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A NEW TRIGONOMETRIC IDENTITY WITH

APPLICATIONS

ZHI-WEI SUN AND HAO PAN

Abstract. In this paper we obtain a new curious identity involving
trigonometric functions. Namely, for any positive odd integer n, we
prove that

n∑
k=1

(−1)k(cot kx) sin k(n− k)x =
1 − n

2
,

which is equivalent to the identity
n∑

k=1

(−1)kUn−k(cos kx) = −n + 1

2
,

where Um(z) stands for the mth Chebyshev polynomial of the second
kind. As a consequence, for any positive odd integer n and positive
integer m, we obtain the identity

n∑
k=1

(−1)kk2mB2m+1

(
n− k

2

)
= 0,

where Bj(x) denotes the Bernoulli polynomial of degree j.

1. Introduction

Let Z+ denote the set of all positive integers. J.-C. Liu and F. Petrov [2,

(2.11)] showed that if ω = e2πi/(3n+2) with n ∈ Z+ then

(1.1)
2n+1∑
k=1

(−1)kωk(3k+1)/2

1− ω3k
= −n+ 1

2
,

which has the equivalent form (cf. [2, (2.17)])

(1.2)

2n+1∑
k=1

(
yk

1 + y3k
+

(−y)k

1− y3k

)
= −n− 1,

where y = e2πi/(6n+4). Motivated by this, Z.-W. Sun [3] conjectured that if
m,n ∈ {2, 3, . . .} and δ ∈ {0, 1}, then for any primitive (m(n−δ)−(−1)δ)-th
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root of unity ζ, we have the identity

(1.3) Re

( n−1∑
k=1

(
ζk

1 + ζkm
− (−1)n+δ

(−ζ)k

1− ζkm

))
= (−1)n−1

⌊n
2

⌋
.

This was confirmed by Nemo and Sun in the cases δ = 0 and δ = 1 respec-
tively; see [3] for the detailed proofs.

Inspired by the above work, we establish the following new result.

Theorem 1.1. Let n be any positive odd integer. Then, for any complex
number q with |q| = 1 and qk 6= 1 for all k = 1, . . . , n, we have

(1.4) Re

( n∑
k=1

(−1)kq−k(n−k)/2

1− qk

)
= −n+ 1

4
.

Equivalently, we have the trigonometric identity

(1.5)
n∑
k=1

(−1)kUn−k(cos kx) = −n+ 1

2
,

where x is a real number, Um(z) is the m-th Chebyshev polynomial of the
second kind, defined by Um(cos θ) = (sin (m+ 1)θ)/ sin θ.

Corollary 1.2. Suppose that n is a positive odd integer and m is a positive
integer. Then we have

(1.6)

n∑
k=1

(−1)kk2mB2m+1

(
n− k

2

)
= 0,

where Bj(x) denotes the Bernoulli polynomial of degree j.

With the help of Theorem 1.1, we obtain the following result.

Theorem 1.3. Let l,m, n ∈ Z+ with l ≡ m (mod 2) and n ≡ 1 (mod 2).
Then, for any primitive (mn+ l)-th root of unity ζ, we have

(1.7) Re

( n∑
k=1

ζk(km+l)/2

1− ζkm

)
= −n+ 1

4
.

Applying Theorem 1.3 with l = 1 and m = 3, we immediately get the
following consequence.

Corollary 1.4. Let n be a nonnegative integer and let ζ be a primitive
(6n+ 4)-th root of unity. Then

(1.8)
2n+1∑
k=1

ζk(3k+1)/2

1− ζ3k
= −n+ 1

2
.

It is interesting to compare our (1.8) with Liu and Petrov’s (1.1). Actually,
we first found (1.8) motivated by (1.1) and then discovered the more general
Theorem 1.3 and related Theorem 1.1.

We are going to prove Theorem 1.1 in the next section, and show Corollary
1.2 and Theorem 1.3 in Section 3.
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2. Proof of Theorem 1.1

Lemma 2.1. Let n be a positive odd integer, and let z be any complex
number. Then

(2.1)
∑

16k6n
06j<(n−k)/2

(−1)kzk(2j+k−n) = 0.

Proof. Let σ denote the left-hand side of (2.1). Then, by changing the order
of summation, we get

σ =

(n−3)/2∑
j=0

n−2j−1∑
k=1

(−1)kzk(2j+k−n)

=

(n−3)/2∑
j=0

n−2j−1∑
l=1

(−1)n−2j−lz(n−2j−l)(2j+(n−2j−l)−n)

= (−1)n
(n−3)/2∑
j=0

n−2j−1∑
l=1

(−1)lzl(2j+l−n) = −σ

and hence σ = 0. �

Proof of Theorem 1.1. Write q = e2ix = cos 2x+ i sin 2x with x real, and let
L denote the sum in (1.4). Then

L =
n∑
k=1

(−1)k
cos k(n− k)x− i sin k(n− k)x

1− cos 2kx− i sin 2kx

=
n∑
k=1

(−1)k
(1− cos 2kx+ i sin 2kx)(cos k(n− k)x− i sin k(n− k)x)

(1− cos 2kx)2 − (i sin 2kx)2

and hence

Re(L) =

n∑
k=1

(−1)k
(1− cos 2kx) cos k(n− k)x+ (sin 2kx) sin k(n− k)x

2− 2 cos 2kx

=
1

2

n∑
k=1

(−1)k cos k(n− k)x+
1

2

n∑
k=1

(−1)k(cot kx) sin k(n− k)x.

It follows that

(2.2)

2 Re(L) =

n∑
k=1

(−1)k
(sin kx) cos k(n− k)x+ (cos kx) sin k(n− k)x

sin kx

=

n∑
k=1

(−1)k
sin k(n+ 1− k)x

sin kx
=

n∑
k=1

(−1)kUn−k(cos kx).

Thus (1.4) is equivalent to (1.5).
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Set z = eix. Then

2 Re(L) =
n∑
k=1

(−1)k
zk(n+1−k) − z−k(n+1−k)

zk − z−k

=

n∑
k=1

(−1)k
n−k∑
j=0

(zk)j(z−k)n−k−j =

n∑
k=1

(−1)k
n−k∑
j=0

zk(2j+k−n).

For each k = 1, . . . , n, clearly∑
(n−k)/2<j6n−k

zk(2j+k−n) =
∑

06s<(n−k)/2

zk(2(n−k−s)+k−n) =
∑

06s<(n−k)/2

z−k(2s+k−n).

Thus

2 Re(L) =

n∑
k=1

2|n−k

(−1)kzk(2(n−k)/2+k−n)

+

n∑
k=1

(−1)k
∑

06j<(n−k)/2

(zk(2j+k−n) + z−k(2j+k−n))

=

(n−1)/2∑
r=0

(−1)n−2r +
∑

16k6n
06j<(n−k)/2

(−1)k(zk(2j+k−n) + z−k(2j+k−n)).

Combining this with Lemma 2.1, we obtain that

2 Re(L) = (−1)n
n+ 1

2
= −n+ 1

2

and hence (1.4) follows.
The proof of Theorem 1.1 is now complete. �

3. Proofs of Corollary 1.2 and Theorem 1.3

Recall that the Bernoulli numbers B0, B1, B2, . . . are given by

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
(0 < |x| < 2π).

Proof of Corollary 1.2. Note that

n∑
k=1

(−1)k cos k(n− k)x

= (−1)n +

(n−1)/2∑
k=1

((−1)k + (−1)n−k) cos k(n− k)x = −1
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since n is odd. Combining this with (2.2), we see that (1.5) has the following
equivalent form:

(3.1)
n∑
k=1

(−1)k(cot kx) sin k(n− k)x =
1− n

2
.

It is well known that

cotx =
∞∑
j=0

(−1)j22jB2jx
2j−1

(2j)!
(0 < |x| < π)

(cf. [1, p. 232]) and

sinx =
∞∑
j=0

(−1)jx2j+1

(2j + 1)!
.

So, by (3.1) we have

1− n
2

=

n∑
k=1

(−1)kx2m
m∑
j=0

(−1)j22jB2jk
2j−1

(2j)!
· (−1)m−j(k(n− k))2m−2j+1

(2m− 2j + 1)!

whenever 0 < |x| < π/n. Comparing the coefficients of x2m in the both
sides of the above equality, we obtain

n∑
k=1

(−1)kk2m
m∑
j=0

22jB2j

(2j)!
· (n− k)2m−2j+1

(2m− 2j + 1)!
= 0,

which is equivalent to the desired identity (1.6). �

Proof of Theorem 1.3. Clearly L = mn + l is even. For k = 1, . . . , n, we
have

ζk(km+l)/2 = ζk(L−m(n−k))/2 = (−1)kζ−mk(n−k)/2.

Thus
n∑
k=1

ζk(km+l)/2

1− ζkm
=

n∑
k=1

(−1)k(ζm)−k(n−k)/2

1− (ζm)k
.

Note that

L0 :=
L

gcd(L,m)
>

mn

gcd(L,m)
> n

and q = ζm is a primitive L0-th root of unity. Applying Theorem 1.1 we see
that the real part of

n∑
k=1

ζk(km+l)/2

1− ζkm
=

n∑
k=1

(−1)kq−k(n−k)/2

1− qk

is −(n+ 1)/4. This concludes the proof of Theorem 1.3. �
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