
J. Syst. Sci. Complex., 37 (2024), in press.

MIXED QUANTIFIER PREFIXES OVER DIOPHANTINE

EQUATIONS WITH INTEGER VARIABLES

ZHI-WEI SUN

Abstract. In this paper we first review the history of Hilbert’s Tenth
Problem, and then study mixed quantifier prefixes over Diophantine e-
quations with integer variables. For example, we prove that ∀2∃4 over
Z is undecidable, that is, there is no algorithm to determine for any
P (x1, . . . , x6) ∈ Z[x1, . . . , x6] whether

∀x1∀x2∃x3∃x4∃x5∃x6(P (x1, . . . , x6) = 0),

where x1, . . . , x6 are integer variables. We also have some similar unde-
cidable results with universal quantifies bounded, for example, ∃2∀2∃2
over Z with ∀ bounded is undecidable. We conjecture that ∀2∃2 over Z
is undecidable.

1. Introduction

In 1900, at the Paris conference of ICM, D. Hilbert presented 23 famous
mathematical problems. Many of them are questions of others, however the
tenth one is due to Hilbert himself. In modern language, Hilbert’s Tenth
Problem (HTP) asks for an effective algorithm to test whether an arbitrary
polynomial equation

P (z1, . . . , zn) = 0

(with integer coefficients) has solutions over the ring Z of the integers, where
n is an arbitrary positive integer. However, the concept of algorithm or
computation was vague in 1900.

Let N = {0, 1, 2, . . .} and call each n ∈ N a natural number. What kind
of number-theoretic functions into N (with natural number variables) are
computable? This was investigated by logicians in the 1930s.

We first introduce the basic functions:
(1) Zero function: O(x) = 0 (for all x ∈ N).
(2) Successor function: S(x) = x+ 1.
(3) Projection functions: Ink(x1, . . . , xn) = xk (1 6 k 6 n)

Key words and phrases. Undecidability, Diophantine equations, Hilbert’s tenth prob-
lem, mixed quantifiers.
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For number-theoretic functions g(y1, . . . , ym) and hi(x1, . . . , xn) (1 6 i 6
m), we define their composition as follows:

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn))

Given number-theoretic functions g(x1, . . . , xn) and h(x1, . . . , xn, y, z), we
define {

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

and say that f is obtained from g and h via primitive recursion.
For a number-theoretic function g(x1, . . . , xn, y), we define

f(x1, . . . , xn) = µy > 0 (g(x1, . . . , xn, y) = 0)

as the least y ∈ N with g(x1, . . . , xn, y) = 0; if g(x1, . . . , xn, y) 6= 0 for all
y ∈ N, then f(x1, . . . , xn) is undefined. We say that f is obtained from the
function g via the µ-operator.

The partial recursive functions are the basic functions and those obtained
from the basic functions by applying composition, primitive recursion and
the µ-operator a finite number of times. For any partial recursive function f ,
it is easy to see that if f(x1, . . . , xn) is defined then the value f(x1, . . . , xn)
is effectively computable by intuition.

In 1936 A. Turing introduced the notion of Turing machine which is an
abstract machine that manipulates symbols on a infinite strip of tape ac-
cording to a finite table of rules (i.e., a program) involving four kinds of
basic operations: Write 1, change 1 to 0 (blank), move to the left unit (L),
move to the right unit (R). A function f(x1, . . . , xn) is Turing computable
if there is a program according to which the Turing machine with initial
inputs x1, . . . , xn finally stops and yields the value f(x1, . . . , xn) as output
if f(x1, . . . , xn) is defined, and never stops if f(x1, . . . , xn) is undefined.

The partial recursive functions and Turing computable functions were
proved to be equivalent by S. C. Kleene in 1936. The following thesis was
proposed by A. Church in the same year.

Church’s Thesis. If a function f into N with natural number variables
is effectively computable by intuition, then it must be a partial recursive
function (equivalently, a Turing computable function).

Church’s Thesis has been widely accepted after 1936. So we have the
exact definition of computable functions which refer to the partial recursive
functions or Turing computable functions, and hence HTP has its accurate
meaning.

A subset A of N is said to be an r.e. (recursively enumerable) set (or a
semi-decidable set) if the function

fA(x) =

{
1 if x ∈ A,
undefined if x ∈ N \A.
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is a partial recursive function. It is easy to show that

A ⊆ N is an r.e. set

⇐⇒ A is the domain of a partial recursive function

⇐⇒ A is the emptyset or the range of a total recursive function f(x).

A set A ⊆ N is called decidable or recursive, if the characteristic function

χA(x) =

{
1 if x ∈ A,
0 if x ∈ N \A.

is Turing computable (or recursive). Clearly, A is recursive if and only if both
A and N\A are r.e. sets. A well known result in the theory of computability
states that there is a nonrecursive r.e. set (cf. [1, pp. 140-141]).

From now on, variables range over Z unless specified. Let P (z1, . . . , zn) ∈
Z[z1, . . . , zn]. Then

∃z1 . . . ∃zn (P (z1, . . . , zn) = 0)

⇐⇒ ∃x1 > 0 . . . ∃xn > 0

( ∏
ε1,...,εn∈{±1}

P (ε1x1, . . . , εnxn) = 0

)
.

On the other hand, by Lagrange’s four-square theorem (each m ∈ N can be
written as the sum of four squares), we have

∃x1 > 0 . . . ∃xn > 0 (P (x1, . . . , xn) = 0)

⇐⇒ ∃u1∃v1∃y1∃z1 . . . ∃un∃vn∃yn∃zn
(P (u21 + v21 + y21 + z21 , . . . , u

2
n + v2n + y2n + z2n) = 0)

So HTP has the following equivalent form (HTP over N): Is there an algo-
rithm to decide for any polynomial P (x1, . . . , xn) with integer coefficients
whether the Diophantine equation P (x1, . . . , xn) = 0 has solutions with
x1, . . . , xn ∈ N?

A relation R(a1, . . . , am) with a1, . . . , am ∈ N is said to be Diophantine if
there is a polynomial P (t1, . . . , tm, x1, . . . , xn) with integer coefficients such
that

R(a1, . . . , am) ⇐⇒ ∃x1 > 0 . . . ∃xn > 0 (P (a1, . . . , am, x1, . . . , xn) = 0).

A set A ⊆ N is Diophantine if and only if the predicate a ∈ A is Diophantine.
It is easy to see that any Diophantine set A is an r.e. set. In fact, for
a given element a ∈ N we may search for the natural number solutions of
the Diophantine equation associated with A. If it has a solution, then we
will find one and let the computer stop and give the output 1. If it has no
solution, the computer will never stop.

In 1944 E. L. Post thought that HTP begs for an unsolvability proof (i.e.,
HTP might be undecidable), motivated by this M. Davis [3] published in
1953 the following important hypothesis.

Davis Daring Hypothesis. Any r.e. set A ⊆ N is Diophantine.
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Under this hypothesis, for any nonrecursive r.e. setA there is a polynomial
P (x, x1, . . . , xn) such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃x1 > 0 . . . ∃xn > 0 (P (a, x1, . . . , xn) = 0).

Thus Davis Daring Hypothesis implies that HTP over N is undecidable.
The exponential Diophantine equations over N have the form

E1(x1, . . . , xm) = E2(x1, . . . , xm),

where E1 and E2 are expressions constructed from variables and particular
natural numbers using addition, multiplication, and exponentiation. Here is
an example of exponential Diophantine equation:

x2
y

+ y2 + yy
z

= 5zx
x+3z.

A relation R(a1, . . . , am) with a1, . . . , am ∈ N is said to be exponential Dio-
phantine if there is an exponential Diophantine equation

E(t1, . . . , tm, x1, . . . , xn) = 0

over N such that

R(a1, . . . , am) ⇐⇒ ∃x1 > 0 . . . ∃xn > 0 (E(a1, . . . , am, x1, . . . , xn) = 0).

A set A ⊆ N is called exponential Diophantine if the predicate a ∈ A is
Diophantine. The following important result concerning exponential Dio-
phantine equations was established by Davis, H. Putnam and J. Robinson
[5] in 1961.

Davis-Putnam-Robinson Theorem. Any r.e. set is exponential Dio-
phantine. Thus there is no algorithm to decide for any given exponential
Diophantine equation whether it has solutions over N.

Based on this result, in 1970 Y. Matiyasevich [9] utilized the Fibonacci
sequence to prove that the exponential relation a = bc (with a, b, c ∈ N)
is Diophantine. This, together with the Davis-Putnam-Robinson Theorem,
led him to prove the Davis Daring Hypothesis completely. Thus, HTP was
finally solved negatively in 1970. The reader may consult Davis [4] or Matiya-
sevich [13] for a popular introduction to the negative solution of HTP.

In 1975 Matiyasevich proved further that any r.e. set A ⊆ N has a Dio-
phantine representation over N with only 9 unknowns, the detailed proof of
this 9 unknowns theorem appeared in J. P. Jones [8].

Note that a system of finitely many Diophantine equations over S ⊆ Z is
equivalent to a single Diophantine equation over S. In fact, if Pi(z1, . . . , zn) ∈
Z[z1, . . . , zn] for all i = 1, . . . , k, then

P1(z1, . . . , zn) = 0 ∧ . . . ∧ Pk(z1, . . . , zn) = 0

⇐⇒ P 2
1 (z1, . . . , zn) + . . .+ P 2

k (z1, . . . , zn) = 0.

For i = 1, . . . , n, let each ρi be one of the two quantifiers ∀ and ∃. If there
is no algorithm to determine for any P (x1, . . . , xn) ∈ Z[x1, . . . , xn] whether

ρ1x1 > 0 · · · ρnxn > 0 (P (a, x1, . . . , xn) = 0),
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then we say that ρ1 · · · ρn over N is undecidable. For example, ∃9 over N is
undecidable by the 9 unknowns theorem, but it is open whether ∃8 over N
is decidable or not. We may also consider ρ1 · · · ρn over N with ∀ bounded,
for example, Matiyasevich [11] proved that ∃∀∃2 over N with ∀ bounded is
undecidable, that is, there is no algorithm to determine for any P (x) ∈ Z[x]
and Q(x1, . . . , x4) ∈ Z[x0, . . . , x4] whether

∃x1 > 0∀x2 ∈ [0, P (x1)]∃x3 > 0∃x4 > 0 (Q(a, x1, . . . , x4) = 0).

After the negation solution of Hilbert’s tenth problem, it is natural to ask
the following question: For what kinds of mixed quantifier prefixes ρ1 · · · ρn,
ρ1, · · · ρn over N (with ∀ bounded or unbounded) is undecidable? After a
series of efforts due to Matiyasevich [10, 11], Matiyasevich and Robinson
[14, 15], and Jones [7], the only open cases are ∀∃2, ∃∀∃, and ∃∀∃ with ∀
bounded. J. M. Rojas [20, Conjecture 3] conjectured that ∃∀∃ over N is
decidable.

Both ∃ over N and ∃ over Z are decidable in polynomial time (see, e.g.,
[15, p. 525]). In fact, if a0, a1, . . . , an and z are integers with a0z 6= 0 and∑n

i=0 aiz
n−i = 0, then

|z|n 6 |a0zn| 6
n∑
i=1

|ai| · |z|n−i 6
n∑
i=1

|ai| · |z|n−1

and hence

|z| 6
n∑
i=1

|ai|.

In 1987 S. P. Tung [27] showed that for each n ∈ Z+ = {1, 2, 3, . . .} the
problem to determine

∀x1 · · · ∀xn∃xn+1 (P (x1, . . . , xn, xn+1) = 0)

with P a general polynomial in Z[x1, . . . , xn+1] is co-NP-complete.
For a finite sequence of quantifiers ρ1, . . . , ρn, we say that ρ1 · · · ρn over Z

is undecidable if there is no algorithm to determine for any P (x1, . . . , xn) ∈
Z[x1, . . . , xn] whether

ρ1x1 · · · ρnxn (P (x1, . . . , xn) = 0). (1.1)

What kinds of ρ1 · · · ρn over Z are undecidable? In 1985 Tung [26] proved
that ∃27 and ∀27∃2 over Z are undecidable. We may also consider ρ1 · · · ρn
over Z with ∀ bounded. We say that ρ1 · · · ρn over Z with ∀ bounded is
undecidable if there is no general algorithm to determine whether (1.1) with
ρjxj (for those 1 6 j 6 n with ρj = ∀) replaced by

∀xj ∈ [Pj(xi : 1 6 i < j & ρi = ∃), Qj(xi : 1 6 i < j & ρi = ∃)]

holds or not, where P and those Pj and Qj with ρj = ∀ are polynomials with
integer coefficients. For example, ∃∀2∃ over Z is undecidable if and only if
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there is no algorithm to determine for P1(x), P2(x), P3(x), P4(x) ∈ Z[x] and
Q(x1, . . . , x4) ∈ Z[x1, . . . , x4] whether

∃x1∀x2 ∈ [P1(x1), P2(x1)]∀x3 ∈ [P3(x1), P4(x1)]∃x4(Q(x1, x2, x3, x4) = 0).

Clearly, if ρ1 · · · ρn over Z (with ∀ bounded or not) is decidable, then so is
ρi1ρi2 · · · ρim over Z with 1 6 i1 < i2 < . . . < im. Also, ∀ρ1 · · · ρn over Z
with ∀ bounded is decidable if and only if ρ1 · · · ρn over Z with ∀ bounded is
decidable. Note also that ρ1, · · · ρn over Z is undecidable (with ∀ unbounded
or bounded) if and only if ρ1 · · · ρn∀ over Z is undecidable. In fact, for the
polynomial

P (x1, . . . , xn, t) =
k∑
i=0

Pi(x1, . . . , xn)ti with Pi(x1, . . . , xn) ∈ Z[x1, . . . , xn],

we have

∀t(P (x1, . . . , xn, t) = 0) ⇐⇒
k∑
i=0

Pi(x1, . . . , xn)2 = 0

for all x1, . . . , xn ∈ Z; if P∗(x1, . . . , xn), P ∗(x1, . . . , xn) ∈ Z[x1, . . . , xn], then
for any x1, . . . , xn ∈ Z we have

∀t ∈ [P∗(x1, . . . , xn), P ∗(x1, . . . , xn)](P (x1, . . . , xn, t) = 0)

⇐⇒
∑

06r6P ∗(x1,...,xn)−P∗(x1,...,xn)

( k∑
i=0

Pi(x1, . . . , xn)(P∗(x1, . . . , xn) + r)i
)2

= 0

⇐⇒
∑

06r6P ∗(x1,...,xn)−P∗(x1,...,xn)

2k∑
j=0

P̄j(x1, . . . , xn)rj = 0,

where P̄j(x1, . . . , xn) (0 6 j 6 2k) are suitable polynomials with integer
coefficients. For any j,m ∈ N, it is well known (cf. [6, pp. 228-231]) that

m∑
r=0

rj =
1

j + 1

m∑
r=0

(Bj+1(r + 1)−Bj+1(r)) =
Bj+1(m+ 1)−Bj+1(0)

j + 1
,

where Bj+1(x) denotes the Bernoulli polynomial (with rational number co-
efficients) of degree j + 1.

Based on the work [22], the author [24] proved that for any r.e. set A
there is a polynomial P (x0, . . . , x9) ∈ Z[x0, . . . , x9] such that for any a > 0
we have

a ∈ A ⇐⇒ ∃x1 · · · ∃x8∃x9 > 0 (P (a, x1, . . . , x9) = 0).

(See also the book [25] for a complete proof.) This implies Matiyasevich’s 9
unknowns theorem since

a ∈ A ⇐⇒ ∃x1 > 0 · · · ∃x9 > 0

( ∏
ε1,...,ε8∈{±1}

P (a, ε1x1, . . . , ε8x8, x9) = 0

)
.
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As a consequence of this result, the author [24] obtained the 11 unknowns
theorem (∃11 over Z is undecidable) and also the undecidability of ∀10∃2
and ∀9∃3 over Z. For their applications, one may consult [2, 17, 16, 19, 28].
The author [24, Conjecture 1.8] conjectured that there is no algorithm to
determine for any P (x, y, z) ∈ Z[x, y, z] whether the equation P (x2, y2, z2) =
0 has integer solutions, which implies that ∃3 over Z is undecidable.

Now we state the main result of this paper.

Theorem 1.1. (i) All those

∀∃7, ∀2∃4, ∃∀∃4, ∃∀2∃3, ∃2∀∃3, ∀∃∀∃3,
∀∃2∀2∃2, ∀2∃∀2∃2,∀∃∀3∃2, ∃2∀3∃2, ∃∀∃∀2∃2, ∃∀6∃2

over Z are undecidable.
(ii) All those

∃∀∃4, ∃∀2∃3, ∃2∀∃3, ∃2∀2∃2, ∃∀∃∀∃2, ∃∀5∃2

over Z with ∀ bounded are undecidable.

Remark 1.1. In 1991 the author learnt from Tung that R. M. Robinson
was the first person to ask for such undecidable results over Z.

Given a finite sequence of quantifiers ρ1, . . . , ρn, we say that a set A ⊆ N
has a ρ1 · · · ρn-representation over Z if there is a polynomial P (x0, . . . , xn) ∈
Z[x0, . . . , xn] such that for any a ∈ N we have

a ∈ A ⇐⇒ ρ1x1 · · · ρnxn (P (a, x1, . . . , xn) = 0).

Similarly, we may define ρ1 · · · ρn-representations over Z with ∀ bound-
ed. The author [24] actually proved that any r.e. set A ⊆ N has a ∃11-
representation over Z, and any co-r.e. set (i.e., the complement of an r.e.
set A ⊆ N) has a ∀10∃2-representation, and a ∀9∃3-representation over Z.
By B.-K. Oh and the author [18, Corollary 1.1], the set

S = {2n+ 1 : n ∈ Z+, and 2n+ 1 is not a prime congruent to 3 modulo 4}
has a surprising ∃3-representation over Z: a ∈ N belongs to S if and only if

∃x∃y∃z (a2 = (2x+ 1)2 + 8(2y + 1)2 + 8(2z + 1)2).

For a subset A of N, we write Ā for N \ A, the complement of A in N.
Theorem 1.1 follows immediately from our following three theorems.

Theorem 1.2. Let A ⊆ N be an r.e. set.
(i) A has a ∃2∀∃3-representation over Z. Also, we may replace ∃2∀∃3 by

either of ∃2∀3∃2 and ∃∀∃∀2∃2. Also, Ā has a ∀2∃4-representation, a ∀∃∀∃3-
representation, and a ∀2∃∀2∃2-representation over Z.

(ii) A has a ∃2∀2∃2-representation over Z with ∀ bounded. Also, we may
replace ∃2∀2∃2 by either of ∃2∀∃3 and ∃∀∃∀∃2.
Theorem 1.3. Let A ⊆ N be an r.e. set.

(i) A has a ∃∀∃4-representation over Z, and also a ∃∀∃4-representation
over Z with ∀ bounded.

(ii) Ā has a ∀∃∀3∃2-representation over Z.
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Theorem 1.4. Let A ⊆ N be an r.e. set.
(i) A has a ∃∀2∃3-representation over Z, and also a ∃∀2∃3-representation

over Z with ∀ bounded. Also, A has a ∃∀6∃2-representation over Z, and a
∃∀5∃2-representation over Z with ∀ bounded.

(ii) Ā has a ∀∃7-representation over Z and also a ∀∃2∀2∃2-representation
over Z.

In Section 2 we will prove an auxiliary theorem. Sections 3-5 will be
devoted to our proofs of Theorems 1.2-1.4, respectively.

Although we have Theorem 1.1, there are many finite sequences of quan-
tifiers (such as ∀∃k (k = 2, 3, 4, 5, 6), and ∃∀m∃∀n∃ (m ∈ {2, 3, 4} and n ∈ N)
with ∀ bounded or not) for which we don’t know whether they are undecid-
able over Z.

It is believed that ∃3 over Z might be undecidable (cf. [15]). We pose
here a conjecture for further research.

Conjecture 1.1. ∀2∃2 over Z is undecidable.

We mention that HTP over the field Q of rational numbers is a difficult
open problem. Also, for a general number field K (which is a finite extension
of the field Q), HTP over the ring OK of all algebraic integers in K, remains
open. The reader may consult [2, 21] for certain progress.

Our theorems in this paper should have some potential applications. For
example, in the spirits of [2, 15, 28], if one investigates mixed quantifiers
over Diophantine equations with variables ranging over the rational field Q
or the Gaussian ring Z[i], our results on mixed quantifiers over Z will be
useful.

2. An auxiliary theorem

In this section we adapt Matiyasevich and Robinson’s ideas in [14, 15] to
establish an auxiliary theorem on representations of r.e. sets over Z which
will be helpful to our later proofs of Theorems 1.2-1.4.

Lemma 2.1. Let B > b > 0 and 0 < n0 < . . . < nν . Then an integer c has
the form

∑ν
i=0 ziB

ni with zi ∈ {0, . . . , b− 1} for all i = 0, . . . , ν if and only
if every interval [σi, τi] (i = 0, . . . , ν + 1) contains at least an integer, where

σ0 =
c

Bn0
, σi =

c+ 1− bBni−1

Bni
(i = 1, . . . , ν), σν+1 =

c+ 1− bBnν

(b2 + c2)Bnν
,

τi =
c

Bni
(i = 0, 1, . . . , ν) and τν+1 =

c

(b2 + c2)Bnν
.
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Proof. We first prove the “only if” direction. Suppose that c =
∑ν

i=0 ziB
ni

with zi ∈ {0, . . . , b− 1} for all i = 0, . . . , ν. For any j = 0, . . . , ν, we have

j∑
i=0

ziB
ni 6(b− 1)Bnj +

∑
06i<j

(b− 1)Bni

6(b− 1)Bnj +

nj−1∑
k=0

(B − 1)Bk = (b− 1)Bnj +Bnj − 1 = bBnj − 1

In particular, 0 6 c =
∑ν

i=0 ziB
ni 6 bBnν − 1 and hence σν+1 6 0 6 τν+1.

Set

xi =
ν∑
j=i

zjB
nj−ni for i = 0, 1, . . . , ν.

Then x0 = σ0, and

xi =
c−

∑i−1
j=0 zjB

nj

Bni
>
c− (bBni−1 − 1)

Bni
= σi

for all i = 1, . . . , ν. Also,

xi 6
ν∑
j=0

zjB
nj−ni =

c

Bni
= τi

for all i = 0, . . . , ν. Therefore, each interval [σi, τi] (i = 0, . . . , ν+1) contains
the integer xi. This proves the “only if” direction.

Now we consider the “if” direction. Suppose that there are integers
x0, . . . , xν+1 with σi 6 xi 6 τi for all i = 0, . . . , ν + 1. Since

|c+ 1− bBnν | 6 bBnν − 1 + |c| < (b2 + c2)Bnν ,

we have |σν+1| < 1. Note also that |τν+1| < 1. As

−1 < σν+1 6 xν+1 6 τν+1 < 1,

we must have xν+1 = 0. From σν+1 6 0 6 τν+1, we get 0 6 c < bBnν 6
Bnν+1. No matter B > 1 or B = 1, we can write

c =

nν∑
k=0

ckB
k

with cnν ∈ {0, . . . , b− 1} and ck ∈ {0, . . . , B − 1} for all k = 0, . . . , nν − 1.
As σ0 = τ0, we have σ0 = x0 ∈ Z and hence Bn0 | c. Thus ck = 0 for all

k = 0, . . . , n0 − 1.
Let 1 6 i 6 ν. As σi 6 xi 6 τi, we have

0 6 c− xiBni 6 bBni−1 − 1 6 BBni−1 − 1 < Bni−1+1 6 Bni

and hence c− xiBni is the least nonnegative residue of c modulo Bni . Thus

ni−1∑
k=0

ckB
k = c− xiBni < bBni−1 .

It follows that cni−1 < b and cni−1+1 = . . . = cni−1 = 0.
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By the above, we have c =
∑ν

i=0 ziB
ni with zi = cni ∈ {0, . . . , b − 1} for

all i = 0, . . . , ν. This ends our proof of the “if” direction. �

Lemma 2.2. Let σ0, τ0, . . . , σk, τk be real numbers with 0 6 τi − σi 6 1 for
all i = 0, . . . , k. Let W be an integer with

W > 1 + max{τi − τi+1 : i = 0, . . . , k − 1}.

(i) For any integer t with t 6 τ0 − 1 or t > τk + kW , we have

k∏
i=0

(t− σi − iW )(t+ 1− τi − iW ) > 0. (2.1)

(ii) Every interval [σi, τi] (0 6 i 6 k) contains an integer if and only if
(2.3) holds for all t ∈ Z.

Proof. Set σ′i = σi + iW and τ ′i = τi + iW for all i = 0, . . . , k. Note that

τ ′i − 1 6 σ′i 6 τ
′
i .

If 0 6 i < k, then

τ ′i = τi + iW 6 τi+1 − 1 +W + iW = τ ′i+1 − 1 6 σ′i+1.

Let t ∈ Z and 0 6 j 6 k. Suppose that (t− σ′j)(t+ 1− τ ′j) < 0, which is

equivalent to τ ′j − 1 < t < σ′j . For 0 6 i < j we have σ′i 6 τ ′i+1 − 1 6 · · · 6
τ ′j − 1 < t. If j < i 6 k, then t < σ′j 6 τ ′j+1 − 1 6 · · · 6 τ ′i − 1 6 σ′i. Thus

(t− σ′i)(t+ 1− τ ′i) > 0 for all i = 0, . . . , k with i 6= j, and hence

k∏
i=0

(t− σ′i)(t+ 1− τ ′i) < 0.

Therefore,

k∏
i=0

(t− σ′i)(t+ 1− τ ′i) > 0

⇐⇒ (t− σ′j)(t+ 1− τ ′j) > 0 for all j = 0, . . . , k

⇐⇒ t 6∈
k⋃
j=0

(τ ′j − 1, σ′j).

(i) If t 6 τ0 − 1, then t 6 τ ′0 − 1 6 τ ′1 − 1 6 · · · 6 τ ′k − 1 and hence∏k
i=0(t − σ′i)(t + 1 − τ ′i) > 0 by the above. Similarly, if t > τk + kW then

σ′0 6 σ
′
1 6 · · · 6 σ′k 6 τ ′k 6 t and hence

∏k
i=0(t− σ′i)(t+ 1− τ ′i) > 0.
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(ii) For any i = 0, . . . , k, clearly (τi − 1, σi) ∪ [σi, τi] = (τi − 1, τi] contains
a unique integer. So

[σi, τi] contains an integer for all i = 0, . . . , k

⇐⇒ (τi − 1, σi) contains no integer for all i = 0, . . . , k

⇐⇒ (τ ′i − 1, σ′i) contains no integer for all i = 0, . . . , k

⇐⇒
k∏
i=0

(t− σ′i)(t+ 1− τ ′i) > 0 for all t ∈ Z.

In view of the above, we have completed the proof of Lemma 2.2. �

Lemma 2.3. Let δ and L be positive integers. Suppose that z0, . . . , zν ∈ N
and

P (z0, . . . , zν) =
∑

i0,...,iν∈N
i0+···+iν6δ

ai0,...,iνz
i0
0 . . . z

iν
ν

with ai0,...,iν ∈ Z and |ai0,...,iν | 6 L. Let B be any integer greater than

2(1 + z0 + · · ·+ zν)δδ!L. Then P (z0, . . . , zν) = 0 if and only if

2C(B)D(B)−B(δ+1)ν+1

2B(δ+1)ν+1+1
6 z 6

2C(B)D(B) +B(δ+1)ν+1

2B(δ+1)ν+1+1
(2.2)

for some integer z, where C(x) = (1 +
∑ν

i=0 zix
(δ+1)i)δ and

D(x) =
∑

i0,...,iν∈N
i0+···+iν6δ

i0! . . . iν !(δ − i0 − · · · − iν)!ai0,...,iνx
(δ+1)ν+1−

∑ν
j=0 ij(δ+1)j .

Proof. Write

C(x) =

δ(δ+1)ν∑
i=0

cix
i and D(x) =

(δ+1)ν+1∑
j=0

djx
j .

Then ci > 0, and also |dj | 6 δ!L since the multi-nomial coefficient(
δ

i0, . . . , iν , δ − i0 − · · · − iν

)
=

δ!

i0! . . . iν !(δ − i0 − · · · − iν)!
> 1

for all i0, . . . , iν ∈ N with i0 + · · ·+ iν 6 δ. Write

C(x)D(x) =

(2δ+1)(δ+1)ν∑
k=0

rkx
k.

Then
rk =

∑
06i6δ(δ+1)ν

06j6(δ+1)ν+1

i+j=k

cidj

and

|rk| 6
δ(δ+1)ν∑
i=0

ciδ!L = C(1)δ!L = (1 + z0 + · · ·+ zν)δδ!L <
B

2
.
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By the multi-nomial theorem,

C(x) =
∑

i0,...,iν∈N
i0+···+iν6δ

(
δ

i0, . . . , iν , δ − i0 − · · · − iν

)
zi00 . . . z

iν
ν x

∑ν
j=0 ij(δ+1)j .

Therefore

r(δ+1)ν+1 =
∑

i0,...,iν∈N
i0+···+iν6δ

δ!ai0,...,iνz
i0
0 . . . z

iν
ν = δ!P (z0, . . . , zν).

Suppose that P (z0, . . . , zν) = 0. Then r(δ+1)ν+1 = 0. For the integer

z =

(2δ+1)(δ+1)ν∑
k=(δ+1)ν+1+1

rkB
k−1−(δ+1)ν+1

,

we have

C(B)D(B)− zB(δ+1)ν+1+1 =

(δ+1)ν+1−1∑
k=0

rkB
k

and hence∣∣∣C(B)D(B)− zB(δ+1)ν+1+1
∣∣∣ 6 (δ+1)ν+1−1∑

k=0

|rk|Bk

6
B − 1

2

(δ+1)ν+1−1∑
k=0

Bk 6
B(δ+1)ν+1

2
.

Therefore (2.2) is valid.
Now we assume that (2.2) holds for some z ∈ Z. We want to show that

P (z0, . . . , zν) = 0. By (2.2) we have∣∣∣C(B)D(B)− zB(δ+1)ν+1+1
∣∣∣ 6 1

2
B(δ+1)ν+1

.

Let

S := r(δ+1)ν+1 +

(2δ+1)(δ+1)ν∑
k=(δ+1)ν+1+1

rkB
k−(δ+1)ν+1 −Bz.

Then

SB(δ+1)ν+1
=r(δ+1)ν+1B(δ+1)ν+1

+

(2δ+1)(δ+1)ν∑
k=(δ+1)ν+1+1

rkB
k − zB(δ+1)ν+1+1

=C(B)D(B)−
(δ+1)ν+1−1∑

k=0

rkB
k − zB(δ+1)ν+1+1
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and hence

|SB(δ+1)ν+1 | 6|C(B)D(B)− zB(δ+1)ν+1+1|+
(δ+1)ν+1−1∑

k=0

|rk|Bk

6
B(δ+1)ν+1

2
+
B − 1

2

(δ+1)ν+1−1∑
k=0

Bk = B(δ+1)ν+1 − 1

2
.

Therefore we must have S = 0. It follows that B | r(δ+1)ν+1 . As∣∣r(δ+1)ν+1

∣∣ < B

2
,

we have

δ!P (z0, . . . , zν) = r(δ+1)ν+1 = 0

and hence P (z0, . . . , zν) = 0.
In view of the above, we have completed the proof of Lemma 2.3. �
Lemma 2.3 and its proof also appeared in the author’s recent book [25,

pp. 117-119] in Chinese.
Now we present our auxiliary theorem.

Theorem 2.4. Let A ⊆ N be any r.e. set. Then, there are L[x] ∈ Z[x] and
M(x, y, z, t) ∈ Z[x, y, z, t] satisfying the following (i)-(iii).

(i) L(a) > 0 for all a ∈ Z.
(ii) There are k0, k1, k2 ∈ Z+ such that M(a, b, c, t) > 0 whenever a, b, c, t

are integers with a > 0, b > 1, and t < −c2 ∨ t > R(a, c), where R(a, c) =
k0(1 + c)2k1L(a) + k2.

(iii) For any a ∈ N and any infinite subset S of N, we have

a ∈ A ⇐⇒ ∃b ∈ S∃c∀t (M(a, b, c, t) > 0).

(iv) For any infinite subset S of N, there is a positive integer n such that
for any a ∈ A and N ∈ N there are b ∈ S and c ∈ Z for which b > N , b | c,
0 < c < bn, and M(a, b, c, t) > 0 for all t ∈ Z.

Proof. By Matiyasevich’s theorem [9], there is a polynomial P0(z0, z1, . . . , zν) ∈
Z[z0, . . . , zν ] such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 > 0 . . . ∃zν > 0 (P0(a, z1, . . . , zν) = 0).

Define

P (a, z0, . . . , zν) = (z0 − 1)2 + P 2
0 (a, z1, . . . , zν),

and write

P (a, z0, . . . , zν) =
∑

i0,...,iν∈N
i0+···+iν6δ

pi0,...,iν (a)zi00 . . . z
iν
ν ,

where δ is a positive even number. Set

L(a) =
∑

i0,...,iν∈N
i0+···+iν6δ

pi0,...,iν (a)2.
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Then L(a) > p2,0,...,0(a)2 = 1 for all a ∈ Z. As δ is even, we have

B(a, b) := 2(ν + 1)δbδδ!L(a) > 2

for all a, b ∈ Z with b 6= 0.
Now fix a ∈ N and b ∈ {2, 3, . . .}. Then B(a, b) > bδ > b > 2. For

convenience, we set nj = (δ + 1)j for all j = 0, . . . , ν + 1. Note that
P0(a, z1, . . . , zν) = 0 for some z1, . . . , zν ∈ {0, . . . , b − 1} if and only if
P (a, z0, . . . , zν) = 0 for some z0, . . . , zν ∈ {0, . . . , b − 1}. If z0, . . . , zν ∈
{0, . . . , b− 1}, then

B(a, b) > 2(1 + (ν + 1)(b− 1))δδ!L(a) > 2(1 + z0 + · · ·+ zν)δδ!L(a).

Thus, in view of Lemma 2.3, P (a, z0, . . . , zν) = 0 for some z0, . . . , zν ∈
{0, . . . , b− 1} if and only if for some

c ∈

{
ν∑
i=0

ziB(a, b)ni : z0, . . . , zν ∈ {0, . . . , b− 1}

}
we have

2(1 + c)δD(a, b)−B(a, b)nν+1

2B(a, b)nν+1+1
6 z 6

2(1 + c)δD(a, b) +B(a, b)nν+1

2B(a, b)nν+1+1

for some integer z, where

D(a, b) =
∑

i0,...,iν∈N
i0+···+iν6δ

i0! . . . iν !(δ− i0−· · ·− iν)!pi0,...,iν (a)B(a, b)nν+1−
∑ν
j=0 ijnj .

Combining this with Lemma 2.1, we see that P0(a, z1, . . . , zν) = 0 for some
z0, . . . , zν ∈ {0, . . . , b − 1} if and only if for some c ∈ Z, every interval
[σi, τi] (i = 0, . . . , ν + 2) contains an integer, where

σ0 = τ0 =
c

B(a, b)
,

σi =
c+ 1− bB(a, b)ni−1

B(a, b)ni
and τi =

c

B(a, b)ni
(i = 1, . . . , ν),

σν+1 =
c+ 1− bB(a, b)nν

(b2 + c2)B(a, b)nν
and τν+1 =

c

(b2 + c2)B(a, b)nν
,

σν+2 =
2(1 + c)δD(a, b)−B(a, b)nν+1

2B(a, b)nν+1+1
and τν+2 =

2(1 + c)δD(a, b) +B(a, b)nν+1

2B(a, b)nν+1+1
.

Observe that

|τi − τi+1| =
(

1

B(a, b)ni
− 1

B(a, b)ni+1

)
|c| 6 |c|

B(a, b)ni
6
|c|
2

for all i = 0, . . . , ν − 1, and

|τν − τν+1| =
(

1− 1

b2 + c2

)
|c|

B(a, b)nν
6

|c|
B(a, b)nν

6
|c|
2
.
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Note also that

|D(a, b)| 6
nν+1∑
i=0

δ!L(a)B(a, b)i = δ!L(a)
B(a, b)nν+1+1 − 1

B(a, b)− 1
6 δ!L(a)B(a, b)nν+1+1

and hence

τν+1 − τν+2 6
c/(b2 + c2)

B(a, b)nν
−
(

1

2B(a, b)
− δ!L(a)(1 + c)δ

)
6

1

2bB(a, b)nν
− 1

2B(a, b)
+ δ!L(a)(1 + c)δ 6 1 + δ!L(a)(1 + c)δ.

LetW = 2+(1+c)δδ!L(a). ThenW−1 > 1+(1+c)δ > 1+|c+1| > |c| > |c|/2,
and hence by the above we have

W > 1 + max{τi − τi+1 : i = 0, . . . , ν + 1}.
In view of the above and Lemma 2.2(ii), P0(a, z1, . . . , zν) = 0 for some

z1, . . . , zν ∈ {0, . . . , b−1} if and only if for some integer c we haveQ(a, b, c, t) >
0 for all t ∈ Z, where Q(a, b, c, t) denotes

(B(a, b)t− c)(B(a, b)(t+ 1)− c)

×
ν∏
i=1

(B(a, b)ni(t− iW )− c− 1 + bB(a, b)ni−1) (B(a, b)ni(t+ 1− iW )− c)

×
(
(b2 + c2)B(a, b)nν (t− (ν + 1)W )− c− 1 + bB(a, b)nν

)
×
(
(b2 + c2)B(a, b)nν (t+ 1− (ν + 1)W )− c

)
×
(

2B(a, b)nν+1+1(t− (ν + 2)W )− 2(1 + c)δD(a, b) +B(a, b)nν+1

)
×
(

2B(a, b)nν+1+1(t+ 1− (ν + 2)W )− 2(1 + c)δD(a, b)−B(a, b)nν+1

)
.

Let S be any infinite subset of N. By the above, for any a ∈ N we have

a ∈ A ⇐⇒ P0(a, z1, . . . , zν) = 0 for some z1, . . . , zν ∈ N
⇐⇒ ∃b ∈ S (b > 2 ∧ ∃z1 ∈ [0, b) . . . ∃zν ∈ [0, b)(P (a, z1, . . . , zν) = 0))

⇐⇒ ∃b ∈ S(b2 > b ∧ ∃c∀t(Q(a, b, c, t) > 0))

⇐⇒ ∃b ∈ S∃c∀t (M(a, b, c, t) > 0),

where M(a, b, c, t) = (b2−b)(Q(a, b, c, t)+1)−1 ∈ Z[a, b, c, t] does not depend
on S.

Given a ∈ A and N ∈ N, we may take b ∈ S with

b > max{N, 2(ν + 1)δδ!L(a)}
such that P (a, z0, . . . , zν) = 0 for some z0, . . . , zν ∈ [0, b) with z0 = 1. Then
c =

∑ν
i=0 ziB(a, b)ni ≡ 0 (mod b) since b | B(a, b). By Lemmas 2.1-2.3, for

any t ∈ Z we have

ν+2∏
i=0

(t− σi − iW )(t+ 1− τi − iW ) > 0 (i.e., Q(a, b, c, t) > 0) (2.3)
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It follows that M(a, b, c, t) > 0 for all t ∈ Z. Note that

1 = z0 6 c 6
ν∑
i=0

(b− 1)B(a, b)ni 6 (b− 1)
B(a, b)nν+1 − 1

B(a, b)− 1

<B(a, b)nν+1 = (2(ν + 1)δbδδ!L(a))nν+1 6 (bδ+1)nν+1 = bn,

where n = (δ + 1)(nν + 1) only depends on A.
Now it remains to show that (ii) in Theorem 2.4 holds. Let a ∈ N,

b ∈ {2, 3, . . .} and c ∈ Z. Then

−c2 − 1 6 −|c| − 1 6
c

B(a, b)
− 1 = τ0 − 1

and

τν+2 + (ν + 2)W =
1

2B(a, b)
+

(1 + c)δD(a, b)

B(a, b)nν+1+1
+ (ν + 2)W

6
1

2B(a, b)
+ (1 + c)δδ!L(a) + (ν + 2)W

<1 + (1 + c)δδ!L(a) + (ν + 2)((1 + c)δδ!L(a) + 2)

=(ν + 3)(1 + c)δδ!L(a) + 2ν + 5.

Thus, if t is an integer with t < −c2 or t > R(a, c) = (ν + 3)(1 + c)δδ!L(a) +
2ν + 4 then by Lemma 2.2(i) we have (2.3) and hence M(a, b, c, t) > 0. This
concludes our proof. �

3. Proof of Theorem 1.2

For convenience, we define � = {m2 : m ∈ Z}.

Lemma 3.1. Let C ∈ Z. Then

C > 0 ⇐⇒ ∃x∃y∃z(C = x2 + y2 + z2 + z), (3.1)

C > 0 ⇐⇒ ∃x 6=0((4C + 2)x2 + 1 ∈ �), (3.2)

C 6= 0 ⇐⇒ ∃u∃v(C = (2u+ 1)(3v + 1)). (3.3)

Proof. This is easy and known. Concerning (3.1), by the Gauss-Legendre
theorem on sums of three squares, C > 0 if and only if 4C + 1 = (2x)2 +
(2y)2 + (2z + 1)2 (i.e., C = x2 + y2 + z2 + z) for some x, y, z ∈ Z. By the
theory of Pell equations, we have (3.2) which was first used by Sun [23]. As
any nonzero integer has the form ±3a(3q + 1) with a ∈ N and q ∈ Z, we
immediately get (3.3) which was an observation due to Tung [26]. �

Lemma 3.2. Let C1, . . . , Cn ∈ Z.
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(i) We have

C1 > 0 ∨ · · · ∨ Cn > 0

⇐⇒ ∃x 6= 0((4C1 + 2)x2 + 1 ∈ � ∨ · · · ∨ (4Cn + 2)x2 + 1 ∈ �)

⇐⇒ ∃u∃v∃w

(
n∏
i=1

(2(2Ci + 1)(2u+ 1)2(3v + 1)2 − w2 + 1) = 0

)
.

Also,

C1 > 0 ∧ · · · ∧ Cn > 0

⇐⇒ ∀x 6= 0∀y

(
n∏
i=1

((4Ci + 2)x2 + y2 − 1) 6= 0

)

⇐⇒ ∀x∀y∃u∃v

(
x

(
n∏
i=1

((4Ci + 2)x2 + y2 − 1)− (2u+ 1)(3v + 1)

)
= 0

)
.

(ii) Suppose that Di ∈ N and |Ci| 6 Di for all i = 1, . . . , n. Then

C1 > 0 ∧ · · · ∧ Cn > 0

⇐⇒ ∀x ∈ [0, D1 · · ·Dn]

(
n∏
i=1

(x+ Ci + 1) 6= 0

)

⇐⇒ ∀x ∈ [0, D1 · · ·Dn]∃y∃z

(
n∏
i=1

(x+ Ci + 1)− (2y + 1)(3z + 1) = 0

)
Proof. (i) The first assertion follows immediately from Lemma 3.1. As for
the second assertion, it suffices to note that

Ci > 0 ⇐⇒ −Ci − 1 6> 0 ⇐⇒ ∀x 6= 0((4(−Ci − 1) + 2)x2 + 1 6∈ �).

(ii) If Ci > 0 for all i = 1, . . . , n, then for any x > 0 we have x+Ci+1 > 0
for all i = 1, . . . , n, and hence

∏n
i=1(x + Ci + 1) 6= 0. If Ci < 0 for some

1 6 i 6 n, then for x = −Ci − 1 we have 0 6 x 6 |Ci| 6 Di 6 D1 · · ·Dn. So
part (ii) of Lemma 3.2 holds.

In view of the above, we have completed the proof of Lemma 3.2. �

Proof of Theorem 1.2. Take polynomials R and M (depending on A) as in
Theorem 2.4, and note that S = {b2 + 2 : b ∈ N} is an infinite set. By
Theorem 2.4, for any a ∈ N we have

a ∈ A ⇐⇒ ∃b∃c∀t[M(a, b2 + 2, c, t) > 0]

⇐⇒ ∃b∃c∀t ∈ [−c2, R(a, c)](M(a, b2 + 2, c, t) > 0)

and hence

a ∈ Ā ⇐⇒ ∀b∀c∃t (−M(a, b2 + 2, c, t)− 1 > 0),

also M(a, b2 + 2, c, t) > 0 whenever t < −c2 or t > R(a, c). Moreover, if
a ∈ A then we may require further that c > 0 and (b2 + 2) | c.
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In view of the above and Lemmas 3.1-3.2, we see that A has a ∃2∀∃3-
representation over Z with ∀ bounded or unbounded, and also a ∃2∀3∃2-
representation over Z. For a ∈ N, b, c ∈ Z and t ∈ [−c2, R(a, c)], we clearly
have |M(a, b2 + 2, c, t)| 6 P (a, b, c)2 for some P (x, y, z) ∈ Z[x, y, z]. So, by
using Lemma 3.2(ii) we see that A also has a ∃2∀2∃2-representation over Z
with ∀ bounded. With the help of Lemma 3.2, Ā has a ∀2∃4-representation
and also a ∀2∃∀2∃2-representation over Z.

Let D(c, s) = (s− c2)(s− c2 − 2c) and a ∈ N. We claim that

a ∈ A ⇐⇒ ∃s∀t∃c > 0 (D(c, s) 6 0 ∧M(a, (s− c2)2 + 2, c, t) > 0)

⇐⇒ ∃s∀t ∈ [−s2, R(a, s)]∃c > 0

(D(c, s) 6 0 ∧M(a, (s− c2)2 + 2, c, t) > 0).

Now we prove the claim. If a ∈ A, then for some b ∈ N and c ∈ Z+ with
(b2+2) | c we have M(a, b2+2, c, t) > 0 for all t ∈ Z. As 0 6 b 6 b2 6 c 6 2c,
for s = b+ c2 we have c2 6 s 6 c2 + 2c and hence D(c, s) 6 0, and also

M(a, (s− c2)2 + 2, c, t) = M(a, b2 + 2, c, t) > 0

for all t ∈ Z.
Now suppose that s ∈ Z and that for any t ∈ [−s2, R(a, s)] there is a

number c ∈ N with D(c, s) 6 0 and M(a, (s − c2)2 + 2, c, t) > 0. Note that
c2 6 s 6 c2 + 2c < (c + 1)2. So c = b

√
sc does not depend on t. Set

b = s− b
√
sc2. Then

M(a, b2 + 2, c, t) = M(a, (s− c2)2 + 2, c, t) > 0

for all t ∈ [−s2, R(a, s)]. If t < −s2 then t < −s 6 −c2 and hence M(a, b2 +
2, c, t) > 0. If t > R(a, s) then t > R(a, c) (since s > c2 > c > 0) and hence
M(a, b2 +2, c, t) > 0. Therefore M(a, b2 +2, c, t) > 0 for all t ∈ Z, and hence
a ∈ A. This concludes the proof of the claim.

In view of the proved claim, for any a ∈ N we have

a ∈ A ⇐⇒ ∃s∀t∃c (c > 0 ∧ −D(c, s) > 0 ∧M(a, (s− c2)2 + 2, c, t) > 0)

⇐⇒ ∃s∀t ∈ [−s2, R(a, s)]∃c (c > 0 ∧ −D(c, s) > 0

∧M(a, (s− c2)2 + 2, c, t) > 0)

and hence

a ∈ Ā ⇐⇒ ∀s∃t∀c (−c− 1 > 0 ∨D(c, s)− 1 > 0

∨ −M(a, (s− c2)2 + 2, c, t)− 1 > 0)

Combining this with Lemma 3.2, we find thatA has a ∃∀∃∀2∃2-representation
over Z and a ∃∀∃∀∃2-representation over Z with ∀ bounded. Also, Ā has a
∀∃∀∃3-representation over Z.

In view of the above, we have completed the proof of Theorem 1.2. �
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4. Proof of Theorem 1.3

Let Jk(x1, . . . , xk, x) be the polynomial∏
ε1,...,εk∈{±1}

(
x+ ε1

√
x1 + ε2

√
x2X + · · ·+ εk

√
xkX

k−1
)

with X = 1 +
∑k

j=1 x
2
j . This polynomial (in x1, . . . , xn, x) with integer

coefficients was introduced by Matiyasevich and Robinson [15]. For fixed
A1, . . . , Ak ∈ Z, the monic polynomial Jk(A1, . . . , Ak, x) is of degree 2k in x.

Lemma 4.1. Let A1, . . . , Ak ∈ Z.
(i) We have

A1, . . . , Ak ∈ � ⇐⇒ ∃x(Jk(A1, . . . , Ak, x) = 0).

(ii) If S, T ∈ Z and S 6= 0, then

A1 ∈ � ∧ · · · ∧Ak ∈ � ∧ S | T

⇐⇒ ∃x
(
S2kJk

(
A1, . . . , Ak, x+

T

S

)
= 0

)
.

(iii) (Matiyasevich-Robinson Relation-Combining Theorem [15]) If R,S, T ∈
Z and S 6= 0, then

A1 ∈ � ∧ · · · ∧Ak ∈ � ∧ S | T ∧R > 0

⇐⇒ ∃n > 0

(
(S2(1− 2R))2

k
Jk

(
A1, . . . , Ak, T

2 +W k +
S2n+ T 2

S2(1− 2R)

)
= 0

)
,

where W = 1 +
∑k

i=1A
2
i .

Remark 4.1. Parts (i) and (iii) of Lemma 4.1 were due to Matiyasevich
and Robinson [15, Theorems 1-3]. Part (ii) was stated explicitly in [22,
Lemma 17]; in fact, if x0 + T/S is a rational zero of the monic polynomial
Jk(A1, . . . , Ak, x) then it is an integer since any rational algebraic integer
must belong to Z.

Proof of Theorem 1.3. Take polynomials R and M (depending on A) as in
Theorem 2.4 and note that S = {4b + 3 : b ∈ �} is an infinite set. By
Theorem 2.4, for any a ∈ N we have

a > 0∧ b ∈ �∧ (t < −(c+ 1)2 ∨ t > R(a, c+ 1))⇒M(a, 4b+ 3, c+ 1, t) > 0

and

a ∈ A ⇐⇒ ∃b ∈ �∃c∀t(M(a, 4b+ 3, c+ 1, t) > 0).

Moreover, if a ∈ A then we may choose b ∈ � and c > 0 with (4b+3) | (c+1)
such that M(a, 4b+ 3, c+ 1, t) > 0 for all t ∈ Z.
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Let a ∈ N. We claim that

a ∈ A
⇐⇒ ∃s∀t∃c (s− c2 ∈ � ∧ (4(s− c2) + 3) | (c+ 1)

∧ (c+ 1)2(M(a, 4(s− c2) + 3, c+ 1, t) + 1) > 0)

⇐⇒ ∃s∀t ∈ [−(s+ 1)2, R(a, s+ 1)]∃c (s− c2 ∈ � ∧ (4(s− c2) + 3) | (c+ 1)

∧ (c+ 1)2(M(a, 4(s− c2) + 3, c+ 1, t) + 1) > 0).

When a ∈ A, we may choose b ∈ � and c > 0 for which

4b+ 3 | c+ 1 ∧ ∀t(M(a, 4b+ 3, c+ 1, t) > 0).

Take s = b + c2, Then s− c2 = b ∈ �, 4(s− c2) + 3 = 4b + 3 divides c + 1,
and

M(a, 4(s− c2) + 3, c+ 1, t) = M(a, 4b+ 3, c+ 1, t) > 0

for all t ∈ Z. Note that (c+ 1)2(M(a, 4(s− c2) + 3, c+ 1, t) + 1) > 0.
Now we prove the remaining direction of the claim. Suppose that s ∈ Z

and that for any t ∈ [−(s+ 1)2, R(a, s+ 1)] there is an integer c(t) for which

s− c(t)2 ∈ �, (4(s− c(t)2) + 3) | (c(t) + 1),

(c(t) + 1)2(M(a, 4(s− c(t)2) + 3, c(t) + 1, t) + 1) > 0.

Clearly, c(t) + 1 6= 0 and

c(t)2 6 s = (s− c(t)2) + c(t)2 < 4(s− c(t)2) + 3 + c(t)2

6 |c(t) + 1|+ c(t)2 6 (|c(t)|+ 1)2.

Hence s > 0 and |c(t)| = b
√
sc. Since

b
√
sc+ 1 + (−b

√
sc+ 1) = 2 6≡ 0 (mod 4(s− c(t)2) + 3),

there is a unique c ∈ {±b
√
sc} with c + 1 divisible by 4(s − bsc2) + 3. It

follows that c(t) = c for all t ∈ Z. Set b = s− c2 = s− b
√
sc2. Then b ∈ �,

4b+ 3 | c+ 1, and M(a, 4b+ 3, c+ 1, t) > 0 for all t ∈ [−(s+ 1)2, R(a, s+ 1)].
If t < −(s+1)2, then t < −(bsc+1)2 6 −(c+1)2 and hence M(a, 4b+3, c+
1, t) > 0. Note that

(1 + (b
√
sc+ 1))2 > (1− b

√
sc+ 1)2.

If t > R(a, s+ 1), then t > R(a, bsc+ 1) > R(a, c+ 1) and hence M(a, 4b+
3, c+ 1, t) > 0. As b ∈ � and M(a, 4b+ 3, c+ 1, t) > 0 for all t ∈ Z, we have
a ∈ A. This concludes the proof of the claim.

Combining the proved claim with Lemma 4.1(iii) and (3.1), we get that
A has a ∃∀∃4-representation with ∀ bounded (or unbounded) over Z.
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By the proved claim, (3.2) and Lemma 4.1(ii), for any a > 0 we have

a ∈ A
⇐⇒ ∃s∀t∃c(s− c2 ∈ � ∧ (4(s− c2) + 3) | (c+ 1)

∧ ∃d 6= 0((4(c+ 1)2(M(a, 4(s− c2) + 3, c+ 1, t) + 1)− 2)d2 + 1 ∈ �)

⇐⇒ ∃s∀t∃c∃d 6= 0∃x(P (a, s, t, c, d, x) = 0),

where P is a suitable polynomial with integer coefficients. It follows that

a ∈ Ā ⇐⇒ ∀s∃t∀c∀d 6= 0∀x(P (a, s, t, c, d, x) 6= 0)

⇐⇒ ∀s∃t∀c∀d∀x∃y∃z(d(P (a, s, t, c, d, x)− (2y + 1)(3z + 1)) = 0)

with the aid of (3.3). So Ā has a ∀∃∀3∃2-representation over Z. This con-
cludes our proof of Theorem 1.3. �

5. Proof of Theorem 1.4

Lemma 5.1 (Sun [23]). There is a polynomial P (x1, . . . , x2n+2) with integer
coefficients such that for any C1, . . . , Cn ∈ Z we have

C1 > 0 ∧ · · · ∧ Cn > 0

⇐⇒ ∃x1 · · · ∃xn+2(P (C1, . . . , Cn, x1, . . . , xn+2) = 0).

Lemma 5.2. There are polynomials

P (x1, . . . , x2n+3) ∈ Z[x1, . . . , x2n+3] and Q(x1, . . . , x2n+2) ∈ Z[x1, . . . , x2n+2]

such that for any C1, . . . , Cn ∈ Z we have

C1 > 0 ∨ . . . ∨ Cn > 0

⇐⇒ ∀x1 . . . ∀xn∀x∃y∃z(P (C1, . . . , Cn, x1, . . . , xn, x, y, z) = 0),

and

C1 > 0 ∨ . . . ∨ Cn > 0

⇐⇒ ∀x1 ∈ [0, D1] . . . ∀xn ∈ [0, Dn]∃y∃z(Q(C1, . . . , Cn, x1, . . . , xn, y, z) = 0)

provided that |Ci| 6 Di with Di ∈ N for all i = 1, . . . , n.

Proof. (i) For each i = 1, . . . , n, clearly

Ci < 0 ⇐⇒ −Ci − 1 > 0 ⇐⇒ ∃xi 6= 0(1− (4Ci + 2)x2i ∈ �).

Thus

¬(C1 > 0 ∨ · · · ∨ Cn > 0)

⇐⇒ C1 < 0 ∧ · · · ∧ Cn < 0

⇐⇒ ∃x1 6= 0(1− (4C1 + 2)x21 ∈ �) ∧ · · · ∧ ∃xn 6= 0(1− (4Cn + 2)x21 ∈ �)

⇐⇒ ∃x1 · · · ∃xn(x1 · · ·xn 6= 0 ∧ (1− (4C1 + 2)x21 ∈ �)

∧ · · · ∧ (1− (4Cn + 2)x2n ∈ �))

⇐⇒ ∃x1 · · · ∃xn(x1 · · ·xn 6= 0

∧ ∃x(Jn(1− (4C1 + 2)x21, . . . , 1− (4Cn + 2)x2n, x) = 0)
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and hence

C1 > 0 ∨ · · · ∨ Cn > 0

⇐⇒ ∀x1 · · · ∀xn∀x (x1 · · ·xn = 0

∨ Jn(1− (4C1 + 2)x21, . . . , 1− (4Cn + 2)x2n, x) 6= 0)

⇐⇒ ∀x1 · · · ∀xn∀x∃y∃z (x1 · · ·xn
× (Jn(1− (4C1 + 2)x21, . . . , 1− (4Cn + 2)x2n, x)− (2y + 1)(3z + 1)) = 0).

(ii) We now prove the latter assertion in Lemma 5.2. Let D1, . . . , Dn ∈ N
with Di > |Ci| for all i = 1, . . . , n. By Lemma 3.2,

Ci > 0 ⇐⇒ ∀xi ∈ [0, Di](xi + Ci + 1 6= 0).

Thus

C1 > 0 ∨ . . . ∨ Cn > 0

⇐⇒ ∀x1 ∈ [0, D1] . . . ∀xn ∈ [0, Dn](x1 + C1 + 1 6= 0 ∨ · · · ∨ xn + Cn + 1 6= 0)

⇐⇒ ∀x1 ∈ [0, D1] . . . ∀xn ∈ [0, Dn]∃y∃z
((x1 + C1 + 1)2 + · · ·+ (xn + Cn + 1)2 = (2y + 1)(3z + 1)).

This ends the proof. �

Lemma 5.3. Let k,m ∈ Z with k > 0, 2 | k and m ≡ 3 (mod 4). Then
there is a unique b ∈ N such that |m− bk| = minx∈Z |m− xk|. Moreover, for
b ∈ Z we have

|m− bk| = min
x∈Z
|m− xk| ⇐⇒ |m− bk| < |m− (b± 1)k|.

Proof. If a, b ∈ N and |m−ak| = |m−bk| but a 6= b, then m−ak = −(m−bk)
and hence 2m = ak + bk, thus a ≡ b (mod 2) and we get a contradiction
since 2m is neither divisible by 4 nor congruent to 2 modulo 8. (Note that
an odd square is congruent to 1 modulo 8.) So, there is a unique b ∈ N with
|m− bk| = minx∈Z |m− xk|.

If b ∈ Z and |m − bk| = minx∈Z |m − xk|, then |m − bk| < |m − (b ± 1)k|
as |b± 1| 6= |b|.

Suppose that b ∈ Z and |m − bk| < |m − (b ± 1)k|. If b = 0, then
|m| 6 |m− 1|, hence m 6 0 and

min
x∈Z
|m− xk| = min

x∈Z
| − |m| − |x|k| = |m| = |m− bk|.

Now assume that b 6= 0. Then |b| ± 1 > 0. Note that

|m− |b|k| = |m− bk| 6 |m− (|b| ± 1)k|.

If m 6 (|b| − 1)k, then m− |b|k < m− (|b| − 1)k 6 0 and hence |m− |b|k| >
|m − (|b| − 1)k| which leads to a contradiction. If m > (|b| + 1)k, then
m− |b|k > m− (|b|+ 1)k > 0, which also leads to a contradiction. Therefore

(|b| − 1)k < m < (|b|+ 1)k.
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If x ∈ Z and |x| = |b|, then |m − xk| = |m − bk| since k is even. For x ∈ Z
with |x| < |b|, we have m− xk = m− |x|k > m− (|b| − 1)k > 0 and hence

|m− xk| > |m− (|b| − 1)k| > |m− bk|.
For x ∈ Z with |x| > |b|, we have m − xk = m − |x|k 6 m − (|b| + 1)k < 0
and hence

|m− xk| > |m− (|b|+ 1)k| > |m− bk|.
So we have |m− bk| = minx∈Z |m− xk|.

The proof of Lemma 5.3 is now complete. �

Proof of Theorem 1.4. Take polynomials R and M (depending on A) as in
Theorem 2.4, and note that S = {(2x)2 + 4 : x ∈ Z} is an infinite subset of
N. By Theorem 2.4, for any a ∈ N we have

b ∈ Z ∧ c ∈ Z ∧ (t < −c2 ∨ t > R(a, c)⇒M(a, b2 + 4, c, t) > 0

and

a ∈ A ⇐⇒ ∃b∃c∀t(M(a, b2 + 4, c, t) > 0)

⇐⇒ ∃b (2 | b ∧ ∃c∀t (M(a, b2 + 4, c, t) > 0)).

Moreover, if a ∈ A then we may choose b > 2 and 0 < c < (b2 + 4)n with
(b2 + 4) | c such that M(a, b2 + 4, c, t) > 0 for all t ∈ Z, where n is a positive
integer only depending on A.

Note that k = 4n is a positive even number. For b, q ∈ Z let

P+(b, q) = (4q − 1− (b+ 1)k)2 − (4q − 1− bk)2

and
P−(b, q) = (4q − 1− (b− 1)k)2 − (4q − 1− bk)2.

By Lemma 5.3,

|4q − 1− bk| = min
x∈Z
|4q − 1− xk| ⇐⇒ P+(b, q) > 0 ∧ P−(b, q) > 0.

Let a ∈ N. We claim that

a ∈ A ⇐⇒ ∃q∀b∀t(P+(b, q) 6 0 ∨ P−(b, q) 6 0 ∨M(a, b2 + 4, 4q − bk, t) > 0)

⇐⇒ ∃q∀b ∈ [0, 8q2 + 1]∀t ∈ [−((4q − 1)2 + 1)2, R(a, (4q − 1)2 + 1)]

(P+(b, q) 6 0 ∨ P−(b, q) 6 0 ∨M(a, b2 + 4, 4q − bk, t) > 0).

Suppose that a ∈ A. Then there are b0, c ∈ Z with

2 | b0, b20 + 4 > 6, (b20 + 4) | c and 0 < c < (b20 + 4)n

such that M(a, b20+4, c, t) > 0 for all t ∈ Z. As 4 | b20 and 4 | c, q = (bk0 +c)/4
is an integer. Let m = 4q − 1. Note that

0 6 c− 1 < (b20 + 4)n 6 (2b20)
n 6 |b0|3n 6 |b0|4n−1,

2(c− 1) < 4n|b0|4n−1 6 (|b0|+ 1)4n − |b0|4n,
|m− b4n0 | = c− 1 < (|b0|+ 1)4n − (|b0|4n + c− 1) = −(m− (|b0|+ 1)4n),

|m− b4n0 | = c− 1 < c− 1 + |b0|4n − (|b0| − 1)4n = m− (|b0| − 1)4n.
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Therefore |m− bk0| < |m− (b0± 1)k|, hence P+(b0, q) > 0 and P−(b0, q) > 0.
If b ∈ Z and P±(b, q) > 0, then |m− bk| = minx∈Z |m− xk| = |m− bk0| and
hence |b| = |b0|, thus 4q − bk = bk0 + c− bk = c and

M(a, b2 + 4, 4q − bk, t) = M(a, b2 + 4, c, t) > 0

for all t ∈ Z. So, for any b ∈ Z we have

P+(b, q) 6 0 ∨ P−(b, q) 6 0 ∨ ∀t(M(a, b2 + 4, 4q − bk, t) > 0).

Now we prove another direction of the claim. Let q ∈ Z and assume that
for any b ∈ [0, 8q2 +1] and t ∈ [−((4q−1)2 +1)2, R(a, (4q−1)2 +1)] we have

P+(b, q) 6 0 ∨ P−(b, q) 6 0 ∨M(a, b2 + 4, 4q − bk, t) > 0.

Take the unique b ∈ N with |m− bk| = minx∈Z |m− xk|, where m = 4q − 1.
Then |m − bk| < |m − (b ± 1)k| and hence both P+(b, q) and P−(b, q) are
positive. If b 6= 0, then bk − |m| 6 |bk −m| < |0k −m| = |m|. No matter
b = 0 or not, we have bk 6 2|m| − 1. Hence

0 6 b 6 2|m| − 1 6 2(4|q|+ 1)− 1 6 8q2 + 1.

If t ∈ [−(m2 + 1)2, R(a,m2 + 1)], then by the assumption we have M(a, b2 +
4, c, t) > 0, where c = 4q − bk. Note that

|c| = |m+ 1− bk| 6 |m− bk|+ 1 6 |m− 0k|+ 1 6 m2 + 1

and hence |1 + c| 6 1 + |c| 6 1 + (m2 + 1). If t < −(m2 + 1)2 or t >
R(a,m2 + 1), then t < −c2 or t > R(a, c), and hence M(a, b2 + 4, c, t) > 0.
So M(a, b2 + 4, c, t) > 0 for all t ∈ Z, and hence a ∈ A. This concludes the
proof of the claim.

By the proved claim, for any a ∈ N we have

a ∈ A

⇐⇒ ∃q∀b∀t (−P+(b, q) > 0 ∨ −P−(b, q) > 0 ∨M(a, b2 + 4, 4q − bk, t) > 0)

⇐⇒ ∃q∀b ∈ [0, 8q2 + 1]∀t ∈ [−((4q − 1)2 + 1)2, R(a, (4q − 1)2 + 1)]

(−P+(b, q) > 0 ∨ −P−(b, q) > 0 ∨M(a, b2 + 4, 4q − bk, t) > 0).

Clearly |P±(b, q)| 6 P0(q)
2 for all b ∈ [0, 8q2 + 1], and

|M(a, b2 + 4, 4q − bk, t)| 6M0(a, q)
2

for all b ∈ [0, 8q2 + 1] and t ∈ [−((4q − 1)2 + 1)2, R(a, (4q − 1)2 + 1)], where
P0 and M0 are suitable polynomials with integer coefficients.

Combining the last paragraph with Lemma 3.2(i), we find that A has a
∃∀2∃3-representation over Z and also a ∃∀2∃3-representation over Z with ∀
bounded. Combining the last paragraph with Lemma 5.2, we see that that
A has a ∃∀6∃2-representation over Z, and also a ∃∀5∃2-representation over
Z with ∀ bounded.
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Note that

a ∈ Ā = N \A ⇐⇒ ∀q∃b∃t (P+(b, q)− 1 > 0 ∧ P−(b, q)− 1 > 0

∧ −M(a, b2 + 4, 4q − bk, t)− 1 > 0).

Combining this with Lemma 3.2(i), we get that Ā has a ∀∃2∀2∃2-representation
over Z; if we apply Lemma 5.1, then we find that Ā has a ∀∃7-representation
over Z.

The proof of Theorem 1.4 is now complete. �

Acknowledgment. The author would like to thank the referee for helpful
comments.

References

[1] N. Cutland, Computability, Cambridge Univ. Press, Cambridge, 1980.
[2] N. Daans, Universally defining Z in Q with 10 quantifiers, J. London Math. Soc. 109

(2024), Article ID e12864.
[3] M. Davis, Arithmetical problems and recursively enumenrable predicates, J. Symblic

Logc 18 (1953), 33–41.
[4] M. Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973),

233–269.
[5] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential diophan-

tine equations, Ann. of Math. 74(2) (1961), 425–436.
[6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd

Edition, Grad. Texts. Math., vol. 84, Springer, New York, 1990.
[7] J. P. Jone, Classification of quantifier prefixes over Diophantine equations, Z. Math.

Logik Grundlag. Math. 27 (1981), 403–410.
[8] J. P. Jones, Universal Diophantine equation, J. Symbolic Logic 47 (1982), 549–571.
[9] Y. Matiyasevich, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191

(1970), 279–282; English translation with addendum, Soviet Math. Doklady 11
(1970), 354–357.

[10] Y. Matiyasevich, On recursively unsolvability of Hilbert’s tenth problem, in: Logic,
Methodology and Philosophy of Science, IV (Bucharest, 1971), Studies in Logic and
Foundations of Math., Vol. 74, North-Holland, Amsterdam, 1973, 89–110.

[11] Y. Matiyasevich, Arithmetical representation of enumerable sets with a small number
of quantifiers, J. Soviet Math. 6 (1976), 410–416.

[12] Y. Matiyasevich, Some purely mathematical results inspired by mathematical logic, in:
Logic, Foundations of Mathematics and Computability Theory (London, Ont., 1975).
Reidel, Dordrecht, 1977, Part I, 121–127.

[13] Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, Massachusetts,
1993.

[14] Y. Matiyasevich and J. Robinson, Two universal 3-quantifier representations of r.e.
sets, in: Teoriya Algorifmov i Matematicheskaya Logika (a collection of papers dedi-
cated to A. A. Markov), Vychislitel’nyi Tsentr Akademii Nauk SSSR, Moscow, 1974,
pages 112–123.

[15] Y. Matiyasevich and J. Robinson, Reduction of an arbitrary diophantine equation to
one in 13 unknowns, Acta Arith. 27 (1975), 521–553.

[16] Y. Matiyasevich and Z.-W. Sun, On Diophantine equations over Z[i] with 52 unknown-
s, arXiv:2002.12136, 2020.

[17] A. B. Matos, L. Paolini and L. Roversi, The fixed point problem of a simple reversible
language, Theoret. Comput. Sci. 813 (2020), 143–154.

[18] B.-K. Oh and Z.-W. Sun, Mixed sums of squares and triangular numbers, J. Number
Theory 129 (2009), 964–969.



26 ZHI-WEI SUN

[19] J. Richter-Gebert and U. H. Kortenkamp, Complexity issues in dynamic geometry, in:
Foundations of Computational Mathematics (Hong Kong, 2000), , World Sci. Publ.,
River Edge, NJ, 2002, 355–404.

[20] J. M. Rojas, Uncomputably large integral points on algebraic plane curves? Theoret.
Comput. Sci. 235 (2000), 145–162.

[21] A. Shlapentokh, Hilbert’s Tenth Problem: Diophantine Classes and Extensions to
Global Fields. New Mathematical Monographs, Vol. 7, Cambridge Univ. Press, Cam-
bridge, 2007.

[22] Z.-W. Sun, Reduction of unknowns in Diophantine representations, Sci. China Ser. A
35 (1992), 257–269. Available from http://maths.nju.edu.cn/∼zwsun/12d.pdf

[23] Z.-W. Sun, A new relation-combining theorem and its application, Z. Math. Logik
Grundlag. Math. 38 (1992), 209–212.

[24] Z.-W. Sun, Further results on Hilbert’s Tenth Problem, Sci. China Math. 64 (2021),
281–306.

[25] Z.-W. Sun, Fibonacci Numbers and Hilbert’s Tenth Problem (in Chinese), Harbin
Institute of Technology Press, Harbin, 2024.

[26] S. P. Tung, On weak number theories, Japan. J. Math. (N.S.) 11 (1985), 203–232.
[27] S. P. Tung, Computational complexities of Diophantine equations with parameters, J.

Algorithms 8 (1987), 324–336.
[28] G.-R. Zhang and Z.-W. Sun, Q \ Z is diophantine over Q with 32 unknowns, Pol.

Acad. Sci. Math. 70 (2022), 93–106.

Department of Mathematics, Nanjing University, Nanjing 210093, People’s
Republic of China

E-mail address: zwsun@nju.edu.cn


	1. Introduction
	2. An auxiliary theorem
	3. Proof of Theorem ??
	4. Proof of Theorem ??
	5. Proof of Theorem ??
	References

