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ON SOME DETERMINANTS INVOLVING THE TANGENT FUNCTION

ZHI-WEI SUN

Abstract. Let p be an odd prime and let a, b ∈ Z with p - ab. In this paper we mainly
evaluate

T (δ)
p (a, b, x) := det

[
x+ tanπ

aj2 + bk2

p

]
δ6j,k6(p−1)/2

(δ = 0, 1).

For example, in the case p ≡ 3 (mod 4), we show that T
(1)
p (a, b, 0) = 0 and

T (0)
p (a, b, x) =

{
2(p−1)/2p(p+1)/4 if (abp ) = 1,

p(p+1)/4 if (abp ) = −1,

where ( ·p ) is the Legendre symbol. When (−abp ) = −1, we also evaluate the determinant

det[x+ cotπ aj
2+bk2

p ]16j,k6(p−1)/2. In addition, we pose several conjectures one of which states

that for any prime p ≡ 3 (mod 4) there is an integer xp ≡ 1 (mod p) such that

det

[
sec 2π

(j − k)2

p

]
06j,k6p−1

= −p(p+3)/2x2p.

1. Introduction

Let p be an odd prime. It is well known that the numbers

02, 12, . . . ,

(
p− 1

2

)2

are pairwise incongruent modulo p. In [10], the author investigated the determinants

S(d, p) = det

[(
j2 + dk2

p

)]
16j,k6(p−1)/2

and

T (d, p) = det

[(
j2 + dk2

p

)]
06j,k6(p−1)/2

,

Key words and phrases. Determinants, quadratic residues modulo primes, quadratic fields, the tangent
function.
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where d is an integer not divisible by p, and ( ·
p
) is the Legendre symbol. In particular, Sun

[10] showed that if (d
p
) = 1 then(
−S(d, p)

p

)
= 1 and T (d, p) =

p− 1

2
S(d, p).

Inspired by the determinants S(d, p) and T (d, p) with d ∈ Z and p - d, and noting that the
tangent function tanx has period π, for a, b ∈ Z we introduce

T (0)
p (a, b, x) := det

[
x+ tan π

aj2 + bk2

p

]
06j,k6(p−1)/2

(1.1)

and

T (1)
p (a, b, x) := det

[
x+ tan π

aj2 + bk2

p

]
16j,k6(p−1)/2

, (1.2)

and denote T
(0)
p (a, b, 0) and T

(1)
p (a, b, 0) by T

(0)
p (a, b) and T

(1)
p (a, b), respectively. To study

the novel determinants T
(0)
p (a, b, x) and T

(1)
p (a, b, x), we first find their values by numerical

experiments via Mathematica, and then seek for detailed proofs via related known results
involving roots of unity.

Now we present our main results.

Theorem 1.1. Let p > 3 be a prime, and let a, b ∈ Z with p - ab.
(i) Assume that p ≡ 1 (mod 4). Then

T (0)
p (a, b,−x) = −T (0)

p (a, b, x), (1.3)

and in particular T
(0)
p (a, b) = 0. If (ab

p
) = 1 and b ≡ ac2 (mod p) with c ∈ Z, then

T (1)
p (a, b, x) =

(
2c

p

)
p(p−3)/4ε

(a
p
)(2−( 2

p
))h(p)

p , (1.4)

where εp and h(p) are the fundamental unit and the class number of the real quadratic field
Q(
√
p) respectively. When (ab

p
) = −1, we have

T (1)
p (a, b, x) = T (1)

p (a, b) = ±2(p−1)/2p(p−3)/4. (1.5)

(ii) Suppose that p ≡ 3 (mod 4). Then

T (1)
p (a, b,−x) = −T (1)

p (a, b, x), (1.6)

and in particular T
(1)
p (a, b) = 0. Also,

T (0)
p (a, b, x) =

{
2(p−1)/2p(p+1)/4 if (ab

p
) = 1,

p(p+1)/4 if (ab
p

) = −1.
(1.7)
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Remark 1.1. When p is a prime with p ≡ 1 (mod 4), and a and b are integers with (ab
p

) = −1,

we are unable to determine the sign in (1.5). For any prime p ≡ 3 (mod 4) and integers a and
b with p - ab, the identity (1.7) looks surprising and interesting. We believe that Theorem 1.1
has certain potential applications.

Theorem 1.2. Let n > 1 be an odd integer, and let a and b be integers with gcd(ab, n) = 1.
Then

det

[
x+ tan π

aj + bk

n

]
06j,k6n−1

+ det

[
−x+ tan π

aj + bk

n

]
06j,k6n−1

= 0 (1.8)

and

det

[
x+ tan π

aj + bk

n

]
16j,k6n−1

=

(
−ab
n

)
nn−2, (1.9)

where ( ·
n
) is the Jacobi symbol.

For the cotangent function, we establish the following two theorems.

Theorem 1.3. Let p > 3 be a prime, and let a, b ∈ Z with (−ab
p

) = −1. Then

det

[
x+ cot π

aj2 + bk2

p

]
16j,k6(p−1)/2

=

{
T

(1)
p (a, b)/(−p)(p−1)/4 = ±2(p−1)/2/

√
p if p ≡ 1 (mod 4),

(−1)(h(−p)+1)/2(a
p
)2(p−1)/2/

√
p if p ≡ 3 (mod 4),

(1.10)

where h(−p) is the class number of the imaginary quadratic field Q(
√
p i) with i =

√
−1.

Remark 1.2. It is known that 2 - h(−p) for each prime p ≡ 3 (mod 4). In 1961 Mordell [8]
even proved that for any prime p > 3 with p ≡ 3 (mod 4) we have

p− 1

2
! ≡ (−1)(h(−p)+1)/2 (mod p).

Theorem 1.4. For any odd prime p, we have

Dp := det

[
cotπ

jk

p

]
16j,k6(p−1)/2

∈

{
Q if p ≡ 1 (mod 4),
√
p Q if p ≡ 3 (mod 4).

We are going to provide several lemmas in the next section and then prove Theorem 1.1 in
Section 3. Theorems 1.2–1.4 will be shown in Section 4. In Section 5, we pose some conjectures
on determinants involving trigonometric tangent function.

2. Some Lemmas

Lemma 2.1. Let A = [ajk]06j,k6n be a matrix over a field. Then

det[x+ ajk]06j,k6n = detA+ x detB, (2.1)

where B = [bjk]16j,k6n with bjk = ajk − aj0 − a0k + a00.
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Proof. As (x+ ajk)− (x+ a0k) = ajk − a0k for all 0 < j 6 n and 0 6 k 6 n, we have

det[x+ ajk]06j,k6n =

∣∣∣∣∣∣∣∣
x+ a00 x+ a01 x+ a02 . . . x+ a0n
a10 − a00 a11 − a01 a12 − a02 . . . a1n − a0n

...
...

...
. . .

...
an0 − a00 an1 − a01 an2 − a02 . . . ann − a0n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
x x x . . . x

a10 − a00 a11 − a01 a12 − a02 . . . a1n − a0n
...

...
...

. . .
...

an0 − a00 an1 − a01 an2 − a02 . . . ann − a0n

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
a00 a01 a02 . . . a0n

a10 − a00 a11 − a01 a12 − a02 . . . a1n − a0n
...

...
...

. . .
...

an0 − a00 an1 − a01 an2 − a02 . . . ann − a0n

∣∣∣∣∣∣∣∣ ,
and hence det[x+ ajk]06j,k6n − detA coincides with∣∣∣∣∣∣∣∣

x 0 . . . 0
a10 − a00 a11 − a01 − (a10 − a00) . . . a1n − a0n − (a10 − a00)

...
...

. . .
...

an0 − a00 an1 − a01 − (an0 − a00) . . . ann − a0n − (an0 − a00)

∣∣∣∣∣∣∣∣ = x detB.

This concludes the proof of (2.1). �

Corollary 2.1. Let m and n be positive integers with 2 - n. Let f : Z→ R be an odd function,
where R is the field of real numbers. Then, for any integer d, the determinant

det [x+ f((j + d)m − (k + d)m)]06j,k6n

does not depend on x.

Proof. Let

ajk = f((j + d)m − (k + d)m) for j, k = 0, . . . , n.

For 1 6 j, k 6 n set bjk = ajk − aj0 − a0k + a00. As f is an odd function, we have

bjk = f((j + d)m − (k + d)m)− f((j + d)m − dm)− f(dm − (k + d)m)

= −f((k + d)m − (j + d)m) + f((k + d)m − dm) + f(dm − (j + d)m) = −bkj.

Thus

det[bjk]16j,k6n = (−1)n det[bkj]16j,k6n = − det[bjk]16j,k6n

and hence det[bjk]16j,k6n = 0. Applying Lemma 2.1, we immediately get the desired result. �
The following lemma is Frobenius’ extension (cf. [3] and [9, (8)]) of Cauchy’s determinant

identity (cf. [7, (5.5)]).
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Lemma 2.2. We have

det

[
z +

1

xj + yk

]
06j,k6n

=

∏
06j<k6n(xk − xj)(yk − yj)∏n

j=0

∏n
k=0(xj + yk)

(
1 + z

n∑
k=0

(xk + yk)

)
. (2.2)

Proof. We present here an induction proof of (2.2) by using Cauchy’s determinant identity
which is the special case z = 0 of (2.2).

In the case n = 0, both sides of (2.2) coincide with z + 1/(x0 + y0).
Now, let n be a positive integer, and suppose that

det

[
z +

1

xj + yk

]
16j,k6n

=

∏
16j<k6n(xk − xj)(yk − yj)∏n

j=1

∏n
k=1(xj + yk)

(
1 + z

n∑
k=1

(xk + yk)

)
. (2.3)

By Lemma 2.1 and (2.2) in the case z = 0,

det

[
z +

1

xj + yk

]
06j,k6n

=

∏
06j<k6n(xk − xj)(yk − yj)∏n

j=0

∏n
k=0(xj + yk)

+ z det[bjk]16j,k6n, (2.4)

where

bjk =
1

xj + yk
− 1

xj + y0
− 1

x0 + yk
+

1

x0 + y0
=

(xj − x0)(yk − y0)(xj + yk + x0 + y0)

(x0 + y0)(xj + y0)(x0 + yk)(xj + yk)
.

With the aid of (2.3), we have

det[bjk]16j,k6n =
n∏
j=1

xj − x0
xj + y0

×
n∏
k=1

yk − y0
yk + x0

× det

[
1

x0 + y0
+

1

xj + yk

]
16j,k6n

=
n∏
k=1

(xk − x0)(yk − y0)
(xk + y0)(yk + x0)

×
∏

16j<k6n(xk − xj)(yk − yj)∏n
j=1

∏n
k=1(xj + yk)

(
1 +

∑n
k=1(xk + yk)

x0 + y0

)

=

∏
06j<k6n(xk − xj)(yk − yj)∏n

j=0

∏n
k=0(xj + yk)

n∑
k=0

(xk + yk).

Combining this with (2.4), we obtain the desired (2.2). This concludes the proof. �
An analogue of Lemma 2.2 for Pfaffians can be found in Okada’s paper [9].

Lemma 2.3 (Huang and Pan [4]). Let n > 1 be an odd integer, and let c be any integer
relatively prime to n. For each j = 1, . . . , (n−1)/2, let ρc(j) be the unique r ∈ {1, . . . , (n−1)/2}
with cj congruent to r or −r modulo n. For the permutation ρc on {1, . . . , (n− 1)/2}, its sign
is given by

sign(ρc) =
( c
n

)(n+1)/2

. (2.5)

Lemma 2.4 (Sun [11]). Let p > 3 be a prime. Let ζ = e2πi/p and a ∈ Z with p - a.
(i) If p ≡ 1 (mod 4), then ∏

16j<k6(p−1)/2

(ζaj
2

+ ζak
2

) = ±ε
(a
p
)h(p)(( 2

p
)−1)/2

p (2.6)
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and ∏
16j<k6(p−1)/2

(ζaj
2 − ζak2)2 = (−1)(p−1)/4p(p−3)/4ε

(a
p
)h(p)

p . (2.7)

(ii) Suppose that p ≡ 3 (mod 4). Then∏
16j<k6(p−1)/2

(ζaj
2

+ ζak
2

) = 1, (2.8)

and ∏
16j<k6(p−1)/2

(ζaj
2 − ζak2) =

{
(−p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(p+1)/8+(h(−p)−1)/2(a
p
)p(p−3)/8i if p ≡ 7 (mod 8).

(2.9)

Also,
(p−1)/2∏
k=1

(1− ζak2) = (−1)(h(−p)+1)/2

(
a

p

)
√
p i. (2.10)

Lemma 2.5. Let p > 3 be a prime, and let a, b ∈ Z with (−ab
p

) = −1. Then

(p−1)/2∏
j=1

(p−1)/2∏
k=1

(
1− e2πi(aj2+bk2)/p

)
= p(p−1)/4 ×

{
1 if p ≡ 1 (mod 4),

(−1)(h(−p)−1)/2(a
p
)i if p ≡ 3 (mod 4).

(2.11)

Proof. For m ∈ Z set

r(m) : =

∣∣∣∣{(j, k) : 1 6 j, k 6
p− 1

2
and aj2 + bk2 ≡ m (mod p)

}∣∣∣∣
=

∣∣∣∣{1 6 x 6 p− 1 :

(
x

p

)
= 1 and

(
m− ax

p

)
=

(
b

p

)}∣∣∣∣ .
Note that r(0) = 0 since (−ab

p
) 6= 1.

Let m ∈ {1, . . . , p− 1}. Then

r(m) =
∑
0<x<p
p-ax−m

(x
p
) + 1

2
·

( b(m−ax)
p

) + 1

2

=
1

4

p−1∑
x=1

((
bx(m− ax)

p

)
+

(
x

p

)
+

(
b(m− ax)

p

)
+ 1

)
−

(am
p

) + 1

4

=
1

4

p−1∑
x=0

(
−abx2 + bmx

p

)
+

1

4

p−1∑
x=0

(
x

p

)
+

1

4

p−1∑
x=0

(
−abx+ bm

p

)
− 1

4

(
bm

p

)
+
p− 1

4
−

(am
p

) + 1

4
.
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It is well known that for any a0, a1, a2 ∈ Z with p - a0 or p - a1 we have

p−1∑
x=0

(
a0x

2 + a1x+ a2
p

)
=

{
−(a0

p
) if p - a21 − 4a0a2,

(p− 1)(a0
p

) if p | a21 − 4a0a2.
(2.12)

(See, e.g., [2, p. 58].) Therefore

r(m) = −1

4

(
−ab
p

)
+
p− 1

4
−

(am
p

) + ( bm
p

) + 1

4
=
p− 1

4
−

1− (−1
p

)

4

(
am

p

)
.

In view of the above,

(p−1)/2∏
j=1

(p−1)/2∏
k=1

(
1− e2πi(aj2+bk2)/p

)

=

p−1∏
m=1

(1− e2πim/p)r(m) =

∏p−1
m=1(1− e2πim/p)

(p−1+(a
p
)(1−(−1

p
)))/4∏

0<m<p
(mp )=1

(1− e2πim/p)(
a
p
)(1−(−1

p
))/2

.

Clearly,
p−1∏
m=1

(1− e2πim/p) = lim
x→1

xp − 1

x− 1
= p.

As (2.10) holds for p ≡ 3 (mod 4), we have∏
0<m<p
(mp )=1

(1− e2πim/p)(1−(
−1
p
))/2 =

{
1 if p ≡ 1 (mod 4),

(−1)(h(−p)+1)/2√p i if p ≡ 3 (mod 4).

Thus the desired (2.11) follows. �

3. Proof of Theorem 1.1

For convenience, we set n = (p− 1)/2 and ζ = e2πi/p. Since p > 3 and
n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
=
p2 − 1

24
p ≡ 0 (mod p),

we have
n∏
k=0

ζk
2

= 1. (3.1)

As

tanx =
2 sinx

2 cosx
=

(eix − e−ix)/i
eix + e−ix

=
−i(e2ix − 1)

e2ix + 1
= −i +

2i

e2ix + 1
,

we also have

i + tan π
aj2 + bk2

p
=

2i

ζaj2+bk2 + 1
for all j, k = 0, . . . , n. (3.2)
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For each δ ∈ {0, 1} and integer d 6≡ 0 (mod p), we claim that

T (δ)
p (a,±ad2, x) =

(
d

p

)n+1

T (δ)
p (a,±a, x). (3.3)

We now explain this. For k = 1, . . . , n let ρd(k) be the unique r ∈ {1, . . . , n} with dk congruent
to r or −r modulo p. In view of Lemma 2.3,

T (1)
p (a,±ad2, x) =

∑
τ∈Sn

sign(τ)
n∏
j=1

(
x+ tan π

aj2 ± a(dτ(j))2

p

)

= sign(ρd)
∑
τ∈Sn

sign(ρdτ)
n∏
j=1

(
x+ tan π

aj2 ± aρd(τ(j))2

p

)

=

(
d

p

)n+1

T (1)
p (a,±a, x).

If we extend the function ρd by defining ρd(0) = 0, then the new ρd is a permutation of
{0, 1, . . . , n} and its sign is the same as the old one. So, (3.3) also holds for δ = 0.

Proof of the First Part of Theorem 1.1. As p ≡ 1 (mod 4), we have n = (p−1)/2 ≡ 0 (mod 2).
For q = n! we have q2 ≡ −1 (mod p) by Wilson’s theorem, hence

−T (0)
p (a, b, x) = det

[
−x− tan π

aj2 + bk2

p

]
06j,k6n

= det

[
−x+ tan π

a(qj)2 + b(qk)2

p

]
06j,k6n

= T (0)
p (a, b,−x)

and thus detT
(0)
p (a, b) = 0.

Case 1. (ab
p

) = 1.

In this case, b ≡ ac2 (mod p) for some integer c 6≡ 0 (mod p). Note that b ≡ −a(qc)2 (mod p)
and hence

T (1)
p (a, b, x) =

(
2c

p

)
T (1)
p (a,−a, x)

by (3.3) and the equality ( q
p
) = (2

p
) (cf. [10, Lemma 2.3]).

By Corollary 2.1,

det

[
x+ tan π

aj2 − ak2

p

]
16j,k6n

= det

[
x+ tan π

a(j + 1)2 − a(k + 1)2

p

]
06j,k6n−1

does not depend on x. So, with the aid of (3.2), we get

T (1)
p (a,−a, x) = det

[
i + tan π

aj2 − ak2

p

]
16j,k6n
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= det

[
2i

e2πia(j2−k2)/p + 1

]
16j,k6n

=
n∏
k=1

(2iζak
2

)× det

[
1

ζaj2 + ζak2

]
16j,k6n

.

(Recall that ζ = e2πi/p.) In light of Lemma 2.2,

det

[
1

ζaj2 + ζak2

]
16j,k6n

=

∏
16j<k6n(ζak

2 − ζaj2)2∏n
k=1(ζ

ak2 + ζak2)×
∏

16j<k6n(ζaj2 + ζak2)2
.

Therefore,

T (1)
p (a,−a, x) = in

∏
16j<k6n

(
ζak

2 − ζaj2

ζak2 + ζaj2

)2

= (−1)(p−1)/4
∏

16j<k6n(ζak
2 − ζaj2)2∏

16j<k6n(ζaj2 + ζak2)2
= p(p−3)/4ε

(a
p
)(2−( 2

p
))h(p)

p

with the aid of Lemma 2.4(i).

Case 2. (ab
p

) = −1.

Recall that T
(1)
p (a, b) = det[cjk]16j,k6n with cjk = tanπ(aj2 + bk2)/p. By Lemma 2.1,

T (1)
p (a, b, x) = det[x+ cjk]16j,k6n = T (1)

p (a, b) + x det[djk]1<j,k6n, (3.4)

where djk = cjk − cj1 − c1k + c11. In light of (3.2) and (3.4),

det

[
2i

ζaj2+bk2 + 1

]
16j,k6n

= det[i + cjk]16j,k6n = T (1)
p (a, b) + i det[djk]1<j,k6n,

and hence (1.5) is implied by

Dp(a, b) := det

[
2i

ζaj2+bk2 + 1

]
16j,k6n

= ±2(p−1)/2p(p−3)/4. (3.5)

(Note that both T
(1)
p (a, b) and det[djk]1<j,k6n are real numbers.)

In view of Lemma 2.2 and (3.1),

Dp(a, b) =
n∏
k=1

(
2i

ζbk2

)
× det

[
1

ζaj2 + ζ−bk2

]
16j,k6n

=
(2i)n∏n
k=1 ζ

bk2
×
∏

16j<k6n(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2)∏n

j=1

∏n
k=1(ζ

aj2 + ζ−bk2)

= (−1)(p−1)/42(p−1)/2

∏
16j<k6n(ζak

2 − ζaj2)(ζ−bk2 − ζ−bj2)∏n
j=1

∏n
k=1(ζ

aj2+bk2 + 1)
.
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Note that
n∏
j=1

n∏
k=1

(ζaj
2+bk2 + 1) =

n∏
j=1

n∏
k=1

1− ζ2aj2+2bk2

1− ζaj2+bk2
= 1

by Lemma 2.5. So

Dp(a, b) = (−1)(p−1)/42(p−1)/2
∏

16j<k6n

(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2). (3.6)

Observe that ∏
16j<k6n

(ζak
2 − ζaj2)2(ζ−bk2 − ζ−bj2)2 = p(p−3)/2ε

((a
p
)+(−b

p
))h(p)

p = p(p−3)/2

by (2.7). Therefore (3.5) holds and hence so does (1.5).
In view of the above, we have completed the proof of part (i) of Theorem 1.1. �

Proof of the Second Part of Theorem 1.1. As p ≡ 3 (mod 4), we have n = (p−1)/2 ≡ 1 (mod 2).
Case 1. (ab

p
) = −1.

In this case, b ≡ −ad2 (mod p) for some integer d 6≡ 0 (mod p), and hence by (3.3) we have

T (0)
p (a, b, x) = T (0)

p (a,−a, x) and T (1)
p (a, b, x) = T (1)

p (a,−a, x).

As

T (1)
p (a,−a,−x) = det

[
−x+ tan π

ak2 − aj2

p

]
16j,k6n

= (−1)nT (1)
p (a,−a, x) = −T (1)

p (a,−a, x),

we get T
(1)
p (a, b,−x) = −T (1)

p (a, b, x), and in particular T
(1)
p (a, b) = 0.

To obtain the equality T
(0)
p (a, b, x) = p(p+1)/4, we now determine T

(0)
p (a,−a, x) which equals

T
(0)
p (a, b, x). In view of Corollary 2.1 and (3.2), we have

T (0)
p (a,−a, x) = det

[
i + tan π

aj2 − ak2

p

]
06j,k6n

= det

[
2i

ζa(j2−k2) + 1

]
06j,k6n

=
n∏
k=0

(2iζak
2

)× det

[
1

ζaj2 + ζak2

]
06j,k6n

.

By Lemma 2.2,

det

[
1

ζaj2 + ζak2

]
06j,k6n

=

∏
06j<k6n(ζak

2 − ζaj2)2∏n
k=0(ζ

ak2 + ζak2)×
∏

06j<k6n(ζaj2 + ζak2)2
.

Therefore,

T (0)
p (a,−a, x) = in+1

∏
06j<k6n

(
ζak

2 − ζaj2

ζak2 + ζaj2

)2
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= (−1)(p+1)/4

n∏
k=1

(
ζak

2 − 1

ζak2 + 1

)2

×
∏

16j<k6n(ζak
2 − ζaj2)2∏

16j<k6n(ζaj2 + ζak2)2
.

By Lemma 2.4(ii),

n∏
k=1

(ζak
2 − 1)2 = −p and

n∏
k=1

(ζak
2

+ 1)2 =
n∏
k=1

(ζ2ak
2 − 1)2

(ζak2 − 1)2
=
−p
−p

= 1,

and ∏
16j<k6n

(ζak
2 − ζaj2)2 = (−p)(p−3)/4 and

∏
16j<k6n

(ζak
2

+ ζaj
2

)2 = 1.

Therefore

T (0)
p (a,−a, x) = (−1)(p+1)/4(−p)(−p)(p−3)/4 = p(p+1)/4

as desired.

Case 2. (ab
p

) = 1.

In this case, b ≡ ac2 (mod p) for some c ∈ Z with p - c, and hence by (3.3) we have

T
(0)
p (a, b, x) = T

(0)
p (a, a, x) and T

(1)
p (a, b, x) = T

(1)
p (a, a, x) since n+ 1 is even.

Clearly T
(0)
p (a, a) = det[ajk]06j,k6n with ajk = tanπ(aj2 + ak2)/p. By Lemma 2.1,

T (0)
p (a, a, x) = det[x+ ajk]06j,k6n = T (0)

p (a, a) + x det[bjk]16j,k6n (3.7)

where

bjk := ajk − aj0 − a0k + a00 = tanπ
aj2 + ak2

p
− tanπ

aj2

p
− tanπ

ak2

p
.

Using the well known identity

tan(x1 + x2) =
tanx1 + tanx2

1− tanx1 tanx2
,

we obtain

bjk = tanπ
aj2

p
× tan π

ak2

p
× tan π

aj2 + ak2

p

and hence

det[bjk]16j,k6n = T (1)
p (a, a)

n∏
j=1

tan2 π
aj2

p
. (3.8)

In view of (3.2), (3.7) and (3.8),

det

[
2i

ζa(j2+k2) + 1

]
06j,k6n

= det[i + ajk]06j,k6n = T (0)
p (a, a) + iT (1)

p (a, a)
n∏
j=1

tan2 π
aj2

p
.

Thus

T (0)
p (a, a) = 2(p−1)/2p(p+1)/4, T (1)

p (a, a) = 0 and det[bjk]16j,k6n = 0 (3.9)
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if and only if

det

[
2i

ζa(j2+k2) + 1

]
06j,k6n

= 2(p−1)/2p(p+1)/4. (3.10)

With the aid of Lemma 2.2,

det

[
2i

ζa(j2+k2) + 1

]
06j,k6n

=
n∏
k=0

2i

ζak2
× det

[
1

ζaj2 + ζ−ak2

]
06j,k6n

=
(2i)n+1∏n
k=0 ζ

ak2
×
∏

06j<k6n(ζak
2 − ζaj2)(ζ−ak2 − ζ−aj2)∏n

j=0

∏n
k=0(ζ

aj2 + ζ−ak2)
.

This, together with (3.1), yields

det

[
2i

ζa(j2+k2) + 1

]
06j,k6n

(−1)(p+1)/42(p+1)/2

∏
06j<k6n(ζak

2 − ζaj2)(ζ−ak2 − ζ−aj2)∏n
j=0

∏n
k=0(ζ

a(j2+k2) + 1)
. (3.11)

By Lemma 2.4(ii),∏
06j<k6n

(ζak
2 − ζaj2)(ζ−ak2 − ζ−aj2)

=
n∏
k=1

(ζak
2 − 1)(ζ−ak

2 − 1)×
∏

16j<k6n

(ζaj
2 − ζak2)(ζ−aj2 − ζ−ak2)

= p× p(p−3)/4 = p(p+1)/4.

In view of Lemma 2.4(ii) and Lemma 2.5,

n∏
j=0

n∏
k=0

(ζa(j
2+k2) + 1) = (ζ0 + 1)

n∏
j=1

(
1− ζ2aj2

1− ζaj2

)2

×
n∏
j=1

n∏
k=1

1− ζ2a(j2+k2)

1− ζa(j2+k2)

= 2

(
2

p

)2(
2

p

)
= 2(−1)(p+1)/4.

Combining these with (3.11), we get (3.10) and hence (3.9) holds. In view of (3.7) and (3.9),
we finally obtain that

T (0)
p (a, b, x) = T (0)

p (a, a, x) = 2(p−1)/2p(p+1)/4.

By the above, we have finished the proof of part (ii) of Theorem 1.1. �

4. Proofs of Theorems 1.2-1.4

The following lemma is Frobenius’ extension (cf. [1]) of the Zolotarev lemma [14].

Lemma 4.1. Let n be a positive odd integer, and let a ∈ Z be relatively prime to n. For
j = 0, . . . , n−1, let λa(j) be the least nonnegative residue of aj modulo n. Then the permutation
λa of {0, . . . , n− 1} has the sign sign(λa) = ( a

n
).
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We also need another lemma.

Lemma 4.2. Let n > 1 be an odd number and let a ∈ Z with gcd(a, n) = 1. Then∏
16j<k6n−1

(
e2πiak/n − e2πiaj/n

)2
= (−1)(n−1)/2nn−2. (4.1)

Proof. Let ζ = e2πia/n. Clearly,

n−1∏
r=1

(1− ζr) = lim
x→1

xn − 1

x− 1
= n (4.2)

and hence

(−1)(
n−1
2 )

∏
16j<k6n−1

(ζk − ζj)2 =
n−1∏
j=1

n−1∏
k=1
k 6=j

(ζj − ζk) =
n−1∏
j=1

n−1∏
k=1
k 6=j

ζj(1− ζk−j)

=
n−1∏
j=1

(
(ζj)n−2

1− ζ−j
n−1∏
k=0
k 6=j

(1− ζk−j)
)

=
ζ(n−1)

∑n−1
j=0 j∏n−1

j=1 (ζj − 1)

n−1∏
j=1

n−1∏
r=1

(1− ζr) = nn−2.

So (4.1) holds. �

Proof of Theorem 1.2. In view of Lemma 4.1, for each δ = 0, 1 we have

det

[
x+ tan π

aj + bk

n

]
δ6j,k6n−1

=
(a
n

)
det

[
x+ tan π

j + bk

n

]
δ6j,k6n−1

=

(
−ab
n

)
D(δ)
n (x),

where

D(δ)
n (x) := det

[
x+ tan π

j − k
n

]
δ6j,k6n−1

.

Since

D(0)
n (−x) = det

[
−x+ tan π

k − j
n

]
06j,k6n−1

= det

[
−x− tanπ

j − k
n

]
06j,k6n−1

= (−1)n det

[
x+ tan π

j − k
n

]
06j,k6n−1

= −D(0)
n (x),

we have

det

[
−x+ tan π

aj + bk

n

]
06j,k6n−1

= −
(
−ab
n

)
D(0)
n (x) = − det

[
x+ tan π

aj + bk

n

]
06j,k6n−1

and hence (1.8) holds.
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Now it remains to show that D
(1)
n (x) = nn−2. Write ζ = e2πi/n. Similar to (3.2), we have

i + tan π
j − k
n

=
2i

ζj−k + 1
for all j, k = 1, . . . , n− 1.

Thus

D(1)
n (i) = det

[
2i

ζj−k + 1

]
16j,k6n−1

=
n−1∏
k=1

(2iζk)× det

[
1

ζj + ζk

]
16j,k6n−1

.

By Lemma 2.2,

det

[
1

ζj + ζk

]
16j,k6n−1

=

∏
16j<k6n−1(ζ

k − ζj)2∏n−1
j=1

∏n−1
k=1(ζj + ζk)

=

∏
16j<k6n−1(ζ

k − ζj)2∏n−1
k=1(2ζk)×

∏
16j<k6n−1(ζ

k + ζj)2
.

Therefore

D(1)
n (i) = in−1

∏
16j<k6n−1

(ζk − ζj)4

(ζ2k − ζ2j)2
= (−1)(n−1)/2

∏
16j<k6n−1

(ζk − ζj)4

(ζ2k − ζ2j)2
.

Combining this with Lemma 4.2, we immediately get D
(1)
n (i) = (nn−2)2/nn−2 = nn−2. By

Lemma 2.1,

D(1)
n (x) = D(1)

n (0) + rx

for certain real number r. As D
(1)
n (i) = nn−2, we have D

(1)
n (0) = nn−2 and r = 0. Thus

D
(1)
n (x) = D

(1)
n (0) = nn−2 as desired.

The proof of Theorem 1.2 is now complete. �

Proof of Theorem 1.3. For any nonzero real number x 6∈ πZ, we obviously have

cotx =
cosx

sinx
=

(eix + e−ix)/2

(eix − e−ix)/(2i)
= i +

2i

e2ix − 1
.

Thus

−i + cot π
aj2 + bk2

p
=

2i

ζaj2+bk2 − 1
for all j, k = 1, . . . , n,

where n = (p− 1)/2 and ζ = e2πi/p. Let

C(x) = det

[
x+ cot π

aj2 + bk2

p

]
16j,k6n

.

Then

C(−i) = det

[
2i

ζaj2+bk2 − 1

]
16j,k6n

=
n∏
k=1

(2iζ−bk
2

)× det

[
1

ζaj2 − ζ−bk2
]
16j,k6n

.
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By Lemma 2.2,

det

[
1

ζaj2 − ζ−bk2
]
16j,k6n

=

∏
16j<k6n(ζak

2 − ζaj2)(−ζ−bk2 − (−ζ−bj2))∏n
j=1

∏n
k=1(ζ

aj2 − ζ−bk2)

= (−1)(
n
2)
∏

16j<k6n(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2)

(
∏n

k=1 ζ
−bk2)n

∏n
j=1

∏n
k=1(ζ

aj2+bk2 − 1)
.

Note that
∏n

k=1 ζ
k2 = 1 by (3.1). So

C(−i) = (2i)n
(−1)(

n
2)
∏

16j<k6n(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2)

(−1)n
∏n

j=1

∏n
k=1(1− ζaj

2+bk2)
. (4.3)

Case 1. p ≡ 1 (mod 4), i.e., 2 | n.
In this case, (ab

p
) = (−ab

p
) = −1. By Lemma 2.5,

n∏
j=1

n∏
k=1

(1− ζaj2+bk2) = p(p−1)/4.

Combining this with (4.3) and (3.6), we get

C(−i) =
2(p−1)/2

p(p−1)/4

∏
16j<k6n

(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2) =

Dp(a, b)

(−p)(p−1)/4
,

where Dp(a, b) is defined as in (3.5). Thus

C(−i) =
Dp(a, b)

(−p)(p−1)/4
=

T
(1)
p (a, b)

(−p)(p−1)/4
= ±2(p−1)/2

√
p

in view of (3.2) and (1.5). By Lemma 2.1, C(x) = C(0) + rx for certain real number r. Since
C(−i) is real, we have r = 0 and hence

C(x) = C(−i) =
T

(1)
p (a, b)

(−p)(p−1)/4
= ±2(p−1)/2

√
p

.

Case 2. p ≡ 3 (mod 4), i.e., 2 - n.
In light of (2.9), ∏

16j<k6n

(ζak
2 − ζaj2)(ζ−bk2 − ζ−bj2) = p(p−3)/4.

Combining this with (2.11) and (4.3), we obtain

C(−i) = (2i)n(−1)(
n
2) p(p−3)/4

(−1)n(−1)(h(−p)−1)/2(a
p
)p(p−1)/4i

=
2ni(i2)(n−1)/2(−1)(n−1)/2

(−1)(h(−p)+1)/2(a
p
)
√
p i
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and hence

C(−i) = (−1)(h(−p)+1)/2

(
a

p

)
2(p−1)/2
√
p

is a real number. Combining this with Lemma 2.1, we get that

C(x) = C(−i) = (−1)(h(−p)+1)/2

(
a

p

)
2(p−1)/2
√
p

.

In view of the above, we have completed the proof of Theorem 1.3. �

The following lemma is a well known result on quadratic Gauss sums (cf. [6, pp. 70-76]).

Lemma 4.3. Let p be an odd prime. Then, for any integer a 6≡ 0 (mod p), we have

p−1∑
x=0

e2πiax
2/p =

(
a

p

) p−1∑
t=0

(
t

p

)
e2πit/p =

(
a

p

)√
(−1)(p−1)/2p.

Let p be an odd prime, and let ζ = e2πi/p. For a, b ∈ Z with p - ab, Lemmas 2.2 and 4.3

are helpful to evaluate det[z+ 1/(ζaj
2

+ ζbk
2
)]16j,k6(p−1)/2. However, we actually only need the

case z = 0 in our previous proofs of Theorems 1.1–1.3.

Proof of Theorem 1.4. The Galois group Gal(Q(e2πi/p)/Q) consists of those Q-automorphisms
σa (1 ≤ a ≤ p− 1) with σa(e

2πi/p) = e2πia/p. For any integer x 6≡ 0 (mod p), we have

cotπ
x

p
= i

eπix/p + e−πix/p

eπix/p − e−πix/p
= i

e2πix/p + 1

e2πix/p − 1
.

It follows that
Dp

i(p−1)/2
= det

[
e2πijk/p + 1

e2πijk/p − 1

]
16j,k6(p−1)/2

.

Let a ∈ {1, . . . , p− 1}. By the last equality,

σa

(
Dp

i(p−1)/2

)
= σa

( ∑
τ∈S(p−1)/2

sign(τ)

(p−1)/2∏
j=1

e2πijτ(j)/p + 1

e2πijτ(j)/p − 1

)

=
∑

τ∈S(p−1)/2

sign(τ)

(p−1)/2∏
j=1

e2πiajτ(j)/p + 1

e2πiajτ(j)/p − 1

= det

[
e2πiajk/p + 1

e2πiajk/p − 1

]
16j,k6(p−1)/2

=
1

i(p−1)/2
det

[
cotπ

ajk

p

]
1≤j,k≤(p−1)/2

.

By Gauss’ Lemma (see, e.g., [6, p. 52]),(
a

p

)
= (−1)|{1≤j≤(p−1)/2: {aj/p}>1/2}|,
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where {x} denotes the fractional part of a real number x. Therefore,

σa

(
Dp

i(p−1)/2

)
=

(a
p
)

i(p−1)/2
det

[
cotπ

ρa(j)k

p

]
1≤j,k≤(p−1)/2

,

where ρa(j) is the unique r ∈ {1, . . . , (p− 1)/2} with aj ≡ ±r (mod p). Combining this with
Lemma 2.3, we deduce that

σa

(
Dp

i(p−1)/2

)
=

(a
p
)

i(p−1)/2

(
a

p

)(p+1)/2

det

[
cot π

jk

p

]
1≤j,k≤(p−1)/2

=

(
a

p

)(p−1)/2
Dp

i(p−1)/2
.

If p ≡ 1 (mod 4), then i(p−1)/2 = (−1)(p−1)/4 ∈ Q and hence σa(Dp) = Dp. When p ≡ 3 (mod 4),
by Lemma 4.3 we have

√
−p ∈ Q(e2πi/p) and

σa(
√
−p) = σa

( p−1∑
x=0

e2πix
2/p

)
=

p−1∑
x=0

e2πiax
2/p =

(
a

p

)√
−p,

therefore

σa

(
(−1)(p+1)/4Dp√

p

)
= σa

(
Dp

i(−1)(p−3)/4
√
−p

)
=
σa(Dp/i

(p−1)/2)

σa(
√
−p)

=
(a
p
)Dp/i

(p−1)/2

(a
p
)
√
−p

= (−1)(p+1)/4Dp√
p

and hence σa(Dp/
√
p) = Dp/

√
p.

By the above, if p ≡ 1 (mod 4), then σ(Dp) = Dp for all σ ∈ Gal(Q(e2πi/p)/Q), and hence
Dp ∈ Q by Galois theory. Similarly, when p ≡ 3 (mod 4) we have Dp/

√
p ∈ Q.

The proof of Theorem 1.4 is now complete. �

5. Some open conjectures

Conjecture 5.1. Let p be any odd prime. Then(
−2

p

)
det [cotπjk/p]16j,k6(p−1)/2

2(p−3)/2p(p−5)/4
∈ {1, 2, 3, . . .}, (5.1)

and this number is divisible by h(−p) if p ≡ 3 (mod 4).

Remark 5.1. By Theorem 1.4, for any odd prime p we have

det

[
cotπ

jk

p

]
16j,k6(p−1)/2

∈ p(p−1)/4Q.
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Conjecture 5.2. Let n be a positive integer.
(i) The number

sn := (2n+ 1)−n/2 det

[
tan π

jk

2n+ 1

]
16j,k6n

(5.2)

is always an integer.
(ii) We have

det

[
tan2 π

jk

2n+ 1

]
16j,k6n

∈ (2n+ 1)(n+1)/24n−1Z. (5.3)

Remark 5.2. Via Mathematica we find that

s1 = 1, s2 = −2, s3 = s4 = 4, s5 = 48, s6 = −160,

s7 = 32, s8 = 2176, s9 = 6912, s10 = 0, s11 = 273408.

Let tn denote the nth term of the sequence [5, A277445], which is the determinant of a matrix
T (n) = [tjk]16j,k6n with entries among 0,±1 such that

2
n∑
k=1

tjk sin
πk

2n+ 1
= tan

πj

2n+ 1
for all j = 1, . . . , n.

We guess that sn = −tn if n ≡ 3 (mod 4), and sn = tn otherwise.

Conjecture 5.3. For any odd integer n > 1, we have

det

[
tan2 π

j + k

n

]
16j,k6n−1

∈ nn−2Z. (5.4)

Remark 5.3. We are able to prove that det[tan2 π j−k
n

]16j,k6n−1 ∈ Z for any odd integer n > 1.

Conjecture 5.4. Let p ≡ 3 (mod 4) be a prime, and let a, b ∈ Z with p - ab. Then

det

[
tan2 π

aj2 + bk2

p

]
16j,k6(p−1)/2

∈ p(p−3)/4Z (5.5)

and

det

[
tan2 π

aj2 + bk2

p

]
06j,k6(p−1)/2

∈ p(p+1)/4Z. (5.6)

If (ab
p

) = 1, then

det

[
cot2 π

aj2 + bk2

p

]
16j,k6(p−1)/2

∈ 2p−3

p
Z. (5.7)

Let p ≡ 1 (mod 4) be a prime, and let a, b ∈ Z with p - ab. Choose q ∈ Z with q2 ≡
−1 (mod p). Then

det

[(
a(qj)2 + b(qk)2

p

)
tanπ

a(qj)2 + b(qk)2

p

]
06j,k6(p−1)/2
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= (−1)(p+1)/2 det

[(
aj2 + bk2

p

)
tanπ

aj2 + bk2

p

]
06j,k6(p−1)/2

and hence

det

[(
aj2 + bk2

p

)
tanπ

aj2 + bk2

p

]
06j,k6(p−1)/2

= 0. (5.8)

Conjecture 5.5. Let p ≡ 3 (mod 4) be a prime and let a, b ∈ Z with p - ab. Then

det

[(
aj2 + bk2

p

)
tanπ

aj2 + bk2

p

]
06j,k6(p−1)/2

∈ pZ. (5.9)

If (ab
p

) = 1, then

√
p det

[(
aj2 + bk2

p

)
cotπ

aj2 + bk2

p

]
16j,k6(p−1)/2

∈ Z. (5.10)

Remark 5.4. For any prime p ≡ 3 (mod 4), set

a±p :=
1

p
det

[(
j2 ± k2

p

)
tanπ

j2 ± k2

p

]
06j,k6(p−1)/2

.

Via Mathematica we find that

a+3 = a−3 = −1, a+7 = 60, a−7 = 3, a+11 = 26 × 33, a−11 = −373,

a+19 = 212 × 3× 52 × 7× 11× 17 and a−19 = −5× 7× 89× 3803.

Conjecture 5.6. Let p be an odd prime.
(i) Define

S(p) := det

[
sec 2π

jk

p

]
06j,k6(p−1)/2

.

If p ≡ 1 (mod 4), then S(p) = 0. When p ≡ 3 (mod 4), the number

S(p)

2(p−3)/2(−p)(p+1)/4

is a positive odd integer.
(ii) We have

cp :=
1

2(p−1)/2p(p−5)/4
det

[
csc 2π

jk

p

]
16j,k6(p−1)/2

∈ Z.

Moreover, cp = 0 if p ≡ 7 (mod 8).

Remark 5.5. By the way we prove Theorem 1.4, we can show that S(p)/p(p+1)/4 ∈ Q and
cp ∈ Q for any odd prime p. In 2019 the author [12] conjectured that

1

2n
det

[
cos π

jk

n

]
06j,k6n

= det

[
cos π

jk

n

]
16j,k6n

= (−1)b
n+1
2
cn

(n−1)/2

2(n−1)/2 (5.11)

for every positive integer n, this was later confirmed by Petrov (cf. the answer in [12]).
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Conjecture 5.7. For any prime p ≡ 3 (mod 4), there is an integer xp ≡ 1 (mod p) such that

det

[
sec 2π

(j − k)2

p

]
06j,k6p−1

= −p(p+3)/2x2p. (5.12)

Remark 5.6. For p = 3, 7, 11, we may take xp = 1 in (5.12). For each prime p ≡ 3 (mod 4),
the author [13] conjectured in 2021 that

det

[
sin 2π

(j − k)2

p

]
16j,k6p−1

= −p
(p−1)/2

2p−1
,

which was later confirmed by Kalmynin (cf. the answer in [13]).
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