If p 6≡ 5 (mod 8), then

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

≡ p2 (mod p3). (4.3)

If p ≡ 5, 7 (mod 8), then

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/2

j

)3(−1/2

k − j

)3

≡ 0 (mod p3). (4.4)

Remark 4.1. Sun [25, Conjecture 35] also conjectured that

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

≡ 0 (mod p3).

for any odd prime p ≡ 2 (mod 3). in view of the method we prove Theorem 4.1, we are led to
evaluate

p−1∑
k=0

(
−1/3

k

)3

and

p−1∑
k=0

(
−2/3

k

)3

modulo p2.
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To show Theorem 4.1 we need the following known results.

Lemma 4.1 ([17, Theorem 5.1]). Suppose that p is an odd prime and α ∈ Z×p . Let s =
(α + 〈−α〉p)/p, and

gp(α) =
Γp(1 + 1

2
α)Γp(1− 3

2
α)

Γp(1 + α)Γp(1− α)Γp(1− 1
2
α)2

.

Then we have the following congruence modulo p3:

3F2

[
α α α

1 1

∣∣∣∣ 1]
p−1
≡



2gp(α) if 〈−α〉p is even and 〈−α〉p < 2p/3,

p(2− 3s)gp(α) if 〈−α〉p is even and 〈−α〉p ≥ 2p/3,

psgp(α) if 〈−α〉p is odd and 〈−α〉p < p/3,

p2s(1− 3s)gp(α)

2
if 〈−α〉p is odd and 〈−α〉p ≥ p/3.

Lemma 4.2 ([17, Corollary 8.1]). Let p be an odd prime. If p ≡ 1, 3 (mod 8), then

3F2

[
1
2

1
2

1
2

1 1

∣∣∣∣− 1

]
p−1
≡ −Γp

(
1

8

)2

Γp

(
3

8

)2

(mod p3).

If p ≡ 5, 7 (mod 8), then

3F2

[
1
2

1
2

1
2

1 1

∣∣∣∣− 1

]
p−1
≡ 3p2

64
· Γp
(

1

8

)2

Γp

(
3

8

)2

(mod p3).

Proof of Theorem 4.1. By (1.2) with m = 3, we have

p−1∑
k=0

εk(2k + 1)
k∑
j=0

(
−x
j

)3(
x− 1

k − j

)3

≡ (1− x)Σ1 + xΣ2 (mod p3), (4.5)

where

Σ1 := 3F2

[
x x x

1 1

∣∣∣∣− ε]
p−1
· 4F3

[
1− x 1 + 1−x

2
1− x 1− x

1−x
2

1 1

∣∣∣∣− ε]
p−1

and

Σ2 := 3F2

[
1− x 1− x 1− x

1 1

∣∣∣∣− ε]
p−1
· 4F3

[
x 1 + x

2
x x

x
2

1 1

∣∣∣∣− ε]
p−1

.

(i) Denote 〈−x〉p by a. We first consider (4.1). Here we only handle the case 2 | a since the
case 2 - a can be confirmed similarly. As a is even, 〈x−1〉p = p−1−a is also even. Obviously,
(4.1) holds if p | a. So we assume that 3x 6≡ 0, 1, 2 (mod p). Below we divide this into three
subcases.

Case 1. (p+ 1)/3 ≤ a < 2p/3.
In this case, p/3− 1 < 〈x− 1〉p ≤ (2p− 4)/3. Since 3x 6≡ 1, 2 (mod p) and p > 3, we know

that 〈x− 1〉p 6= (p− 2)/3, (p− 1)/3, p/3. Thus (p+ 1)/3 ≤ 〈x− 1〉p ≤ (2p− 4)/3. Then (4.1)
follows from Theorem 1.2 and Lemma 4.1.
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Case 2. a < (p+ 1)/3.
Observe that 〈x − 1〉p > (2p − 4)/3. Since 3x 6≡ 0, 1, 2 (mod p), we have 〈x − 1〉p 6=

(2p− 3)/3, (2p− 2)/3, (2p− 1)/3, and hence 〈x− 1〉p ≥ 2p/3. Therefore (4.1) follows.

Case 3. a ≥ 2p/3.
Clearly, 〈x−1〉p ≤ p/3−1. Thus (4.1) follows from Theorem 1.2 and Lemma 4.1 immediately.

Now we turn to (4.2). We first assume that p ≡ 1 (mod 6). In this case, a = (p − 1)/3 is
even and 〈x− 1〉p = p− 1− a = (2p− 2)/3. Thus, by Theorem 1.2 and Lemma 4.1, we have

(1− x)Σ1 ≡ 0 (mod p2)

and

xΣ2 ≡ 2x(x+ a) ·
Γp
(
1 + 1−x

2

)
Γp

(
1− 3(1−x)

2

)
Γp
(
1+x
2

)
Γp
(
1−3x
2

)
Γp(2− x)Γp(x)Γp

(
1− 1−x

2

)2
Γp(1 + x)Γp(1− x)Γp

(
1−x
2

)2
= (x+ a)Γp

(
1− x

2

)
Γp

(
1 + x

2

)
Γp

(
3x− 1

2

)
Γp

(
3− 3x

2

)
= (x+ a)(−1)

2(p−1)
3 = x+ a = x+

p− 1

3
.

So, when p ≡ 1 (mod 6) we have (4.2) since
(
p
3

)
= 1.

Below we suppose that p ≡ 5 (mod 6). Now, a = (2p−1)/3 is odd and 〈x−1〉p = p−1−a =
(p− 2)/3. Also, by Theorem 1.2 and Lemma 4.1, we have

(1− x)Σ1 ≡ 0 (mod p2)

and

xΣ2 ≡ 2x(1− x+ 〈x− 1〉p) ·
Γp
(
1 + 1−x

2

)
Γp

(
1− 3(1−x)

2

)
Γp
(
1+x
2

)
Γp
(
1−3x
2

)
Γp(2− x)Γp(x)Γp

(
1− 1−x

2

)2
Γp(1 + x)Γp(1− x)Γp

(
1−x
2

)2
= (p− a− x)Γp

(
1− x

2

)
Γp

(
1 + x

2

)
Γp

(
3x− 1

2

)
Γp

(
3− 3x

2

)
= (p− a− x)(−1)

p−2
3 = x+

−p− 1

3
.

As
(
p
3

)
= −1, this proves (4.2).

(ii) We now turn to prove (4.3) for p 6≡ 5 (mod 8). We just handle the case p ≡ 1 (mod 8)
since the remaining case p ≡ 3 (mod 4) can be handled similarly. In view of Theorem 1.2 and
Lemma 4.1.

3F2

[
1
4

1
4

1
4

1 1

∣∣∣∣ 1

]
p−1
≡

2Γp
(
9
8

)
Γp
(
5
8

)
Γp
(
5
4

)
Γp
(
3
4

)
Γp
(
7
8

)2 (mod p3),

3F2

[
3
4

3
4

3
4

1 1

∣∣∣∣ 1

]
p−1
≡
−p

4
· Γp

(
11
8

)
Γp
(
−1

8

)
Γp
(
7
4

)
Γp
(
1
4

)
Γp
(
5
8

)2 (mod p3),
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4F3

[
1
4

9
8

1
4

1
4

1
8

1 1

∣∣∣∣ 1

]
p−1
≡ p

4
·

Γp
(
5
8

)
Γp
(
1
8

)
Γp
(
5
4

)
Γp
(
3
4

)
Γp
(
3
8

)2 (mod p3),

4F3

[
3
4

11
8

3
4

3
4

3
8

1 1

∣∣∣∣ 1

]
p−1
≡ −15p2

16
·

Γp
(
7
8

)
Γp
(
−5

8

)
Γp
(
7
4

)
Γp
(
1
4

)
Γp
(
1
8

)2 (mod p3).

Then, by (2.2) and (4.5), we deduce that

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

≡ 3

4
· p2 +

1

4
· p2 = p2 (mod p3).

This proves (4.3).
(iii) Now we turn to prove (4.4) for p ≡ 5, 7 (mod 8). From (4.5), we have

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/2

j

)3(−1/2

k − j

)3

≡ 3F2

[
1
2

1
2

1
2

1 1

∣∣∣∣− 1

]
p−1
· 4F3

[
1
2

5
4

1
2

1
2

1
4

1 1

∣∣∣∣− 1

]
p−1

(mod p3).

(4.6)

By Theorem 1.3,

4F3

[
1
2

5
4

1
2

1
2

1
4

1 1

∣∣∣∣− 1

]
p−1
≡ 0 (mod p). (4.7)

As p ≡ 5, 7 (mod 8), we have

3F2

[
1
2

1
2

1
2

1 1

∣∣∣∣− 1

]
p−1
≡ 0 (mod p2) (4.8)

by Lemma 4.2. Combining (4.6), (4.7) and (4.8), we immediately get the desired (4.4).
In view of the above, we have completed the proof of Theorem 4.1. �

5. Other related congruences

In the previous two sections, we established p-adic analogues of two hypergeometric identities
and used them to solve some congruences conjectured by Sun. Our following theorem confirms
[25, Conjecture 36] partially.

Theorem 5.1 ([25, Conjecture 36]). (i) For each prime p > 3, we have

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/6

j

)4(−5/6

k − j

)4

≡ 0 (mod p2). (5.1)
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(ii) Let p be an odd prime. If p ≡ 3 (mod 4), then

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/4

j

)4(−3/4

k − j

)4

≡ 0 (mod p2), (5.2)

and
p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/2

j

)5(−1/2

k − j

)5

≡ 0 (mod p3). (5.3)

If p ≡ 5 (mod 6), then

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/6

j

)6(−5/6

k − j

)6

≡ 0 (mod p2). (5.4)

Proof. (a) Let p be a prime with p ≡ 3 (mod 4). By (1.2), we know that

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/2

j

)5(−1/2

k − j

)5

≡ 6F5

[
1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣∣∣∣− 1

]
p−1
· 5F4

[
1
2

1
2

1
2

1
2

1
2

1 1 1 1

∣∣∣∣− 1

]
p−1

(mod p5).

van Hamme [28] conjectured that

6F5

[
1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣∣∣∣− 1

]
p−1
≡ 0 (mod p3).

This was confirmed by Liu [11] who showed further that if p 6= 3 then

6F5

[
1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣∣∣∣− 1

]
p−1
≡ −p

3

16
Γp

(
1

4

)
(mod p4).

This congruence remains ture if we replace the modulus p4 by p5, as conjectured by Liu [11]
and confirmed by Wang [29]. In view of the above, (5.3) does hold.

(b) Now let p > 3 be a prime. We want to prove (5.1).
Case 1. p ≡ 1 (mod 6).
In this case, 〈−1/6〉p = (p− 1)/6 < p/2 and 〈−5/6〉p = (5p− 5)/6 > p/2. By [14, Theorem

2.22], we obtain

5F4

[
1
6

13
12

1
6

1
6

1
6

1
12

1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p) and 5F4

[
5
6

17
12

5
6

5
6

5
6

5
12

1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p2).

Thus, in view of (1.2) it suffices to show that

4F3

[
5
6

5
6

5
6

5
6

1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p).
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Recall the well-known Karlsson-Minton summation formula (cf. [5, p. 18]):

r+1Fr

[
a b1 +m1 · · · br +mr

b1 · · · br

∣∣∣∣ 1

]
= 0, (5.5)

provided that m1,m2, . . . ,mr are nonnegative integers with <(−a) > m1+· · ·+mr. Combining
this with (5.5), we get

4F3

[
5
6

5
6

5
6

5
6

1 1 1

∣∣∣∣ 1

]
p−1
≡ 4F3

[
5−5p
6

5+p
6

5+p
6

5+p
6

1 1 1

∣∣∣∣ 1

]
= 0 (mod p)

since (p− 1)/2 < (5p− 5)/6.
Case 2. p ≡ 5 (mod 6).
In this case, 〈−1/6〉p = (5p − 1)/6 > p/2 and 〈−5/6〉p = (p − 5)/6 < p/2. Thus, by [14,

Theorem 2.22], we have

5F4

[
1
6

13
12

1
6

1
6

1
6

1
12

1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p2) and 5F4

[
5
6

17
12

5
6

5
6

5
6

5
12

1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p).

Furthermore, by (5.5) we have

4F3

[
1
6

1
6

1
6

1
6

1 1 1

∣∣∣∣ 1

]
p−1
≡ 4F3

[
1−5p
6

1+p
6

1+p
6

1+p
6

1 1 1

∣∣∣∣ 1

]
= 0 (mod p)

since (p− 5)/2 < (5p− 1)/6. Combining this with (1.2), we obtain (5.1).
(c) For any prime p ≡ 3 (mod 4), we can prove (5.2) by the method in the proof of (5.1).
Now turn to prove (5.4) for any prime p ≡ 5 (mod 6). As 〈−1/6〉p = (5p− 1)/5 > 2p/3 and
〈−5/6〉p = (p− 5)/6 < p/3, by [14, Theorems 2.17 and 2.20] we have

7F6

[
1
6

13
12

1
6

1
6

1
6

1
6

1
6

1
12

1 1 1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p2)

and

7F6

[
5
6

17
12

5
6

5
6

5
6

5
6

5
6

5
12

1 1 1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p).

From (5.5), we deduce that

6F5

[
1
6

1
6

1
6

1
6

1
6

1
6

1 1 1 1 1

∣∣∣∣ 1

]
p−1
≡ 0 (mod p).

Combining this with (1.2), we immediately obtain the desired (5.4).
In view of the above, we have completed the proof of Theorem 5.1. �
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