Accepted by Bull. Aust. Math. Soc.

CHARACTERISTIC POLYNOMIALS OF
THE MATRICES WITH (j, k)-ENTRY ¢** 4t

HAN WANG AND ZHI-WEI SUN

ABSTRACT. In this paper, we determine the characteristic polynomials of the matrices [¢/ =% +
t]1<j k<n and [qurkth]lgj,kgn for any complex number g # 0, 1. As an application, for complex
numbers a, b, ¢ with b # 0 and a? # 4b, and the sequence (Wi )mez With W41 = awy, —bwpy,—1
for all m € Z, we determine the exact value of det[w;_i + ¢dji]i<jr<n-

1. INTRODUCTION

For any integer n > 3, we have the determinant identity
det[j — klicjr<n =0

since (1 —k)+ (3—k) =2(2—k) for all k =1,...,n. However, it is nontrivial to determine
the characteristic polynomial det[zI, — (j — k)]1<jx<n of the matrix [j — k]1<jr<n, where I, is
the identity matrix of order n.

For j,k € N = {0,1,2,...}, the Kronecker symbol 4, takes 1 or 0 according as j = k or
not. In 2003, B. Cloitre [I] generated the sequence det[j — k + 0,x]1<jr<n (n =1,2,3,...) with
initial fifteen terms as follows:

1,2,7, 21, 51, 106, 197, 337, 541, 826, 1211, 1717, 2367, 3186, 4201.
In 2013 C. Baker added a comment to [1] in which he claimed that
n?(n? —1)
12

without any proof or linked reference. It seems that Baker found this by guessing the recurrence
of the sequence via using the Maple package gfun.
Recall that the g-analogue of an integer m is given by
q" —1

[m], = .

q—1

det[j — k4 0jkli<jpcn =1+ (1.1)

Note that lim,_,;[m], = m.
In our first theorem we determine the characteristic polynomial of the matrix [¢/ % +1];<; x<n
for any complex number ¢ # 0, 1.
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Theorem 1.1. Let n > 2 be an integer, and let g # 0,1 be a complex number. Then the
characteristic polynomial of the matriz P = [¢" % + t]1<jr<n is

det(xl, — P) = 2" *(2* — n(t + 1)z + t(n® — ¢ "[n]?)). (1.2)

q
Putting ¢ = —1 and replacing = by (¢ — 1)z in Theorem we immediately obtain the
following corollary.

Corollary 1.1. Let n > 2 be an integer, and let q # 0,1 be a complex number. For the matriz
P, =[] — klg)i<jk<n we have

1-n n 2 n2
e R %f’f”- (1.3)
Remark 1.1. Fix an integer n > 2. Observe that
1—n 2 2 1 ) ,
_ 1 n 0" —1)/)? —
p O lg —n” L+ )T+ D) = 1)/ —n
g1 (q - 1)2 t—0 2
= lim (t+ 1)k (Z)tk_l)z —n?) + (t+ 1) —1)n?
- t—0 £2
= lim <n+(g)t—i_(g)t2+'”)2_n2+n21_(t+1)n_1
50 (t+ 1)n—1¢2 ENE

() +(0) (O )

) () ()

So, by Corollary 1.1 we have

, n?(n? -1
det[xéjk — (j — k)]lgj,kgn =" + %.ﬁn_{ (14)

which indicates that when n > 2 the n eigenvalues of A, = [j — k]1<jk<n are

nvn? —1 nvn? —1
M=——F——1i, g=——F7—14, A3=---=),=0.
NG ’ 23 ’
Note that (1.1)) follows from ([1.4)) with z = —1. Concerning the permanent of A,, motivated
by [3, Conj. 11.23] we conjecture that

per(A, 1) =3 (mod p) and per(4,) =1+ 4p (mod p?).

for any odd prime p. Inspired by (|1.1)), Z.-W. Sun [4] conjectured that for any positive integers
m and n we have

det[(j — k)™ + djlijpcn = L+ n*(n® = 1)f(n)
for certain polynomial f(z) € Q[z] with deg f = (m + 1)? — 4.
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Applying Corollary 1.1 with ¢ = —1, we find that

(1), -

det(zl, — P_y) = a" + 1 "2
for any integer n > 2. In particular,
1—(=1)—* 9 — (—1)" — 2n?
det | L2V 5 _ 9= (=)t =2 (1.5)
2 1<j,k<n 8
Applying Theorem [L.1| with (¢,z) = (=1, —-2), (1, —1), we obtain the following result.
Corollary 1.2. For any positive integer n, we have
, 4 —on=lin? 41
det[QJ_k -1+ 25jk]1§j,k§n = 9 . (16)
and ’
det[277F + 1+ 0j4)1<jpen = (n+ 1)% = 27727 — 1)% (1.7)

In contrast with Theorem [I.1] we also establish the following result.
Theorem 1.2. Let n > 2 be an integer, and let ¢ # 0,1 be a complex number. For the matrix
Q= [¢"* + tlo<jr<n_1, we have
det(zl, — Q) = " — (nt + [n]2)a" " + (n[n]e2 — [n]2)ta" 2. (1.8)
The identity with ¢ = 2 and z =t = —1 yields the following corollary.

Corollary 1.3. For any positive integer n, we have
. 4" 4+ 2
det[27% — 1+ diplocjpcnt = (2" = 1)* = (n — 1) T (1.9)
For complex numbers a and b # 0, the Lucas sequence w,, = un,(a,b) (m € Z) and its

companion sequence v, = vy,(a,b) (m € Z) are defined as follows:

up =0, uy =1, and ugy1 = auy, — buy_; for all k € Z;
vg =2, v; = a, and v = avy — bug_4 for all k € Z.
By the Binet formula,
(v — By, = @™ — ™ and v, =a™ + ™ for all m € Z,
where
2 —4b —Va? —4b
oz:—a+ @ and ﬂ:—a ¢
2 2
are the two roots of the quadratic equation 2?> — ax +b = 0. Clearly b"u_, = —u, and
b™v_, = v, for all n € N. For any positive integer n, it is known that

2] 2
n = n—1-2k —b k d = n—2k —b k
u % < L )a (=b)* and w g — . )e (—b)~,

(1.10)
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(cf. |5, p.10]) which can be easily proved by induction. Note also that u,,(2,1) = m for all
m € Z.
For P(z) = Y.1~0 ap2® € C[2], it is known (cf. [2, Lemma 9]) that

det[P(z; + yr)1<jh<n = an_y 1:[ (n N 1) < ] (@ — o) —uy)-

r=0 r 1<j<k<n
Thus, for any integer n > 3, and complex numbers a and b # 0, we have
(o = B)" det[u;r(a, b)i<jr<n = det[vj_r(a,b)]i<jncn =0 (1.11)
(where a and 8 are given by (1.10)), since

n n / g
det [Ozj_k + ﬁj_k}l<'k<n - Ha_k % Hﬁj < det [(g>j * <g> ] -
S i=1 ’ ’

1<j,k<n

As an application of Theorem [I.T], we obtain the following new result.

Theorem 1.3. Let a and b # 0 be complex numbers with a® # 4b. Let (W, )mez be a sequence

of complexr numbers with wi11 = awy — bwi_1 for all k € Z. For any complex number ¢ and

integer n > 2, we have

b, (a,b)? — n?
a? —4b

Remark 1.2. It is hard to guess the exact formula for det[w;_ + ¢djx]1<jr<n in Theorem

via looking at various numerical examples.

(1.12)

1 2/ 2 2
det[w;_ + cdjili<jr<n = " + " nwy + " (w] — awowy + bwy)

Corollary 1.4. Let a,b, c be complex numbers with b # 0 and a* # 4b. For any integer n > 2,

we have
o DYy, (a, b)) — n?

a? —4b

det[uj_k(a, b) + C5jk]1§j,k§n = Cn +c (113)

and
det[v;_x(a,b) + cbr]i<inen = " 2((n + ¢)* — b "u,(a, b)?). (1.14)

For any m € Z, u,,(—1, 1) coincides with the Legendre symbol (%), and v,,(1, —1) = w™+w0™
where w denotes the cubic root (—1 + 1/—3)/2 of unity. Applying Corollary with a = —1
and b = 1, we get the following result.

Corollary 1.5. For any integer n > 2 and complex number ¢, we have

. 2
det Ku) + c5j,k] ="+ V—J : (1.15)
3 1<j,k<n 3

Recall that those F,, = u,(1,—1) (m € Z) are the well-known Fibonacci numbers, and
those L, = v,,(1,—1) (m € Z) are the Lucas numbers. Corollary |1.4| with ¢ = 1 and b = —1
yields the following result.
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Corollary 1.6. For any integer n > 2 and complex number ¢, we have

n—2
det[FJ;k + Cdjk]lgj,kgn =" + 5 ((—1)”71}7;% — n2) (116)
and
det[Lj,k + Céjk]lgj,kgn = C”*Q((n + 0)2 + (-1)”F3) (117)

Although we have Theorem which is similar to Theorem it seems impossible to use
Theorem [I.2] to deduce a result similar to Theorem [L.3
We are going to prove Theorems [1.1] and [I.3]in Sections 2, 3 and 4, respectively.

2. PROOF OF THEOREM [L.1]

Lemma 2.1. Let n be a positive integer, and let ¢ # 0 and t be complex numbers with n —
[n], +t(¢""[n], — n) # 0. Suppose that

n(t+1) £ \/n2(t — 1)2 + 4tq' " [n]2

v —[n]y —nt

i 2 R A TR
Then, for any positive integer j, we have
D@ F+ )1 +y(d " = 1) = (1 +y(@ " - 1)). (2:2)
k=1
Proof. As v* —n(t + 1)y + (n* — ¢'7"[n]2)t = 0, we have
[n]o(n = [nlg + (¢" " [n]g — n)t) = (v — [n]y — nt) (v — n + [n]y)
and hence
(v = n+[nlyy = [nly. (2.3)

Let j € {1,2,3,...}, and set

n

A= (@A +y(d " = 1) = (L +y(d " = 1)).

Then .
Aj—t(l4+y(@ ™" =1)+v(1—y)

= q”(é ¢"*L+y(d - 1) - vy)

= ¢ " ([n]g(1 —y) +ny —y)) =0
by . SOA1:A2:"'.

Next we show that A,, = 0. Observe that

n

M@+t + (¢ = 1y)

k=1
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n

=) ("*l-y)+tl—y) +y+d"ty)

—

(1= 3) + (1 — )+ g + @ty
= I+ -+l (¢l )

=7v=701+y(""-1))
by the definition of y. So A,, = 0.
In view of the above, A; =0 for all j =1,2,3,.... This concludes our proof. O

Proof of Theorem[1.1]} 1t is easy to verify the desired result for n = 2. Below we assume that
n > 3.

If n — [n], and ¢*"[n], — n are both zero, then ¢"~! =1 and n = [n], = 1. As n > 3, there
are infinitely many ¢ € C such that

{n—hb+ﬂ¢”hb—m¢0,

n*(t —1)* + 4tq' ~[n]? # 0.

Take any such a number ¢, and choose 7 and y as in (2.1). Then ~ given in (2.1) is an
eigenvalue of the matrix P = [¢?~* + t];<; x<n, and the column vector v = (vy,...,v,)" with

v = 1+y(¢" ™ —1) is an eigenvector of P associated with the eigenvalue . Note that v given
by (2.1) has two different choices since n*(t — 1)* + 4tq'~"[n]2 # 0.
Let s € {3,...,n}. For 1 <k <mn, let us define

s -2, ifk=1,

o) =S s -1, ifk=2

5sk if 3 S k S n.

It is easy to verify that
v,(f) =0= qj_kv,is) forallj=1,...,n
k=1 k=1
Thus 0 is an eigenvalue of the matrix P = [qj_k + t]1<jk<n, and the column vector v =
(v%s), . US{S))T is an eigenvector of P associated with the eigenvalue 0.
If Y0 csv(s is the zero column vector for some cs,...,¢, € C, then for each k = 3,...,n
we have
Crp = ch5sk = Z csv,(f) = 0.
s=3 s=3

R

Thus the n — 2 column vectors v are linearly independent over C.
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By the above, the n eigenvalues of the matrix P = [¢7 % + t],<; x<, are the two values of

given by (2.2)), and A3 = --- = A, = 0. Thus the characteristic polynomial of P is
2 2 1-n 2
1 n?(t — 1)2 + 4tq'—"[n|
det(zI, — P) = x—n(+ )—\/ :
2 2
2(t —1)2 +4tg*—"[n]2\ »
n(t+1) \/” (t q
X |x— 5 + 5 H T —

s=3

_ 2 ((m - n(t;— 1))2 Pt —1) Z 4tq1—n[n]g>

=2"*(2® — n(t + D)z + t(n® — ¢ "[n]2)).

In light of the above, the identity (1.2 holds for infinitely many values of t. Note that both
sides of (|1.2)) are polynomials in ¢ for any fixed x € C. Thus, if we view both sides of (1.2)) as
polynomials in x and ¢, then the identity (1.2]) still holds. This ends our proof. O

3. PROOF OF THEOREM [I.2]
The following lemma is quite similar to Lemma [2.1]

Lemma 3.1. Let n be a positive integer, and let ¢ # 0 and t be complex numbers with [n],z +
(¢'"t — q”_l)[n] —nt # 0. Suppose that

nt + [n i\/nt— )2 + 4t[n ] B fy—q"_l[n]q—nt
v = and z = — o . (3.1
[l + (¢t~ — ¢~ Y)[n], — nt
Then, for every j =0,1,2,..., we have
n—1
D@D+ 2 = 1) = (1 +2(¢ T = 1), (32)
k=0
Proof. Since v* — (nt + [n]p)y + t(n[n]z — [n]2) = 0, we have
(v = [nlg + " Hn]g)z = ¢"~'[n],. (3.3)
Let 7 € {0,1,2,...}, and set
n—1
Ry =) (@™ +t)(1+2(" " = 1) —y(1+ (¢ = 1)).
k=0

It is easy to see that

i
L

Ry = S (14 2(¢ " = 1) 4 y(1— 2) = ¢ (¢ ]y (L — 2) + 2l —72) = 0

i
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with the aid of (3.3). So Ry = Ry = ---. As
n—1

Y@+ 2 = 1) =y = (14 (g 1))
k=0

we get R, 1 = 0. So the desired result follows. O
Proof of Theorem[1.9 Tt is easy to verify the desired result for n = 2. Below we assume that
n > 3.
If [n],2 — ¢" t[n], and ¢'~"[n], — n are both zero, then [n], # 0 and
(¢" + Dlnlg = (¢ + Dlnlgz = (q+ 1)q" 'y = (¢" + ¢" D)l
hence ¢"' =1 and n = [n], = 1. As n > 3, there are infinitely many ¢ € C such that

nlgs + (@ — )il — nt £ 0,
(nt — [n]g2)* + 4t[n]2 # 0.
Take any such a number ¢, and choose v and z as in (3.1). Then ~ given in is an
eigenvalue of the matrix @ = [¢"™ + t]o<jr<n_1, and the column vector v = (v, ..., v,_1)"
with vy = 1+ 2(¢* " — 1) is an eigenvector of Q associated with the eigenvalue . Note that
7 given by has two different choices since (nt — [n]z2)* + 4t[n]2 # 0.
Let s € {3,...,n}. For k € {0,...,n — 1}, let us define

qls—2], iftk=0,

o = —[s—1], ifk=1,
537]@_;'_1 lfQSkSn—l
It is easy to verify that
n—1 n—1
v,(:) =0= qj+kv,is) forall j =1,...,n.

iy

0

il

0

Thus 0 is an eigenvalue of the matrix Q = [¢?** + t]o<jx<n_1, and the column vector v =

(v(()s), o ,vﬁlszl)T is an eigenvector of () associated with the eigenvalue 0.

Ity ., ¢sv®) is the zero column vector for some ¢s, . . ., ¢, € C, then foreach k =2,...,n—1

we have
n n
_ _ (s) _
Cky1 = E Cs5s,k+1 = E csvy, = 0.
s=3 s=3

3) n)

Thus the n — 2 column vectors v, ... v are linearly independent over C.
By the above, the n eigenvalues of the matrix Q = [¢/TF + t]o<; x<n_1 are the two values of
v given by (3.2), and A3 = --- = A\, = 0. Thus the characteristic polynomial of @ is

nt + [n),2 (nt — [n]42)? + 4t[n]?
det(zl, — Q)= |- t+2[ lee \/ 2
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(nt — [n]2)? + 4t[n)2 ) =
\/ H(CL’ - /\S)

s=3

=" ((x — "“JF_W)Q _ (nt —[n]g2)* + 4t[n]3)

nt + [n] q2
2 + 2

T

2 4
= 2" — (nt + [n]e)z" " + (n[n]e — [n]2)ta" 2.
In light of the above, the identity ((1.8) holds for infinitely many values of t. Note that both

sides of ([1.8) are polynomials in ¢ for any fixed x € C. Thus, if we view both sides of (1.8)) as
polynomials in x and ¢, then the identity (1.8]) still holds. This concludes our proof. [

4. PROOF OF THEOREM [L.3]

Proof of Theorem If wy = w; =0 or n =2, then the desired result can be easily verified.
Below we assume that n > 3 and {wg,w;} # {0}.

(i) Let o and 3 be the two roots of the quadratic equation 2z?> — az +b = 0. Note that
af =b+#0. Also, o # 3 since A = a? — 4b is nonzero.

It is well known that there are constants ¢;, cs € C such that

Wy, = 1’ 4+ ™ for all m € Z.
As ¢1 4+ ¢o = wg and ¢ + ¢ = wyq, we find that

W — Bwy

Wy — Wq
= and ¢g = ———

a—p a—p
Since wy or w; is nonzero, one of ¢; and ¢y is nonzero. Without any loss of generality, we
assume ¢; # 0.

Let W denote the matrix [w;_j + ¢djk]1<jk<n. Then

det(W) = det [c10/ % + c277F + c64]

(4.1)

1<j,k<n

n n i—k k—i

n : _k (6% Co + Céjkﬁ J

aHﬁJXHﬂ x det [(E) +c—1
j=1 k=1 1<j,k<n
= cidet [¢" "+t — 2] I<ik<n = (—c1)" det [x6;, — ¢/ % — 1]
where ¢ = a/B # 0,1, and t = ¢3/¢; and © = —¢/c¢;. Applying Theorem we deduce that

det(W) = (—c1)"z" (2 — n(t + D)z + t(n* — ¢ "[n]2))

_ o2 (CQ +nc(er + ) +cic (n2 B gi_z <<O;//@n__1 1)2))

n__ an\ 2
="+ nwec" ' + " Perey <n2 — (aB)t™ <a b ) )

1<j,k<n

a—pf
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= " + nwoc" " + " Peres (0 — by (a,b)?)

In view of (4.1)),

o (w1 — Bwo)(awo —wy) —wi + (a+ B)wow; — aBw? _ _wi — awow; + buwy
. (v —B)? A a? —4b
Therefore the desired ((1.12)) follows. O
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