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PERMANENT IDENTITIES, COMBINATORIAL SEQUENCES, AND
PERMUTATION STATISTICS

SHISHUO FU, ZHICONG LIN, AND ZHI-WEI SUN

Abstract. In this paper, we confirm six conjectures on the exact values of some permanents,
relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers.
For example, we prove that

per

[⌊
2j − k
n

⌋]
1≤j,k≤n

= 2(2n+1 − 1)Bn+1,

where B0, B1, B2, . . . are the Bernoulli numbers. We also show that

per

[
sgn

(
cosπ

i+ j

n+ 1

)]
1≤i,j≤n

=

{
−
∑m

k=0

(
m
k

)
E2k+1 if n = 2m+ 1,∑m

k=0

(
m
k

)
E2k if n = 2m,

where sgn(x) is the sign function, and E0, E1, E2, . . . are the Euler (zigzag) numbers.
In the course of linking the evaluation of these permanents to the aforementioned combinatorial

sequences, the classical permutation statistic – the excedance number, together with several kinds
of its variants, plays a central role. Our approach features recurrence relations, bijections, as well
as certain elementary operations on matrices that preserve their permanents. Moreover, our proof
of the second permanent identity leads to a proof of Bala’s conjectural continued fraction formula,
and an unexpected permutation interpretation for the γ-coefficients of the 2-Eulerian polynomials.

1. Introduction

For a matrix A = [ai,j ]1≤i,j≤n over a commutative ring with identity, its determinant and
permanent are defined by

det(A) = det[ai,j ]1≤i,j≤n =
∑
π∈Sn

sign(π)
n∏
i=1

ai,π(i)

and

per(A) = per[ai,j ]1≤i,j≤n =
∑
π∈Sn

n∏
i=1

ai,π(i)

respectively, where Sn is the symmetric group of all permutations of [n] := {1, . . . , n}. Determi-
nants are widely used in mathematics, and permanents are useful in combinatorics.

It is well known that

det[ij−1]1≤i,j≤n =
∏

1≤i<j≤n
(j − i) = 1!2! · · · (n− 1)!

as this is of Vandermonde’s type. In contrast, Z.-W. Sun [32] proved that

per[ij−1]1≤i,j≤n ≡ 0 (mod n) for all n ≥ 3.
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Z.-W. Sun [35] evaluated some determinants involving trigonometric functions. For example,
he proved that for any odd integer n > 1 and integers a and b with gcd(ab, n) = 1, the following
identity holds:

det

[
tanπ

aj + bk

n

]
16j,k6n−1

=

(
−ab
n

)
nn−2,

where ( ·n) is the Jacobi symbol.
Motivated by the above work, Sun [33] investigated arithmetic properties of some permanents.

For example, he showed that

per

[⌊
j + k

n

⌋]
16j,k6n

= 2n−1 + 1 and per

[⌊
j + k − 1

n

⌋]
16j,k6n

= 1, (1.1)

where b·c is the floor function. Sun [33] also proved that

per

[
tanπ

j + k

p

]
1≤j,k≤p−1

≡ (−1)(p+1)/22p (mod p2)

for any odd prime p.
For any positive integer n, clearly⌊

2j − k
n

⌋
∈ {0,±1} for all j, k = 1, . . . , n.

Inspired by this as well as his preprint [33], Sun [34] posed the following novel conjecture involving
the Bernoulli numbers B0, B1, . . . given by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
(|x| < 2π).

Conjecture 1.1 (Z.-W. Sun). For any positive integer n, we have

per

[⌊
2j − k
n

⌋]
1≤j,k≤n

= 2(2n+1 − 1)Bn+1. (1.2)

This conjecture has aroused quite some interests and triggered further conjectures over the on-
line forum MathOverflow concerning the evaluations of various permanents. We aim to prove six
of the conjectures (including the above one) posted there.

Three combinatorial sequences play major roles in the current work. They are the Genocchi
numbers, the median Genocchi numbers, and the Euler numbers. We collect their definitions here
and state the remaining five conjectures afterwards.

The Genocchi numbers (of the first kind) G1, G2, . . . are given by

2x

ex + 1
=

∞∑
n=1

Gn
xn

n!
(|x| < π).

It is known that Gn = 2(1 − 2n)Bn for any positive integer n (cf. [29, A036968]); in particular,
G2n+1 = 2(1− 22n+1)B2n+1 = 0 and

(−1)nG2n = 2(22n − 1)(−1)n−1B2n > 0

for all n = 1, 2, 3, . . .. Note that

G1 = 1, G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 = −155, G12 = 2073.
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The median Genocchi numbers (or Genocchi numbers of the second kind, cf. [29, A005439])
H1, H3, H5, . . . can be defined by their relation with G2n (n ≥ 1):

H2n−1 = (−1)n
bn−1

2
c∑

j=0

(
n

2j + 1

)
G2n−2j for all n = 1, 2, 3, . . . .

For example,
H1 = 1, H3 = 2, H5 = 8, H7 = 56, H9 = 608, H11 = 9440.

The Euler numbers (En)n≥0 are defined as the coefficients of the Taylor expansion

sec(x) + tan(x) =
∑
n≥0

En
xn

n!
= 1 + 1

x

1!
+ 1

x2

2!
+ 2

x3

3!
+ 5

x4

4!
+ 16

x5

5!
+ 61

x6

6!
+ 272

x7

7!
+ · · · .

It was André [1] in 1879 who first discovered the interpretation of En as the number of alternating
(down-up) permutations of length n. The Euler numbers E2n of even indices are called secant
numbers, while those E2n−1 with odd indices are called tangent numbers.

Motivated by Conjecture 1.1, P. Luschny [29, A005439] made the following similar conjecture
involving median Genocchi numbers.

Conjecture 1.2 (P. Luschny). Let n be any positive integer and define

M2n :=

[⌊
2j − k − 1

2n

⌋]
1≤j,k≤2n

.

Then we have

per(M2n) = (−1)nH2n−1. (1.3)

Recall that the sign function is given by

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

The following third, fourth, and fifth conjectures (involving the sign function) were raised by
Deyi Chen [9, 10].

Conjecture 1.3 (D. Chen). Let n be any positive integer, and set

A2n :=

[
sgn

(
tanπ

i+ j

2n+ 1

)]
1≤i,j≤2n

.

Then we have

per(A2n) = per(A−1
2n ) = (−1)nE2n. (1.4)

Conjecture 1.4 (D. Chen). Let n be a positive integer, and set

Pn :=

[
sgn

(
sinπ

i+ j

n+ 1

)]
1≤i,j≤n

.

Then
per(P2n) = per(P−1

2n ) = (−1)nE2n. (1.5)
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Conjecture 1.5 (D. Chen). Let n be a positive integer, and set

Qn :=

[
sgn

(
sinπ

i+ 2j

n+ 1

)]
1≤i,j≤n

.

Then
per(Qn) = (−1)nEn. (1.6)

In view of the above conjectures relating permanents involving “tan” and “sin” directly to
(signed) Euler numbers, it seems natural to consider the trigonometric function “cos” instead, and
compute the corresponding permanents. This consideration leads to the most recent conjecture of
Deyi Chen [11].

Conjecture 1.6 (D. Chen). Let n be a positive integer, and define

Rn :=

[
sgn

(
cosπ

i+ j

n+ 1

)]
1≤i,j≤n

.

Then

per(Rn) =

{
−
∑m

k=0

(
m
k

)
E2k+1 if n = 2m+ 1,∑m

k=0

(
m
k

)
E2k if n = 2m.

(1.7)

We are going to prove Conjectures 1.1 and 1.2 in Section 2, where four permutation interpreta-
tions of Kreweras’ triangle are derived as byproduct. Relying on the classical sign-balance results
for the excedance polynomials over permutations and derangements, as well as certain elementary
action on matrices, we will prove Conjectures 1.3–1.5 in Section 3. The proof of Conjecture 1.6 is
a combination of the Foata–Strehl action [18] and the bivariate generating functions of two types
of Poupard numbers studied by Foata and Han [16]. This will be done in Section 4, where a
conjecture posted to [29, A005799] by Peter Bala is also confirmed. Moreover, we will give in the
last section a new permutation interpretation for the γ-coefficients of the descent polynomials on
the multiset {1, 1, 2, 2, . . . , n, n}, and conclude our paper by posing some related open problems
for further research.

2. Proofs of Conjectures 1.1-1.2 and some relevant results

2.1. Proof of Conjecture 1.1. We begin with some initial observations and analysis on Conjec-
ture 1.1. Let

Ln :=

[⌊
2j − k
n

⌋]
1≤j,k≤n

,

which is a matrix with entries in {0,±1}. We observe the following sign patterns (whether an
entry is 1, 0 or −1) of the matrix Ln.

Fact 2.1. (1) For even n = 2m ≥ 2, we have per(Ln) = Bn+1 = 0, since the m-th row of Ln
contains only zeros.

(2) For odd n = 2m+ 1, the first m rows of Ln begin with 0s and end with −1s, the next m rows
(the (m+1)-th row to the 2m-th row) begin with 1s and end with 0s, while the last row contains
only 1s. In particular, we have sgn(per(Ln)) = (−1)m = sgn(Bn+1) = −sgn(G2m+2).

(3) For odd n = 2m+ 1, the m-th row of Ln begins with 2m consecutive 0s and ends with one −1,
while the (m+ 1)-th row of Ln begins with one 1 and continues with 2m consecutive 0s.

In view of Fact 2.1(1)-(2), it suffices to show that

|per(L2m+1)| = (−1)m+1G2m+2 for every m = 0, 1, 2, . . .. (2.1)
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Now Fact 2.1(3) tells us that when we expand per(L2m+1) to get non-zero terms, the choices
for the m-th and (m + 1)-th rows are unique, namely, we are forced to choose the last entry −1
for the m-th row and the first entry 1 for the (m+ 1)-th row. Therefore, we shall delete these two
rows, as well as the first and last columns of L2m+1, and extract −1 from each of the first m− 1
rows to consider the matrix L̃2m−1 = (`i,j)1≤i,j≤2m−1, where

`i,j =


1 if 1 ≤ i ≤ m− 1 & 2i ≤ j ≤ 2m− 1,

or m ≤ i ≤ 2m− 2 & 1 ≤ j ≤ 2(i−m) + 2, or i = 2m− 1,
0 otherwise,

and then observe that

per(L̃2m−1) = |per(L2m+1)|. (2.2)

For example, the first four matrices are L̃1 = [1], and

L̃3 =

0 1 1
1 1 0
1 1 1

 , L̃5 =


0 1 1 1 1
0 0 0 1 1
1 1 0 0 0
1 1 1 1 0
1 1 1 1 1

 , L̃7 =



0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1
1 1 0 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1


.

In order to calculate per(L̃2m−1), we expand L̃2m−1 along the bottom row, and denote the
(2m−1, i)-minor by L̃2m−1,i (1 ≤ i ≤ 2m−1). That is, L̃2m−1,i is the permanent of the submatrix
obtained from deleting the (2m−1)-th row and the i-th column of L̃2m−1. The following recurrence
relation fully characterizes these minors, and it is vital to our proof of Conjecture 1.1.

Lemma 2.2. For integers m > k > 1, we have

L̃2m−1,2k−1 = L̃2m−1,2k−2 +
2m−3∑
i=2k−2

L̃2m−3,i (2.3)

and

L̃2m−1,2k = L̃2m−1,2k−1 −
2k−2∑
i=1

L̃2m−3,i, (2.4)

where we set L̃2m−1,0 = L̃2m−1,2m = 0.

Proof. If we delete the m-th row and the (2m− 1)-th row, and the first two columns of L̃2m−1, we
get a submatrix that becomes L̃2m−3 once we flip it upside down, then left to right. This shows
the k = 1 case of (2.3).

Next, for k ≥ 2, comparing the (2k−1)-th column of L̃2m−1 with the (2k−2)-th column, we see
that the only discrepancy is `m+k−2,2k−2 = 1 while `m+k−2,2k−1 = 0. This means the difference of
the two minors, L̃2m−1,2k−1 − L̃2m−1,2k−2, is given by the permanent of the submatrix obtained
from deleting the (m + k − 2)-th, (2m − 1)-th rows, and the (2k − 2)-th, (2k − 1)-th columns of
L̃2m−1. Expanding this permanent along the (k − 1)-th row, we see that it coincides with the
summation

2m−3∑
i=2k−2

L̃2m−3,i.

This proves (2.3). The equality (2.4) can be proved similarly, and we omit the details. �
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The signless Genocchi numbers (−1)nG2n possess many interesting combinatorial and arithmetic
properties. The first combinatorial interpretation of Genocchi numbers was found by Dumont [12]
in 1974, which asserts that |D2n−1| = (−1)nG2n with

D2n−1 := {σ ∈ S2n−1 : ∀ i ∈ [2n− 2], σ(i) > σ(i+ 1) if and only if σ(i) is even}.

Since then, many other interpretations of Genocchi numbers have been found in the literature;
see [4, 7, 14,20,22,24] and the references therein.

Our final step for the proof of Conjecture 1.1 is to realize that the recurrences (2.3) and (2.4)
are precisely the recurrences for Kreweras’ triangle [22]:

1
1 1 1

3 3 5 3 3
17 17 31 25 31 17 17

155 155 293 259 349 259 293 155 155
...

This is a well-known triangle that refines the Genocchi numbers. Its entry in the m-th row and
the k-th column is given by

K2m−1,k := |{σ ∈ D2m+1 : σ(1) = k + 1}|.

For instance, K5,2 = 3 counts the three qualified permutations in D7 that begin with letter 3:

3421657, 3564217, 3642157.

Kreweras [22] proved that the triangle K2m−1,k (1 ≤ k ≤ 2m − 1) shares the same recurrence
relation as L̃2m−1,k in Lemma 2.2. This leads to the following refinement of Conjecture 1.1.

Theorem 2.3. Let m be a positive integer. For each k = 1, 2, . . . , 2m − 1, we have L̃2m−1,k =

K2m−1,k. In particular, per(L̃2m−1) = (−1)m+1G2m+2, and hence Conjecture 1.1 holds.

2.2. Four permutation interpretations of Kreweras’ triangle. It is interesting to point
out that Theorem 2.3 is equivalent to the following new permutation interpretation of Kreweras’
triangle.

Corollary 2.4. The Kreweras number K2m−1,k with 1 ≤ k ≤ 2m − 1 enumerates permutations
σ ∈ S2m−1 satisfying σ−1(2m− 1) = k and σ(i) /∈ [b i2c+ 1, d i2e+m− 2] for each i ∈ [2m− 1].

Let γn,i be the row vector with the first i entries being 0 and the remaining n− i entries being
1. Let γ̄n,i := 1Tn − γn,i be the complement of γn,i, where 1n is the n-dimensional column vector
with all entries equal to 1. For brevity, we write γn,i as γi when n is fixed. Observe that

L̃2m−1 = (γ1, γ3, . . . , γ2m−3, γ̄2, γ̄4, . . . , γ̄2m−2,1
T
2m−1)T .

Rearrange the rows of L̃2m−1 to form another matrix

L∗2m−1 = (γ̄2, γ̄4, . . . , γ̄2m−2,1
T
2m−1, γ1, γ3, . . . , γ2m−3)T
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with the same permanent. For example,

L∗3 =

1 1 0
1 1 1
0 1 1

 , L∗5 =


1 1 0 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 0 1 1

 , L∗7 =



1 1 0 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1


.

Thus, Theorem 2.3 implies the following alternative permutation interpretation of Kreweras’ tri-
angle.

Corollary 2.5. The Kreweras number K2m−1,k enumerates permutations σ ∈ S2m−1 satisfying
σ−1(m) = k and d i2e ≤ σ(i) ≤ m+ b i2c for each i ∈ [2m− 1].

We may also rearrange the rows of L̃2m−1 as

L?2m−1 = (γ1, γ̄2, γ3, γ̄4, . . . , γ2m−3, γ̄2m−2,1
T
2m−1)T .

For example,

L?3 =

0 1 1
1 1 0
1 1 1

 , L?5 =


0 1 1 1 1
1 1 0 0 0
0 0 0 1 1
1 1 1 1 0
1 1 1 1 1

 , L?7 =



0 1 1 1 1 1 1
1 1 0 0 0 0 0
0 0 0 1 1 1 1
1 1 1 1 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 0
1 1 1 1 1 1 1


.

This rearrangement, together with Theorem 2.3, yields the following third interpretation of Krew-
eras’ triangle.

Corollary 2.6. The Kreweras number K2m−1,k enumerates permutations σ ∈ S2m−1 for which
σ(2m− 1) = k, and σ(i) > i if and only if i ∈ {2n− 1 : 1 6 n < m}.

A permutation σ ∈ S2m is called a Dumont permutation of the second kind [7] if σ(2i) < 2i and
σ(2i− 1) ≥ 2i− 1 for every i ∈ [m]. It is clear that the permanent of the 2m× 2m matrix

L?2m = (1T2m, γ̄1, γ2, γ̄3, γ4, . . . , γ̄2m−3, γ2m−2, γ̄2m−1)T

enumerates Dumont permutations of the second kind in S2m. For example,

L?4 =


1 1 1 1
1 0 0 0
0 0 1 1
1 1 1 0

 , L?6 =


1 1 1 1 1 1
1 0 0 0 0 0
0 0 1 1 1 1
1 1 1 0 0 0
0 0 0 0 1 1
1 1 1 1 1 0

 , L
?
8 =



1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 0


.

Observe that γ̄1 = (1, 0, 0, . . . , 0). Deleting the second row and the first column from L?2m yields
the (2m − 1) × (2m − 1)-matrix (1T2m−1, γ1, γ̄2, γ3, γ̄4, . . . , γ2m−3, γ̄2m−2)T , which is clearly a row
rearrangement of L?2m−1. This, together with Corollary 2.6, implies the following interpretation
of Kreweras’ triangle in terms of Dumont permutations of the second kind.
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Corollary 2.7. Let D2
2m be the set of Dumont permutations of the second kind with length 2m.

Then the Kreweras number K2m−1,k enumerates σ ∈ D2
2m satisfying σ(1) = k + 1.

Remark 2.8. A variation of Foata’s first fundamental transformation1 (cf. [30, Prop. 1.3.1])
establishes a one-to-one correspondence between {σ ∈ D2

2m : σ(1) = k + 1} and {σ ∈ D2m+1 :
σ(1) = k + 1}, which provides an alternative approach to Corollary 2.7. In fact, we first write
σ ∈ D2

2m as a product of disjoint cycles meeting the following requirements:
(a) each cycle is written with the last element being the smallest one in the cycle;
(b) the cycles are arranged in increasing order of their smallest elements.

Now, define σ̂ as the word (or permutation) obtained by first erasing the parentheses in the above
form of σ and then adding the letter 2m + 1 to the end. Then σ 7→ σ̂ is the desired bijection
between D2

2m and D2m+1 such that σ(1) = σ̂(1).

2.3. Proof of Conjecture 1.2. We first make some observations similar to Fact 2.1 by deter-
mining the sign, rearranging the columns/rows, and deleting the two rows which contain a unique
1 or −1, etc.. This leads us to consider the matrix M̃2n = [mi,j ]1≤i,j≤2n (induced from M2n+2),
where

mi,j =

{
1 if d i2e ≤ j ≤ n+ d i2e,
0 otherwise.

The first three matrices of this type are given by

M̃2 =

[
1 1
1 1

]
, M̃4 =


1 1 1 0
1 1 1 0
0 1 1 1
0 1 1 1

 , M̃6 =


1 1 1 1 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 1 1 1 1

 .
Conjecture 1.2 has the following equivalent version:

per(M̃2n) = H2n+1 for all n ≥ 1. (2.5)

A salient feature of the matrix M̃2n is that the (2i− 1)-th and 2i-th rows are identical, for each
1 ≤ i ≤ n. Therefore, when we expand the matrix to compute its permanent, our choices for the
(2i− 1)-th and 2i-th rows can always be swapped. This is in agreement with the fact that H2n+1

is divisible by 2n. Actually, the integers hn := H2n+1/2
n (n ≥ 1) are usually referred to as the

normalized median Genocchi numbers.
The permanent per(M̃2n) can be interpreted as a sum over certain subset of permutations in

S2n. Recall that
DES(π) := {i ∈ [n− 1] : π(i) > π(i+ 1)}

is the descent set of the permutation π ∈ Sn. Let S̃2n be the set of permutations π = π(1) · · ·π(2n)
in S2n for which {1, 3, 5, . . . , 2n − 1} ⊆ DES(π) and d i2e ≤ π(i) ≤ n + d i2e. By the previous
discussions, 2n · |S̃2n| = per(M̃2n). Hence it remains to show that

|S̃2n| = hn. (2.6)

Indeed, there is a well-known combinatorial model in the literature called the Dellac configura-
tion [4, 21], which is known [14] to be enumerated by the normalized median Genocchi numbers
hn.

1The original form of Foata’s first fundamental transformation will be used in Section 4.1.
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Definition 2.9. A Dellac configuration of size n is a tableau of width n and height 2n that
contains 2n dots between the line y = x and y = n + x, such that each row contains exactly one
dot and each column contains exactly two dots.

Proof of Conjecture 1.2. Let DCn be the set of Dellac configurations of size n. Now given a
configuration C ∈ DCn, we read the y-coordinates of the dots in C, from the leftmost column to
the rightmost and top-down inside each column. It is easy to check that this list of coordinates
forms precisely a permutation in S̃2n. This gives a bijection between DCn and S̃2n, and thus
(2.6) holds true. �

3. Proofs of Conjectures 1.3∼1.5

A permutation π ∈ Sn is called a derangement if π(i) 6= i for all i ∈ [n]. For convenience, we
set

Dn := {π ∈ Sn : π(i) 6= i for all i ∈ [n]}.
Let us recall the following two classical results:∑

π∈Sn

(−1)exc(π) =

{
(−1)mE2m+1 if n = 2m+ 1,

0 if n = 2m,
(3.1)

∑
π∈Dn

(−1)exc(π) =

{
0 if n = 2m+ 1,

(−1)mE2m if n = 2m,
(3.2)

where exc(π) is the number of excedances of π, i.e.,

exc(π) := |{i ∈ [n] : π(i) > i}|.

Note that (3.1) and (3.2) are due to Euler [13] and Roselle [28] respectively, and a joint com-
binatorial proof of them can be found in [17, Chap. 5] (see also [25]). We emphasize that the
proofs of Conjectures 1.3∼1.5 hinge on linking these conjectures to the above two identities. In
particular, the proof of Conjecture 1.3 is more involved and it requires block matrix decomposition
and a variant of excedance that we denote as “exph”. This proof is thus given after the proofs of
Conjectures 1.4 and 1.5.

3.1. Proof of Conjecture 1.4. In view of the three matrices

P2 =

[
1 0
0 −1

]
, P4 =


1 1 1 0
1 1 0 −1
1 0 −1 −1
0 −1 −1 −1

 , P6 =


1 1 1 1 1 0
1 1 1 1 0 −1
1 1 1 0 −1 −1
1 1 0 −1 −1 −1
1 0 −1 −1 −1 −1
0 −1 −1 −1 −1 −1

 ,

it is not hard to see the connection between the pattern of signs of P2n and the permutation statistic
exc(π). More precisely, if we interpret each −1 entry of P2n sitting at the i-th row (counting from
top to bottom) and the j-th column (counting from right to left) as an excedance i = π(j) > j,
then

per(P2n) =
∑
π∈D2n

(−1)exc(π). (3.3)

Applying (3.2) we get per(P2n) = (−1)nE2n.
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A straightforward computation checks that the inverse matrix of P2n is [xi,j ]1≤i,j≤2n, where

xi,j =


0 if i+ j = 2n+ 1,

1 if i+ j < 2n+ 1 and i ≡ j (mod 2),
or i+ j > 2n+ 1 and i 6≡ j (mod 2),

−1 otherwise.

The first three inverse matrices are

P−1
2 =

[
1 0
0 −1

]
, P−1

4 =


1 −1 1 0
−1 1 0 −1
1 0 −1 1
0 −1 1 −1

 , P−1
6 =


1 −1 1 −1 1 0
−1 1 −1 1 0 −1
1 −1 1 0 −1 1
−1 1 0 −1 1 −1
1 0 −1 1 −1 1
0 −1 1 −1 1 −1

 .
For each permutation π ∈ Sn, an index i ∈ [n] is called an excedance of type P , if either

π(i) > i and π(i) − i is odd, or π(i) < i and π(i) − i is even. Let excP (π) denote the number of
type P excedances of π. Note that excP is not an Eulerian statistic, i.e., its distribution over Sn

is different from that of exc. Nonetheless, excP and exc have the same sign-balance over both Sn

and Dn.

Theorem 3.1. For each n ≥ 1, we have∑
π∈Sn

(−1)exc(π) =
∑
π∈Sn

(−1)excP (π) and
∑
π∈Dn

(−1)exc(π) =
∑
π∈Dn

(−1)excP (π). (3.4)

Proof. For our convenience, we shall consider inverse excedence (iexc(π) := exc(π−1)) instead of
excedance. Note that exc and iexc are equidistributed over both Sn and Dn.

The idea is to begin with the cycle decomposition of certain permutation π ∈ Sn−1, and insert
n into π, say between i and π(i), to get a new permutation π′ ∈ Sn.

i π(i) π(i)− i n iexc excP

even even > 0 even/odd +1 +1
even even < 0 even/odd +0 +0
even odd > 0 even +1 −1
even odd > 0 odd +1 +1
even odd < 0 even +0 +0
even odd < 0 odd +0 +2
odd even > 0 even +1 +1
odd even > 0 odd +1 −1
odd even < 0 even +0 +2
odd even < 0 odd +0 +0
odd odd > 0 even/odd +1 +1
odd odd < 0 even/odd +0 +0

even/odd even/odd = 0 even/odd +1 +1

Table 1. Various cases of inserting n between i and π(i)

The rest of the proof is to verify, in a case-by-case fashion, that the parity changes of both iexc
and excP are the same, when we go from π to π′. When n is a fixed point for π′, we see neither
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iexc nor excP changes in this case. We collect the remaining cases in the above table so that the
readers can easily check for themselves. The bottom case in the table means that n joins a fixed
point π(i) = i of π to form a 2-cycle (i n) of π′. �

By the definitions of the inverse matrix P−1
2n and the new statistic excP , we have

per(P−1
2n ) =

∑
π∈D2n

(−1)excP (π).

This result combined with (3.2) and the second identity in (3.4) proves the equality per(P−1
2n ) =

(−1)nE2n.
There is another elementary proof of the identity

per(P2n) = per(P−1
2n ) (3.5)

that we are going to provide below. The following elementary transformations concerning evalua-
tions of permanents are clear.

Lemma 3.2. Let A = [ai,j ]1≤i,j≤n be an n× n matrix over a commutative ring R with identity.

(1) For any 1 ≤ k ≤ n, the matrix obtained from A by multiplying each entry in the k-th column
(or row) by c ∈ R has permanent that equals c · per(A).

(2) Exchanging any two columns (or rows) of A preserves the permanent.

Definition 3.3 (Hadamard product). For two matrices A = [ai,j ]1≤i,j≤n and B = [bi,j ]1≤i,j≤n
over a ring, the Hadamard product of A and B is A ◦B = [ci,j ]1≤i,j≤n with ci,j = ai,jbi,j .

Definition 3.4 (An action on matrix). Let A = [ai,j ]1≤i,j≤n be an n × n matrix over R. For
1 ≤ k, l ≤ n, define φk,l(A) to be the matrix obtained from A by multiplying the k-th row and the
l-th column by −1. Note that the (k, l)-entry of φk,l(A) remains ak,l, since it multiplies −1 twice.
By Lemma 3.2 (1), we have

per(φk,l(A)) = per(A). (3.6)

The usefulness of φk,l is demonstrated by the next lemma, and we shall derive further properties
of this action in the last section; see Proposition 5.1.

Lemma 3.5. Let A = [ai,j ]1≤i,j≤n be an n× n matrix over R. Then( ∏
k+l≤n

φk,l

)
(A) = A ◦Hn,

where Hn = [hi,j ]1≤i,j≤n with hi,j = (−1)i+j. Consequently, per(A) = per(A ◦Hn).

Proof. The number of times that the entry ai,j changes its sign under
∏
k+l≤n φk,l equals n− i+

n− j = 2n− (i+ j), which has the same parity as i+ j. This proves the first statement in Lemma
3.5. The second statement follows from the first one and the equality (3.6). �

In view of the relation

P−1
2n = P2n ◦H2n,

Lemma 3.5 provides an alternative approach to (3.5).
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3.2. Proof of Conjecture 1.5. The first few terms of Qn are

Q1 =
[
−1
]
, Q2 =

[
0 −1
−1 0

]
, Q3 =

 1 −1 −1
0 −1 0
−1 −1 1

 , Q4 =


1 0 −1 −1
1 −1 −1 0
0 −1 −1 1
−1 −1 0 1

 ,

Q5 =


1 1 −1 −1 −1
1 0 −1 −1 0
1 −1 −1 −1 1
0 −1 −1 0 1
−1 −1 −1 1 1

 , Q6 =


1 1 0 −1 −1 −1
1 1 −1 −1 −1 0
1 0 −1 −1 −1 1
1 −1 −1 −1 0 1
0 −1 −1 −1 1 1
−1 −1 −1 0 1 1

 ,

Q7 =



1 1 1 −1 −1 −1 −1
1 1 0 −1 −1 −1 0
1 1 −1 −1 −1 −1 1
1 0 −1 −1 −1 0 1
1 −1 −1 −1 −1 1 1
0 −1 −1 −1 0 1 1
−1 −1 −1 −1 1 1 1


, Q8 =



1 1 1 0 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 0
1 1 0 −1 −1 −1 −1 1
1 1 −1 −1 −1 −1 0 1
1 0 −1 −1 −1 −1 1 1
1 −1 −1 −1 −1 0 1 1
0 −1 −1 −1 −1 1 1 1
−1 −1 −1 −1 0 1 1 1


.

For 0 ≤ i ≤ n − 1, let αn,i denote the column vector of dimension n whose (n − i)-th entry
is 0 and all entries above (resp. below) this zero entry are 1 (resp. −1). For example, α6,2 =
(1, 1, 1, 0,−1,−1)T . For the sake of simplicity, we write αn,i as αi when n is fixed. The matrix Qn
has the following structure.

Lemma 3.6. We have

Q2n = (α1, α3, . . . , α2n−1,−α0,−α2, . . . ,−α2n−2)

and
Q2n+1 = (α1, α3, . . . , α2n−1,−12n+1,−α1,−α3, . . . ,−α2n−1).

The following lemma is clear from the definition of permanents.

Lemma 3.7. For a matrix with two identical columns having one zero at the same position,
replacing the zero by 1 and the other zeros by −1 does not change its permanent.

Proof of Conjecture 1.5. In view of (1.5),

per(P2n) = (−1)nE2n. (3.7)

By Lemmas 3.2 and 3.6, we have

per(Q2n) = (−1)nper(α1, α3, . . . , α2n−1, α0, α2, . . . , α2n−2)

= (−1)nper(α0, α1, . . . , α2n−1) = (−1)nper(P2n).

Combining this with (3.7), we see that Conjecture 1.5 holds for even n.
It remains to deal with Conjecture 1.5 for odd n. Let βi be the column vector obtained by

replacing the only zero in αi by 1. By Lemmas 3.2 and 3.7, we have

per(Q2n+1) = (−1)nper(α1, α3, . . . , α2n−1,−12n+1, α1, α3, . . . , α2n−1)

= (−1)nper(α1, α1, α3, α3, . . . , α2n−1, α2n−1,−12n+1)

= (−1)nper(β1, β2, . . . , β2n−1, β2n,−12n+1)
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= (−1)n
∑

σ∈S2n+1

(−1)wexc(σ),

where wexc(σ) := |{i ∈ [2n+ 1] : σ(i) ≥ i}| is the number of weak excedances of σ. In view of the
permutation interpretation (3.1) of tangent numbers, we have∑

σ∈S2n+1

(−1)wexc(σ) =
∑

σ∈S2n+1

(−1)2n+1−|{i∈[2n+1]:σ(i)<i}|

= −
∑

σ∈S2n+1

(−1)|{i∈[2n+1]:σ(i)<i}|

= −
∑

σ∈S2n+1

(−1)exc(σ−1)

= −
∑

σ∈S2n+1

(−1)exc(σ) = (−1)n+1E2n+1,

which proves the odd case of Conjecture 1.5. �

3.3. Proof of Conjecture 1.3. We will make use of the multiplication of block matrices to
facilitate our computation. For every n ≥ 1, we introduce two n× n matrices:

In =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

 and Jn =


0 · · · 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 · · · 0

 .
Recall the matrix Pn = [sgn(sin( i+jn+1π))]1≤i,j≤n defined in Conjecture 1.4. It is easy to verify that

J2
n = In and JnPn = −PnJn. (3.8)

We derive the following block decomposition of the matrix A2n from its definition:

A2n =

[
Pn − Jn −Pn
−Pn Pn + Jn

]
.

With the aid of (3.8), it is fairly easy to check that the inverse matrix of A2n has the following
block decomposition:

A−1
2n =

[
Pn − Jn Pn
Pn Pn + Jn

]
.

In other words, A−1
2n = [ãi,j ]1≤i,j≤2n, where

ãi,j :=



0 if i+ j = 2n+ 1,

−1 if i+ j ≥ n+ 1 and max(i, j) ≤ n,
or if i+ j ≥ 2n+ 2 and i ≤ n,
or if i+ j ≥ 2n+ 2 and j ≤ n,
or if i+ j ≥ 3n+ 2,

1 otherwise.

Comprehending the sign pattern of A−1
2n , we are naturally led to define the following variant of

excedance, that we call the number of excedances induced by φ (a bijection to be defined later),
and denoted as exph(π) for each permutation π ∈ S2n. Each i ∈ [2n] is said to be an excedance
of π induced by φ, if it falls in one of the following situations.
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I. 1 ≤ i < π(i) ≤ n;
II. n+ 1 ≤ i ≤ 2n and i− n ≤ π(i) ≤ n;
III. n+ 1 ≤ i < π(i) ≤ 2n;
IV. 1 ≤ i < π(i)− n and n+ 1 ≤ π(i) ≤ 2n.
Now we can interprete per(A−1

2n ) as the signed sum over all derangements of [2n]. Namely, each
π ∈ D2n corresponds to one term in the expansion of per(A−1

2n ), and each pair (i, π(i)) corresponds
to the entry in the π(i)-th (from top to bottom) row and the i-th (from right to left) column of
A−1

2n . This entry is −1 if and only if i is an excedance of π introduced by φ; otherwise it is 1. In
other words, we have

per(A−1
2n ) =

∑
π∈D2n

(−1)exph(π). (3.9)

We give an example to illustrate the above relation.

Example 3.8. The six entries in A−1
6 that correspond to the derangement π = 315624 have been

colored blue. Note that exph(π) = 3 since π has excedances introduced by φ at 1 (case I), 4 (case
III), and 5 (case II).

A−1
6 =


1 1 −1 1 1 0
1 −1 −1 1 0 −1
−1 −1 −1 0 −1 −1
1 1 0 1 1 1
1 0 −1 1 1 −1
0 −1 −1 1 −1 −1

 =⇒ exph(π) = 3 for π = 315624.

Relying on the connection (3.9), we proceed to show that

per(A−1
2n ) = (−1)nE2n. (3.10)

Indeed, we will construct a bijection to show the following equidistribution result, which imme-
diately implies (3.10) when we set t = −1 and y = 0, and apply (3.2). For any π ∈ Sn, let
Fix(π) = {i ∈ [n] : π(i) = i} be the set of fixed points of π and fix(π) = |Fix(π)| be its cardinality.

Theorem 3.9. For each n ≥ 1, we have∑
π∈S2n

texc(π)yfix(π) =
∑
π∈S2n

texph(π)yfix(π). (3.11)

For each x ∈ [2n], we define y := φ(x) by

y =

{
n+ k if x = 2k − 1 for some 1 ≤ k ≤ n,
k if x = 2k for some 1 ≤ k ≤ n.

(3.12)

Then φ is a permutation of [2n], and it naturally induces a bijection on the symmetric group S2n:

Φ : S2n → S2n

π 7→ σ,

where σ is obtained from π by replacing each i with φ(i) in the two-line notation of π. Take
π = 315462 for example, we see(

1 2 3 4 5 6
3 1 5 4 6 2

)
7→
(

4 1 5 2 6 3
5 4 6 2 3 1

)
=

(
1 2 3 4 5 6
4 2 1 5 6 3

)
,

so we have σ = Φ(π) = 421563. One checks that exc(π) = exph(σ) = 3 and fix(π) = fix(σ) = 1.
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Proof of Theorem 3.9. We show that the previous example is not a coincidence. Namely, if Φ
maps π to σ, then we have

exc(π) = exph(σ) (3.13)

and

fix(π) = fix(σ), (3.14)

which readily imply (3.11). Since φ is a bijection, i = π(i) if and only if φ(i) = φ(π(i)), and
actually φ(π(i)) = σ(φ(i)). Consequently, i is a fixed point of π if and only if φ(i) is a fixed point
of σ. This proves (3.14).

The proof of (3.13) is a case-by-case verification using the definition of the statistic “exph”. We
show one case here and leave the details of remaining cases to the interested reader. Suppose that
i < π(i) is an excedance of π such that i = 2k−1 is odd while π(i) = 2j is even. According to (3.12),
we have φ(i) = n+k while φ(π(i)) = j ≥ k = φ(i)−n. So the pair (φ(i), φ(π(i))) = (φ(i), σ(φ(i)))
is in situation II and contributes 1 to exph(σ). �

To complete the proof of Conjecture 1.3, it suffices now to show that

per(A2n) = per(A−1
2n ). (3.15)

This is done by utilizing the action φk,l on matrices introduced in Definition 3.4.

Lemma 3.10. Let A = [ai,j ]1≤i,j≤2n be a 2n× 2n matrix over R. Let Un be the n×n matrix with
all entries 1, and let

Ũ2n =

[
Un −Un
−Un Un

]
.

Then ( ∏
(k,l)∈S

φk,l

)
(A) = A ◦ Ũ2n,

where S = {(i, j) ∈ [2n] × [2n] : i + j ∈ [n + 1, 2n] ∪ [3n + 2, 4n]}. Consequently, per(A) =

per(A ◦ Ũ2n).

Proof. The number of times that the entry ai,j changes its sign under
∏

(k,l)∈S
φk,l equals


2n− 1, if (i, j) ∈ [1, n]× [n+ 1, 2n] ∪ [n+ 1, 2n]× [1, n];
2n− 2, if (i, j) ∈ [n+ 1, 2n]× [n+ 1, 2n];
2n, if (i, j) ∈ [1, n]× [1, n].

This proves the first statement in Lemma 3.10. The second statement follows from the first one
and the equality (3.6). �

Since

A−1
2n =

[
Pn − Jn Pn
Pn Pn + Jn

]
= A2n ◦ Ũ2n,

the desired identity (3.15) follows from Lemma 3.10. This completes the proof of Conjecture 1.3.
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4. Proof of Conjecture 1.6 and a variant of excedance

The proof of Conjecture 1.6 consists of three steps. Firstly, we adjust the original matrix Rn
to get R̃n so that the modified permanent per(R̃n), for n even (resp. odd), can be recognized
as the sign balance of certain variant of the excedance statistic over permutations (resp. almost
derangements). Next, with the aid of the celebrated Foata–Strehl action [18] on permutations and
a simple bijection, we are able to identify these weighted sums as the so-called central Poupard
numbers. Finally, we confirm the conjectured connections with the binomial transforms of Euler
numbers, namely Eq. (1.7), utilizing the generating functions of Poupard numbers due to Foata
and Han [16]. As a byproduct, we prove in subsection 4.3 a conjecture due to Peter Bala on a
certain continued fraction expansion.

4.1. An exc variant and cyclic valley-hopping. The first few terms of Rn (n ≥ 1) read as
follows:

R1 =
[
−1
]
, R2 =

[
−1 −1
−1 −1

]
, R3 =

 0 −1 −1
−1 −1 −1
−1 −1 0

 , R4 =


1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 1

 ,

R5 =


1 0 −1 −1 −1
0 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 0
−1 −1 −1 0 1

 , R6 =


1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1
−1 −1 −1 −1 1 1

 .

After multiplying the i-th row by −1 for each dn2 e ≤ i ≤ n, and rearranging the rows we get the
matrix R̃n as illustrated by the following examples:

R̃1 =
[
1
]
, R̃3 =

1 1 0
1 1 1
0 −1 −1

 , R̃5 =


1 1 1 1 0
1 1 1 0 −1
1 1 1 1 1
1 0 −1 −1 −1
0 −1 −1 −1 −1

 ,

R̃2 =

[
1 1
1 1

]
, R̃4 =


1 1 1 1
1 1 1 −1
1 1 1 1
1 −1 −1 −1

 , R̃6 =


1 1 1 1 1 1
1 1 1 1 1 −1
1 1 1 1 −1 −1
1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1

 .

Note that

per(Rn) = (−1)d
n+1
2
eper(R̃n). (4.1)

The comparison between R̃n and Pn suggests the following variation of excedance statistic.

Definition 4.1. For π ∈ Sn, define

ẽxc(π) := |{i ∈ [n] : π(i) > i and π(i) 6= d(n+ 1)/2e}|.

Note that exc(π)− ẽxc(π) equals 1 or 0 depending on whether dn+1
2 e is an excedance top or not.
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The two identities below follow directly from the pattern of R̃n and the definition of ẽxc.

per(R̃2m) =
∑

π∈S2m

(−1)ẽxc(π), (4.2)

per(R̃2m+1) =
∑

π∈D̃2m+1

(−1)ẽxc(π), (4.3)

where D̃2m+1 = {π ∈ S2m+1 : Fix(π) ⊆ {m + 1}}. In order to understand the cancellation hap-
pened in computing the permanents per(R̃n), we adopt Foata’s first fundamental transformation
and the Foata–Strehl action on permutations that we recall below.

In this section, we write each permutation in its standard cycle form according to the following
convention:

(i) each cycle has its largest letter in the leftmost position;
(ii) the cycles are listed from left to right in increasing order of their largest letters.

For instance, the cycle form of π = 562437198 is π = (4)(715326)(98). Foata’s “transformation
fondamentale” o : Sn → Sn is defined as follows: For each π ∈ Sn, the one-line notation of o(π)
is obtained from the standard cycle form of π−1 by erasing all the parentheses. For example,
o(π) = 471532698 for π = 735412698, since π−1 = 562437198 has the cycle form (4)(715326)(98).

For a permutation π ∈ Sn, introduce the set of excedance tops of π and the set of descent tops
of π by

Exct(π) := {π(i) : 1 ≤ i < n, i < π(i)} and Dest(π) = {π(i) : 1 ≤ i < n, π(i) > π(i+ 1)},
respectively. The following result is known.

Lemma 4.2. For the bijection o : Sn → Sn, we have Exct(π) = Dest(o(π)) for each π ∈ Sn.

Fix a permutation π ∈ Sn and a letter x ∈ [n]. The x-factorization of π is the unique decompo-
sition π = w1w2xw3w4, where w2 (resp. w3) is the maximal consecutive subword (possibly empty)
immediately to the left (resp. right) of x whose letters are all smaller than x. The Foata–Strehl
action [18] ϕx : Sn → Sn can be defined by

ϕx(π) = w1w3xw2w4. (4.4)

+∞

7

3

5

4

1
2

6

9

8

+∞

Figure 1. The Foata–Strehl action ϕx on 735412698 with x = 4.

For example, if π = 735412698 and x = 4, then the x-factorization yields w1 = 735, w2 = ∅,
w3 = 12, and w4 = 698. Thus, ϕx(π) = 735124698; see Fig. 1 for a visualization of the action ϕx.
Clearly ϕx is an involution on Sn for every x ∈ [n]. Following Sun and Wang [31], we define the
action ψx : Sn → Sn by ψx(π) := o−1(ϕx(o(π))). The action ψx is an involution on Sn (as ϕx is
an involution), and when x is properly chosen, it endows us with a sign-reversing bijection that
proves Lemma 4.3 in the following.
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Given a permutation π = π(1)π(2) · · ·π(n) inSn, we use the conventions π(0) = π(n+1) = +∞
(resp. π(0) = 0, π(n+ 1) = +∞) when n is even (resp. odd) and say that π(i) ∈ [n] is:

• a double ascent value of π if π(i− 1) < π(i) < π(i+ 1);
• a double descent value of π if π(i− 1) > π(i) > π(i+ 1).

Denote by Dasc(π) (resp. Ddes(π)) the set of double ascent (resp. descent) values of π. When
n = 2m is even, let S∗2m be the set of permutations π in S2m such that Dasc(o(π))∪Ddes(o(π)) =
{m + 1}. When n = 2m + 1 is odd, let S∗2m+1 be the set of permutations π in S2m+1 such that
Dasc(o(π)) ∪ Ddes(o(π)) = {m + 1}. Note that if x ∈ Fix(π), then the convention o(π)(0) = 0

guarantees that x is a double ascent value of o(π). In particular, S∗2m+1 is a subset of D̃2m+1.

Lemma 4.3. We have∑
π∈S2m

(−1)ẽxc(π) =
∑

π∈S∗2m

(−1)ẽxc(π) = (−1)m−1|S∗2m|, (4.5)

∑
π∈D̃2m+1

(−1)ẽxc(π) =
∑

π∈S∗2m+1

(−1)ẽxc(π) = (−1)m|S∗2m+1|. (4.6)

Proof. For convenience, we use A4B to denote the symmetric difference of two sets A and B. In
particular, when B = {b} is a singleton, we have

A4{b} =

{
A \ {b} if b ∈ A,
A ∪ {b} if b 6∈ A.

Let us first deal with the even case. Take any π ∈ S2m and set σ = o(π). Note that the
convention σ(0) = σ(2m+ 1) = +∞ forces the union Dasc(σ) ∪Ddes(σ) to be non-empty. Hence
there are two possibilities for this union:
(i) There exists some letter x 6= m+ 1 and x ∈ Dasc(σ) ∪Ddes(σ).
(ii) Dasc(σ) ∪Ddes(σ) = {m+ 1}, i.e., π ∈ S∗2m.

If we are in case (i), let x be the smallest such letter, then we see that

Dasc(ϕx(σ)) = Dasc(σ)4{x}, and Ddes(ϕx(σ)) = Ddes(σ)4{x}.
Consequently, Dest(ϕx(σ)) = Dest(σ)4{x}, and Exct(ψx(π)) = Exct(π)4{x} by Lemma 4.2.
Since x 6= m+ 1, we deduce that ẽxc(π) and ẽxc(ψx(π)) have opposite parity, so they cancel each
other in the first summation of (4.5). All remaining permutations are in case (ii), thus we have
proved the first equality in (4.5).

It is not difficult to see the following alternative description of S∗2m.

A characterization of S∗2m: Every permutation σ in o(S∗2m) can be uniquely constructed
from an up-down permutation σ̂ (i.e., σ̂(1) < σ̂(2) > σ̂(3) < · · · < σ̂(2m − 2) > σ̂(2m − 1))
consisting of letters from [2m] \ {m+ 1}, by inserting m+ 1 in one of the following ways:
(e1) before σ̂(1) if m+ 1 > σ̂(1);
(e2) after σ̂(2m− 1) if m+ 1 > σ̂(2m− 1);
(e3) inbetween σ̂(i) and σ̂(i+ 1) such that σ̂(i) > m+ 1 > σ̂(i+ 1);
(e4) inbetween σ̂(i) and σ̂(i+ 1) such that σ̂(i) < m+ 1 < σ̂(i+ 1).

Recall that ẽxc rejects m+1 as an excedance top, so inserting m+1 does not affect the value of
ẽxc in view of Lemma 4.2. Moreover, the excedance tops counted by ẽxc(o−1(σ̂)) are precisely the
peaks of σ̂ (i.e., those σ̂(i) with σ̂(i−1) < σ̂(i) > σ̂(i+1), or to be precise, σ̂(2), σ̂(4), . . . , σ̂(2m−2),
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since σ̂ is an up-down permutation). So ẽxc(π) = m − 1 for every π ∈ S∗2m, which takes care of
the second equality in (4.5).

Next for the odd case, again set σ = o(π) for a given π ∈ D̃2m+1. New conventions σ(0) = 0
and σ(2m+ 2) = +∞ force the union Dasc(σ) ∪Ddes(σ) to be non-empty. We proceed as in the
even case, to find the smallest x ∈ Dasc(σ)∪Ddes(σ)\{m+1} if it exists, and apply ψx to explain
the cancellations and establish the first equality of (4.6). To show the second equality of (4.6), we
resort to the following equivalent description of S∗2m+1.

A characterization of S∗2m+1: Every permutation σ in o(S∗2m+1) can be uniquely con-
structed from a down-up permutation σ̂ (i.e., σ̂(1) > σ̂(2) < σ̂(3) > · · · < σ̂(2m−1) > σ̂(2m))
consisting of letters from [2m+ 1] \ {m+ 1}, by inserting m+ 1 in one of the following ways:
(o1) before σ̂(1) if m+ 1 < σ̂(1);
(o2) after σ̂(2m) if m+ 1 > σ̂(2m);
(o3) inbetween σ̂(i) and σ̂(i+ 1) such that σ̂(i) > m+ 1 > σ̂(i+ 1);
(o4) inbetween σ̂(i) and σ̂(i+ 1) such that σ̂(i) < m+ 1 < σ̂(i+ 1).

It follows from the above description and Lemma 4.2 that ẽxc(π) = m for every π ∈ S∗2m+1.
This completes the proof of the lemma. �

4.2. Poupard numbers and the proof of Conjecture 1.6. In view of (4.1)-(4.3) and (4.5)-
(4.6), we get

per(R2m) = |S∗2m| and per(R2m+1) = −|S∗2m+1|. (4.7)
Therefore, it remains to enumerate S∗2m and S∗2m+1. It turns out that they are in simple bijections
with certain subsets of alternating permutations which were previously investigated by Foata and
Han [16], in their course of deriving new combinatorial interpretations for the finite difference
equation system introduced by Christiane Poupard.

Let An denote the set of alternating (down-up) permutations. For any π ∈ An, we suppose
π(i) = n for a certain i (1 ≤ i ≤ n) and use the convention π(0) = π(n+ 1) = 0. Following Foata
and Han [16], we introduce

grn(π) := max{π(i− 1), π(i+ 1)},
and call it the greater neighbour of n in π. Also, let An,k := {π ∈ An : grn(π) = k} for each
0 ≤ k ≤ n− 1.

Lemma 4.4. For each n ≥ 1, there exists a bijection f : S∗n → An+1,bn+1
2
c. In particular, we have

|S∗2m| = |A2m+1,m| and |S∗2m+1| = |A2m+2,m+1|.

Proof. For the even case with n = 2m, we refer to the boxed characterization of S∗2m given in the
proof of Lemma 4.3, and construct the image f(π) for each π ∈ S∗2m (set σ = o(π)) accordingly.
We first apply the complement map

τ = τ(1) · · · τ(n) 7→ τ c := (n+ 1− τ(1)) · · · (n+ 1− τ(n)) (4.8)

to σ, and then insert 2m+ 1 as follows.
(e1) If σc(1) = m, then we insert 2m+ 1 before m to get a new permutation f(π).
(e2) If σc(2m) = m, then we insert 2m+ 1 after m to get a new permutation f(π).
(e3) When σc(i) < σc(i+ 1) = m < σc(i+ 2), we insert 2m+ 1 between m and σc(i) to get a new

permutation f(π).
(e4) When σc(i) > σc(i+ 1) = m > σc(i+ 2), we insert 2m+ 1 between m and σc(i+ 2) to get a

new permutation f(π).
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It is readily verified that in all the four cases, f(π) is indeed a down-up permutation of length
2m+ 1, whose greater neighbor of 2m+ 1 is m. So f is well-defined and we get its inverse simply
by removing 2m+ 1 and then applying the complement map and o−1.

The map f for the odd case with n = 2m + 1 can be constructed similarly without applying
complement map before we insert 2m+ 2. The details are omitted. �

The last step towards proving Conjecture 1.6 is to utilize the bivariate generating function for
all Poupard numbers |An,k|. Set gn(k) := |A2n−1,k−1| (n ≥ 1, 1 ≤ k ≤ 2n − 1), and hn(k) :=
|A2n,k| (n ≥ 1, 1 ≤ k ≤ 2n− 1).

Theorem 4.5 (Theorem 1.2 in [16]). We have

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
x2n+1−k

(2n+ 1− k)!
· yk−1

(k − 1)!
= sec(x+ y) cos(x− y) (4.9)

and

1 +
∑
n≥1

∑
1≤k≤2n+1

hn+1(k)
x2n+1−k

(2n+ 1− k)!
· yk−1

(k − 1)!
= sec2(x+ y) cos(x− y). (4.10)

Lemma 4.6. For each n = 0, 1, 2, . . ., we have

gn+1(n+ 1) =

n∑
k=0

(
n

k

)
E2k (4.11)

and

hn+1(n+ 1) =
n∑
k=0

(
n

k

)
E2k+1. (4.12)

Proof. Observe that

sec(x+ y) cos(x− y) =

(∑
k≥0

E2k
(x+ y)2k

(2k)!

)(∑
k≥0

(−1)k
(x− y)2k

(2k)!

)

=

∞∑
n=0

n∑
k=0

(−1)n−k
E2k(x+ y)2k

(2k)!
· (x− y)2n−2k

(2n− 2k)!
.

Combining this with (4.9), we get

gn+1(n+ 1) =

n∑
k=0

(−1)kE2k

2k∑
i=0

(
n

i

)(
n

2k − i

)
(−1)i,

which gives (4.11) since

(−1)k
(
n

k

)
= [x2k](1− x2)n = [x2k](1− x)n(1 + x)n =

2k∑
i=0

(
n

i

)(
n

2k − i

)
(−1)i,

where [xm]f(x) denotes the coefficient of xm in the power series expansion of f(x). The second
formula (4.12) follows from the same manipulation by noticing tan′ x = sec2 x. �

With all the needed pieces on hand, Conjecture 1.6 now follows from (4.7), and Lemmas 4.4
and 4.6.
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4.3. Bala’s continued fraction conjecture. Recall that the descent number of a word w =
w1w2 · · ·wn over N is

des(w) := |{i ∈ [n− 1] : wi > wi+1}|.
The classical Eulerian polynomial An(t) may be defined by Euler’s formula

An(t)

(1− t)n+1
=
∑
k≥0

(k + 1)ntk. (4.13)

It is well known that An(t) has the following two interpretations (see [30, Chap. 1]):∑
π∈Sn

tdes(π) = An(t) =
∑
π∈Sn

texc(π).

Consider a variation of the Eulerian polynomials: Ãn(t) :=
∑

π∈Sn
tẽxc(π) for n ≥ 1. For conve-

nience, we list the first few terms of Ãn(t) as follows:

Ã1(t) = 1,

Ã2(t) = 2,

Ã3(t) = 2 + 4t,

Ã4(t) = 4 + 16t+ 4t2,

Ã5(t) = 4 + 48t+ 60t2 + 8t3,

Ã6(t) = 8 + 160t+ 384t2 + 160t3 + 8t4,

Ã7(t) = 8 + 368t+ 1952t2 + 2176t3 + 520t4 + 16t5,

Ã8(t) = 16 + 1152t+ 9648t2 + 18688t3 + 9648t4 + 1152t5 + 16t6.

We have the following result for Ã2n(t).

Theorem 4.7. Let S(2)
n be the set of all permutations of the multiset {1, 1, 2, 2, . . . , n, n}. Then

Ã2n(t) = 2n
∑

π∈S(2)
n

tdes(π). (4.14)

The polynomial
∑

π∈S(2)
n
tdes(π) that we denote byA(2)

n (t) is called the nth 2-Eulerian polynomial.
Analog to Euler’s formula (4.13), MacMahon [26, Volume 2, p. 211] proved that

A
(2)
n (t)

(1− t)2n+1
=
∑
k≥0

(
k + 2

2

)n
tk. (4.15)

Many interesting properties of the 2-Eulerian polynomials have been extensively studied ever
since [2, 8, 23]. Remarkably, Ardila [2] proved that 2-Eulerian polynomials are the h-polynomials
of the dual bipermutahedron.

To prove Theorem 4.7, we need two lemmas.

Lemma 4.8. Let Ã(1, 0) := 1 and Ã(n, k) := |{π ∈ Sn : ẽxc(π) = k}| for n ≥ 2 and 0 ≤ k ≤ n−2.
Then Ã(n, k) satisfies the following recurrence relation:

Ã(n, k) =

{
(n− k − 1)Ã(n− 1, k − 1) + (k + 2)Ã(n− 1, k), if n is even;
(n− k)Ã(n− 1, k − 1) + (k + 1)Ã(n− 1, k), if n is odd.
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Consequently,

Ã(2n, k) = (k + 2)(k + 1)Ã(2n− 2, k) + (2n− k − 1)(2k + 2)Ã(2n− 2, k − 1)

+ (2n− k)(2n− k − 1)Ã(2n− 2, k − 2).

Proof. Consider a permutation π ∈ Sn−1 in cycle form (i.e., write π as a product of disjoint
cycles). For any a ∈ [n − 1] with π(a) 6= dn2 e, we call the slot inbetween a and π(a) a decreasing
(resp. increasing) slot if a ≥ π(a) (resp. a < π(a)). Clearly, if ẽxc(π) = i, then π has i increasing
slots and n− 2− i decreasing slots.

If n ≥ 3 is odd, then a permutation counted by Ã(n, k) can be constructed
• either from π with ẽxc(π) = k − 1 by inserting n into one of its n− k − 1 decreasing slots
or just before dn/2e,
• or from π with ẽxc(π) = k by inserting n into one of its k increasing slots or setting n as
a 1-cycle.

When n is even, a permutation counted by Ã(n, k) can be constructed
• either from π with ẽxc(π) = k − 1 by inserting 0 into one of its n− k − 1 decreasing slots
and then increasing all letters by 1,
• or from π with ẽxc(π) = k in one of the following three ways and then increasing all letters
by 1:
(1) inserting 0 into one of its k increasing slots;
(2) inserting 0 just before dn/2e;
(3) setting 0 as a 1-cycle.

This proves the desired recurrence relation for Ã(n, k). �

Lemma 4.9. Write A(2)
n (t) =

∑2n−2
k=0 A(2)(n, k)tk. Then

A(2)(n, k) =

(
k + 2

2

)
A(2)(n− 1, k) + (2n− k − 1)(k + 1)A(2)(n− 1, k − 1)

+

(
2n− k

2

)
A(2)(n− 1, k − 2).

Proof. Applying MacMahon’s formula (4.15), we have

A
(2)
n (t)

(1− t)2n+1
=
∑
k≥0

(
k + 2

2

)n
tk =

∑
k≥0

(
k + 2

2

)n−1

(k(k − 1)/2 + 2k + 1)tk

=
t2

2
(A

(2)
n−1(t)(1− t)−2n+1)′′ + 2t(A

(2)
n−1(t)(1− t)−2n+1)′ +A

(2)
n−1(t)(1− t)−2n+1.

Multiplying both sides by (1− t)2n+1 gives

A(2)
n (t) = (A

(2)
n−1(t))′′t2(1− t)2/2 + (A

(2)
n−1(t))′t(1− t)((2n− 3)t+ 2)

+A
(2)
n−1(t)(2n2t2 − 5nt2 + 3t2 + 4nt− 4t+ 1).

Extracting the coefficients of tk from both sides of the above equation yields the desired recurrence
relation for A(2)(n, k). �

Proof of Theorem 4.7. Comparing the recurrence relation for Ã(2n, k) in Lemma 4.8 with that
for A(2)(n, k) in Lemma 4.9, we get the desired (4.14). �
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The following fundamental generating function is known as Touchard’s continued fraction [36]
(see also [27]): ∑

k≥0

q(
k+1
2 )zk =

1

1− z +
(1− q)z

1− z +
(1− q2)z

1− z +
(1− q3)z

· · ·

.

Theorem 4.10. The exponential generating function for A(2)
n (t) has the following continued frac-

tion expansion: ∑
n≥0

tA
(2)
n (t)

n!
zn = t− 1 +

1− t

1− t+
(1− e(1−t)2z)t

1− t+
(1− e2(1−t)2z)t

1− t+
(1− e3(1−t)2z)t

· · ·

. (4.16)

Proof. By MacMahon’s formula (4.15), we have

tA(2)
n (t) = (1− t)2n+1

∑
k≥0

(
k + 2

2

)n
tk+1.

Multiplying both sides by zn

n! and summing over all n ≥ 0 gives∑
n≥0

tA
(2)
n (t)

n!
zn =

∑
n≥0

(1− t)2n+1zn

n!

∑
k≥0

(
k + 2

2

)n
tk+1

= (1− t)
∑
k≥0

tk+1
∑
n≥0

(
(
k+2

2

)
(1− t)2z)n

n!

= (1− t)
∑
k≥0

tk+1(e(1−t)2z)(
k+2
2 ).

Applying Touchard’s continued fraction yields (4.16). �

The number 2−n
∑n

k=0

(
n
k

)
E2k is called generalized Euler number of type 2n as in [29, A005799].

Combining (1.7), (4.1), (4.2) and (4.14), we get

(−1)n+1A(2)
n (−1) = 2−n

n∑
k=0

(
n

k

)
E2k, for n ≥ 1. (4.17)

It then follows from Theorem 4.10 the following exponential generating function for 2−n
∑n

k=0

(
n
k

)
E2k,

which was conjectured by Peter Bala (2019) in [29, A005799].

Corollary 4.11. We have∑
n≥0

2−n
∑n

k=0

(
n
k

)
E2k

n!
zn =

2

2− 1− e−4z

2− 1− e−8z

2− 1− e−12z

· · ·

.
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A permutation π ∈ S
(2)
n is alternating if

π(1) ≤ π(2) > π(3) ≤ π(4) > π(5) ≤ · · · .

Let Altn be the set of all alternating permutations in S
(2)
n . On one hand, Gessel [19, Eq. (6)]

proved that

|Altn| = 2−n
n∑
k=0

(
n

k

)
E2k.

On the other hand, Lin–Ma–Ma–Zhou [23, Corollary 2.15] interpreted the γ-coefficients γ(2)
n,k ap-

pearing in the expansion (see the survey of Athanasiadis [3] on the theme of γ-positivity)

A(2)
n (t) =

n−1∑
k=0

γ
(2)
n,kt

k(1 + t)2(n−1)−2k (4.18)

as some class of weakly increasing trees (see [23] for the definition). It follows from the above
expansion and Eq. (4.17) that

γ
(2)
n,n−1 = 2−n

n∑
k=0

(
n

k

)
E2k.

Thus, we have the following interesting equinumerosity.

Corollary 4.12. The number of alternating permutations in S
(2)
n equals the number of weakly

increasing trees on {1, 1, 2, 2, . . . , n− 1, n− 1, n} with n leaves and without young leaves.

It would be interesting to find a bijective proof of Corollary 4.12, which would provide an
alternative approach to the even case of Conjecture 1.6.

4.4. Combinatorics of the γ-positivity of Ã2m(t). The rest of this section is devoted to a
group action proof of the γ-positivity of Ã2m(t) that results in a new interpretation of γ(2)

n,k defined
in (4.18).

For any π ∈ S2m, note that |Dest(π)| = des(π). Introduce a variant of descents of π:

d̃es(π) := |Dest(π) \ {m+ 1}|.

By Lemma 4.2, we have

Ã2m(t) =
∑

π∈S2m

td̃es(π).

With the convention π(0) = π(2m + 1) = +∞, for i ∈ [2m], the letter π(i) is called a valley
(resp. peak) of π if π(i− 1) > π(i) < π(i+ 1) (resp. π(i− 1) < π(i) > π(i+ 1)). Denote by Val(π)
and Peak(π) the set of valleys and the set of peaks of π, respectively.

Theorem 4.13. The polynomial Ã2m(t) has the γ-positive expansion

Ã2m(t) =
∑

π∈S2m

td̃es(π) =

m−1∑
k=0

|D̃2m,k|tk(1 + t)2m−2−2k, (4.19)

where

D̃2m,k := {π ∈ S2m : Ddes(π) \ {m+ 1} = ∅,m+ 1 /∈ Val(π) and d̃es(π) = k}.
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Example 4.14. For instance, we have

D̃4,0 = {1234, 3124, 1324, 2314} and D̃4,1 = {1342, 1423, 1432, 2341, 2413, 2431, 3142, 3241},

and so
Ã4(t) = 4(1 + t)2 + 8t.

An immediate consequence of Theorems 4.7 and 4.13 is the following permutation interpretation
of γ(2)

n,k (see [23, Corollary 2.15] for another interpretation of γ(2)
n,k in terms of trees).

Corollary 4.15. Let γ(2)
n,k be defined in (4.18). Then γ(2)

n,k = 2−n|D̃2n,k| for n ≥ 1.

In order to prove Theorem 4.13, we need the following interesting equidistribution.

Lemma 4.16. There exists a bijection η preserving the number of descents between

Pm := {π ∈ S2m : Ddes(π) = ∅,m+ 1 is a peak}

and
Vm := {π ∈ S2m : Ddes(π) = ∅,m+ 1 is a valley}.

The proof of the above lemma can be considered as a nice application of the classical Françon–
Viennot bijection [15] that encodes permutations as Laguerre histories.

Recall that a Motzkin path of length n is a lattice path in the first quadrant starting from (0, 0),
ending at (n, 0), and using three possible steps:

U = (1, 1) (up step), L = (1, 0) (level step), and D = (1,−1) (down step).

A Motzkin path in which each level step is further distinguished into two different types L0 (in
blue) and L1 (in red) is called a 2-Motzkin path. Thus, each 2-Motzkin path can be represented
as a word over the alphabet {U,D,L0, L1}. A Laguerre history of length n is a pair (w, µ),
where w = w1 · · ·wn is a 2-Motzkin path and µ = (µ1, · · · , µn) is a sequence of weights satisfying
0 ≤ µi ≤ hi(w), and hi(w) denotes the height of the starting point of the i-th step of w. Denote
by Ln the set of all Laguerre histories of length n.

Using the convention π(0) = π(n + 1) = 0, the Françon–Viennot bijection φFV : Sn → Ln−1

that we need is the following modified version (see [24]) defined as φFV (π) = (w, µ) ∈ Ln−1, where
for each k ∈ [n] with i = π(k) ≤ n− 1:

wi =


U if π(k − 1) > π(k) = i < π(k + 1),
D if π(k − 1) < π(k) = i > π(k + 1),
L0 if π(k − 1) < π(k) = i < π(k + 1),
L1 if π(k − 1) > π(k) = i > π(k + 1),

and µi is the number of (2–13) patterns with i representing the 2, i.e.,

µi = (2–13)i(π) := |{j : j − 1 > k and π(j − 1) < π(k) = i < π(j)}|.

For example, if π = 21637548 ∈ S8, then φFV (π) = (w, µ), where w = UDUUL1DD and
µ = (0, 1, 0, 0, 1, 2, 1); see Fig. 2 below for an illustration, where the L1 step is colored red. It was
known that φFV is a bijection and the reader is referred to [24] for a recursive description of its
inverse φ−1

FV .

Proof of Lemma 4.16. Recall the complement map π 7→ πc defined in (4.8). It is convenient to
consider the two sets

Pc
m := {πc : π ∈ Pm} and Vc

m := {πc : π ∈ Vm}.
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Note that the letter m + 1 in a permutation π ∈ Pm becomes the letter m in πc. We aim to
construct a bijection η′ : Pc

m → Vc
m that preserves the number of ascents of permutations and then

set η to be the map π 7→ (η′(πc))c. To do this, we will introduce an involution Θ on L2m−1.
Let (w, µ) ∈ L2m−1 be a Laguerre history. For any up step wi = U , there is a unique down step

wi′ = D to the right of wi, closest to wi, whose ending point has the same height as the starting
point of wi. We call wi′ (resp. wi) the associated down (resp. up) step of wi (resp. wi′). For
example, for the Laguerre history in the left part of Fig. 2, the associated down step of w4 is w6

and the remaining two associated pairs are (w1, w2) and (w3, w7). Now define Θ(w, µ) = (w∗, µ∗),
where

w∗2m−i =


U if wi = D,
D if wi = U ,
wi if wi is a level step,

and

µ∗2m−i =

{
µi′ if wi = U (resp. wi = D) whose associated down (resp. up) step is wi′ ,
µi if wi is a level step.

See Fig. 2 for an instance of Θ, where w = UDUUL1DD and µ = (0, 1, 0, 0, 1, 2, 1).

• •
• •

• •
•
•

0 1 0

0
1

2

1
−→Θ

•
•
• •

•
•
•
•

0

0
1

2

1 0 1

Figure 2. The construction of Θ: a red level step represents L1.

It is clear from the construction that Θ : (w, µ) 7→ (w∗, µ∗) is an involution on L2m−1 for which

the m-th step of w is an up step ⇐⇒ the m-th step of w∗ is a down step.

It is routine to check that η′ := φ−1
FV ◦Θ ◦ φFV is a bijection between Pcm and Vcm preserving the

number of ascents. �

Proof of Theorem 4.13. Recall the Foata–Strehl action ϕx defined in (4.4). Brändén [5] modi-
fied the Foata–Strehl action ϕx as

ϕ′x(π) =

{
ϕx(π), if x is a double ascent/descent value of π;

π, otherwise.

For our purpose, for any x ∈ [2m] we consider the restricted version of ϕ′x defined by

ϕ̃x(π) =

{
ϕ′x(π) if x 6= m+ 1,

π if x = m+ 1,

where π ∈ S2m. For our discussions below, the reader is advised to envision the restricted action
ϕ̃x using the so-called valley-hopping interpretation as in Fig. 1.

Since ϕ′x’s are involutions onS2m and they commute, so do ϕ̃x’s. Thus, for any subset S ⊆ [2m],
we can define the mapping ϕ̃S : S2m → S2m by

ϕ̃S :=
∏
x∈S

ϕ̃x.
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This induces a Z2m
2 -action on S2m via the mappings ϕ̃S with S ⊆ [2m]. Let Orb(π) be the orbit

of π under this action. If x ∈ [2m] is a double descent/ascent value of π different from m+ 1, then
x becomes a double ascent/descent value of ϕ̃x(π) and so

d̃es(ϕ̃x(π)) =

{
d̃es(π) + 1 if x 6= m+ 1 is a double ascent value of π,
d̃es(π)− 1 if x 6= m+ 1 is a double descent value of π.

Therefore, if we use π̂ to denote the unique permutation in Orb(π) with Ddes(π̂) \ {m + 1} = ∅,
then ∑

σ∈Orb(π)

td̃es(σ) = td̃es(π̂)(1 + t)|Dasc(π̂)\{m+1}|.

Now we need to consider the following two cases.
• If m + 1 is a double descent or a double ascent value of π̂, then |Dasc(π̂) \ {m + 1}| =

2m− 2− 2d̃es(π̂) and so in this case∑
σ∈Orb(π)

td̃es(σ) = td̃es(π̂)(1 + t)2m−2−2d̃es(π̂).

• If m+ 1 is a peak of π̂, then |Dasc(π̂) \ {m+ 1}| = 2m− 3− 2d̃es(π̂). On the other hand,
m+1 is a valley of η(π̂) by Lemma 4.16, Ddes(η(π̂))\{m+1} = ∅, d̃es(η(π̂)) = d̃es(π̂)+1
and

|Dasc(η(π̂)) \ {m+ 1}| = 2m− 1− 2d̃es(η(π̂)).

Thus, we have∑
σ∈Orb(π)

⊎
Orb(η(π̂))

td̃es(σ) =
∑

σ∈Orb(π)

td̃es(σ) +
∑

σ∈Orb(η(π̂))

td̃es(σ)

= td̃es(π̂)(1 + t)2m−3−2d̃es(π̂) + td̃es(π̂)+1(1 + t)2m−3−2d̃es(π̂)

= td̃es(π̂)(1 + t)2m−2−2d̃es(π̂).

Combining the above two cases, we obtain the desired γ-positive expansion for Ã2m(t). �

5. Concluding remarks

In this paper, we study permanents of the floor function of some fractions and the sign function
of some trigonometric functions and establish their intriguing connections with several classical
combinatorial sequences. It would be interesting to investigate the combinatorics of permanents
of the floor function or the sign function of other elementary functions.

In the course of proving several permanent conjectures, we introduce the crucial action φk,l
in Definition 3.4 on matrices that preserves the permanents. For any S ⊆ [n] × [n], define the
transformation matrix TS with respect to S by( ∏

(k,l)∈S

φk,l

)
(A) = A ◦ TS ,

where A is any n× n matrix over R. Let us consider the set of transformation matrices

Tn := {TS : S ⊆ [n]× [n]}.
For instance, T2 consists of four matrices[

1 1
1 1

]
,

[
1 −1
−1 1

]
,

[
−1 1
1 −1

]
,

[
−1 −1
−1 −1

]
.
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Proposition 5.1. For any positive integer n, the transformation group Tn is isomorphic to the
group Z2n−2

2 , where Z2 = Z/2Z. Consequently, |Tn| = 22n−2.

Sketch of the proof. Under the Hadamard product, Tn forms an abelian group whose non-
identity elements always have order 2. By the well-known Structure Theorem for Finite Abelian
Groups, Tn ∼= Z`(n)

2 for some `(n) ∈ N. It remains to show that `(n) = 2n− 2. This will be done
once we can show that there are exactly 2n− 2 generators of Tn.

For any S ⊆ [n] × [n], we define φS :=
∏

(k,l)∈S φk,l, and call S a kernel if φS is the identity
action. If S is a kernel, then for any (a, b) ∈ S we have φ(a,b) = φS\{(a,b)}. Consider the subset
Gn = Ln ] Rn, the disjoint union of

Ln := {(i, i), (i+ 1, i) : 1 ≤ i ≤ bn/2c} and Rn := {(i− 1, i), (i, i) : bn/2c+ 1 < i ≤ n}.
Both Ln and Rn form (nearly) half of the border strip around the diagonal of the n× n grid, and
|Gn| = 2n− 2. See Fig. 3 for examples of Gn with n = 7, 8.

Figure 3. Examples of Gn for n = 7, 8, where Ln and Rn correspond respectively
to the blue and the red dots.

Now we claim that the elements in {φ(a,b) : (a, b) ∈ Gn} form a set of generators for all the
actions in {φS : S ⊆ [n]× [n]}, which would complete the proof. To prove this, one needs to check:

• The elements in {φ(a,b) : (a, b) ∈ Gn} generate all φ(i,j) for (i, j) ∈ [n]×[n]. To see this, note
that the set {(i, j), (i+1, j), (i, j+1), (i+1, j+1)} is a kernel for any (i, j) ∈ [n−1]×[n−1]
and the set {(1, 1), (2, 2), . . . , (n, n)} is a kernel too.
• Any nonempty subset of Gn could not be a kernel. This can be proved by induction on n,
since Gn can be embedded in Gn+1; compare G7 and G8 in Fig. 3.

The tedious details are left to the interested reader. �

Recall that a polynomial f(z1 . . . , zm) ∈ R[z1, . . . , zm] is said to be stable, if f(z1, . . . , zm) 6= 0
whenever z1, . . . , zm ∈ {z ∈ C : Im(z) > 0}. It is well known that the stability of the multivariate
generating functions implies that their univariate counterparts, obtained by diagonalization, have
only real zeros. By using the theory of stability, Brändén, Haglund, Visontai and Wagner [6]
proved that per(zUn + A) is a polynomial in z with only real zeros if A is a matrix [ai,j ]16i,j6n
with a1,j > a2,j > . . . > an,j for all j = 1, . . . , n. Can the techniques in their paper be employed
to find multivariable extension of the variation of the Eulerian polynomials

∑
π∈Sn

zẽxc(π) that
possesses certain nice stable property?

An interpretation for the γ-coefficients γ(2)
n,k, defined in (4.18), of the 2-Eulerian polynomials in

terms of weakly increasing trees on {1, 1, 2, 2, . . . , n − 1, n − 1, n} without young leaves has been
found in [23]. Corollary 4.12 asserts that the diagonal coefficient γ(2)

n,n−1 enumerates alternating
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multipermutations in S
(2)
n , which may shed some light on finding an interpretation for γ(2)

n,k in
terms of certain class of permutations on {1, 1, 2, 2, . . . , n, n}.
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