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PROOF OF A CONJECTURAL SUPERCONGRUENCE
MODULO p5

GUO-SHUAI MAO AND ZHI-WEI SUN

Abstract. In this paper, we prove the supercongruence

(p−1)/2∑
n=0

6n+ 1

256n

(
2n

n

)3

≡ p(−1)(p−1)/2+(−1)(p−1)/2 7

24
p4Bp−3 (mod p5)

for any prime p > 3, where B0, B1, . . . are the Bernoulli numbers.
This confirms a conjecture posed by Z.-W. Sun in 2019.

1. Introduction

In 1997, L. van Hamme [25] proposed many conjectural p-adic su-
percongruences motivated by corresponding Ramanujan-type series for
1/π. For example, he conjectured the supercongruence

(p−1)/2∑
n=0

6n+ 1

256n

(
2n

n

)3

≡ (−1)(p−1)/2p (mod p4) (1.1)

for any prime p > 3, inspired by the Ramanujan series (cf. [19])

∞∑
n=0

6n+ 1

256n

(
2n

n

)3

=
4

π
.

The congruence (1.1) was confirmed by L. Long [12] in 2011.
In 2011, Z.-W. Sun [21] formulated many conjectural supercongru-

ences involving Bernoulli numbers or Euler numbers. Recall that the
Bernoulli numbers B0, B1, . . . and the Euler numbers E0, E1, . . . are
defined by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
(|x| < 2π) and

2

ex + e−x
=
∞∑
n=0

En
xn

n!

(
|x| < π

2

)
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respectively. For example, for any prime p > 3, he conjectured that
p−1∑
n=0

6n+ 1

256n

(
2n

n

)3

≡ (−1)(p−1)/2p− p3Ep−3 (mod p4). (1.2)

This was later confirmed by G.-S. Mao and C.-W. Wen [15, Th. 1.2].
In 2019, Z.-W. Sun [23, Conj. 22] conjectured that: for any prime

p > 3 and positive odd integer m, we have

16m−1

(pm)4
(
m−1
m−1

2

)3( (pm−1)/2∑
n=0

6n+ 1

256n

(
2n

n

)3

− (−1)(p−1)/2p

(m−1)/2∑
r=0

6r + 1

256r

(
2r

r

)3)
≡ (−1)(p−1)/2

7

24
Bp−3 (mod p).

In this paper, we confirm this in the case m = 1. Namely, we establish
the following result.

Theorem 1.1. Let p > 3 be a prime. Then

(p−1)/2∑
n=0

6n+ 1

256n

(
2n

n

)3

≡ (−1)(p−1)/2
(
p+

7

24
p4Bp−3

)
(mod p5). (1.3)

For any prime p > 3, Z.-W. Sun [21] also conjectured the congruence

p−1∑
n=0

3n+ 1

16n

(
2n

n

)3

≡ p+
7

6
p4 (mod p5),

which was confirmed by C. Wang and D.-W. Hu [26] in 2020. For more
studies of such congruences, one may consult [8, 10, 11, 18].

In the next section, we provide some known lemmas. We will use
the WZ method to prove Theorem 1.1 in Section 3.

2. Some known lemmas

In 1862, J. Wolstenholme [27] proved the classical congruence(
2p− 1

p− 1

)
≡ 1 (mod p3)

for any prime p > 3. This was refined by J.W.L. Glaisher [3] in 1900.

Lemma 2.1 (Glaisher [3]). For any prime p > 3, we have(
2p− 1

p− 1

)
≡ 1− 2

3
p3Bp−3 (mod p4). (2.1)

Remark 2.2. For modern references about (2.1), the reader may con-
sult [5] and [16].
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In 1895, F. Morley [17] got the following fundamental congruence:(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3)

for any prime p > 3. This was refined by L. Carlitz [1] in 1953.

Lemma 2.3 (L. Carlitz [1]). For each odd prime p, we have

(−1)(p−1)/2
(

p− 1

(p− 1)/2

)
≡ 4p−1 +

p3

12
Bp−3 (mod p4).

We also need the following result of E. Lehmer established in 1938.

Lemma 2.4 (E. Lehmer [9]). For any prime p > 3, we have

(p−1)/2∑
k=1

1

k
≡ −2

(p−1)/2∑
k=1

1

2k − 1
≡ −2qp(2) + p qp(2)2 (mod p2), (2.2)

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p.

Let a1, a2, . . . , am be integers. For any integer n ≥ m, we define the
alternating multiple harmonic sum

H(a1, a2, . . . , am;n) :=
∑

1≤k1<k2<...<km≤n

m∏
i=1

sign(ai)
ki

k
|ai|
i

,

and call m and
∑m

i=1 |ai| its depth and weight respectively.
We need the following known results as lemmas.

Lemma 2.5 ([7]). Let a, r ∈ Z+ = {1, 2, 3, . . .}. For any prime p >
ar + 2, we have

H({a}r; p− 1) ≡

{
(−1)r a(ar+1)

2(ar+2)
p2Bp−ar−2 (mod p3) if ar is odd,

(−1)r−1 a
ar+1

pBp−ar−1 (mod p2) if ar is even.

Lemma 2.6 ([20]). For any a ∈ Z+ and prime p > a+ 2, we have

H

(
a;
p− 1

2

)

≡


−2qp(2) + pqp(2)2 − 2

3
p2qp(2)3 − 7

12
p2Bp−3 (mod p3) if a = 1,

−2a−2
a
Bp−a (mod p) if a > 1 is odd,

a(2a+1−1)
2(a+1)

pBp−a−1 (mod p2) if a is even.

Lemma 2.7 ([6]). Let a, b ∈ Z+ with a+b odd. For any prime p > a+b,
we have

H

(
a, b;

p− 1

2

)
≡ Bp−a−b

2(a+ b)

(
(−1)b

(
a+ b

a

)
+ 2a+b − 2

)
(mod p).
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Lemma 2.8 (R. Tauraso and J. Q. Zhao [24]). For any prime p > 3,
we have

H(1,−1; p− 1) ≡ qp(2)2 − p qp(2)3 − 13

24
pBp−3 (mod p2). (2.3)

We also need the following lemma involving the harmonic numbers

Hn := H(1;n) =
∑

0<k≤n

1

k
(n = 0, 1, 2, . . .)

and the second order harmonic numbers

H(2;n) =
∑

0<k≤n

1

k2
(n = 0, 1, 2, . . .).

Lemma 2.9. Let p > 3 be a prime. Then we have

(p−1)/2∑
k=1

Hk

k2
≡ −Bp−3

2
(mod p), (2.4)

(p−1)/2∑
k=1

H2k

k2
≡ 3

2
Bp−3 (mod p), (2.5)

(p−1)/2∑
k=1

H2
2k

k
≡ −2

3
qp(2)3 +

2

3
Bp−3 (mod p), (2.6)

(p−3)/2∑
k=0

H2
k

2k + 1
≡ Bp−3

4
+ 4qp(2)3 (mod p), (2.7)

(p−1)/2∑
k=0

HkH2k

k
≡ 5

6
Bp−3 −

4

3
qp(2)3 (mod p). (2.8)

Also,

(p−1)/2∑
k=1

H(2 : k)

k
≡ −3

2
Bp−3 (mod p), (2.9)

(p−1)/2∑
k=1

H(2; 2k)

k
≡ −5

4
Bp−3 (mod p). (2.10)

Remark 2.10. The congruences (2.4) and (2.5) can be found in [13,
Lemma 3.2] and [14, Lemma 2.4], respectively. For (2.6)–(2.8), the
reader may consult [14, (3.12) and Theorem 1.3]. (2.9) and (2.10) can
be found in [14, (2.2)-(2.3)].
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3. Proof of Theorem 1.1

To prove Theorem 1.1, we need a WZ pair found by J. Guillera [4,
p. 42]. For n, k ∈ N = {0, 1, 2, . . .}, we define

F (n, k) =
(6n− 2k + 1)

28n−2k

(
2n
n

)(
2n+2k
n+k

)(
2n−2k
n−k

)(
n+k
n

)(
2k
k

) (3.1)

and

G(n, k) =
n2
(
2n
n

)(
2n+2k
n+k

)(
2n−2k
n−k

)(
n+k
n

)
28n−2k−4(2n+ 2k − 1)

(
2k
k

) . (3.2)

Clearly F (n, k) = G(n, k) = 0 if n < k. It is easy to check that

F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k) (3.3)

for all n ∈ N and k ∈ Z+. The WZ pair 〈F,G〉 first appeared in [4,
p. 42], and it was also used in [2] and [28, p. 9].

Summing (3.3) over n ∈ {0, . . . , (p− 1)/2}, we get

(p−1)/2∑
n=0

F (n, k−1)−
(p−1)/2∑
n=0

F (n, k) = G

(
p+ 1

2
, k

)
−G(0, k) = G

(
p+ 1

2
, k

)
.

Furthermore, summing both side of the above identity over k ∈ {1, . . . , (p−
1)/2}, we obtain

(p−1)/2∑
n=0

F (n, 0) = F

(
p− 1

2
,
p− 1

2

)
+

(p−1)/2∑
k=1

G

(
p+ 1

2
, k

)
. (3.4)

Lemma 3.1. Let p > 3 be a prime. Then

F

(
p− 1

2
,
p− 1

2

)
≡ (−1)

p−1
2 p

(
1− pqp(2) + p2qp(2)2 − p3qp(2)3 − 7

12
p3Bp−3

)
(mod p5).

Proof. By the definition of F (n, k), we have

F

(
p− 1

2
,
p− 1

2

)
=

2p− 1

23p−3

(
2p− 2

p− 1

)(
p− 1

(p− 1)/2

)
=
p
(
2p−1
p−1

)(
p−1

(p−1)/2

)
23p−3 .

This, together with Lemma 2.1, Lemma 2.3 and the equality 2p−1 =
1 + pqp(2), yields that

F

(
p− 1

2
,
p− 1

2

)
≡
p(1− 2

3
p3Bp−3)(−1)(p−1)/2(4p−1 + 1

12
p3Bp−3)

(1 + p qp(2))3

≡ (−1)
p−1
2 p

(
1− pqp(2) + p2qp(2)2 − p3qp(2)3 − 7

12
p3Bp−3

)
(mod p5).
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This concludes the proof. 2

Lemma 3.2. For any prime p > 3, we have

(p−1)/2∑
k=1

p/2− k
(p+ 1− 2k)(p+ 2k)

≡ 1

2
qp(2)− p

4
qp(2)2 − 2pqp(2) +

1

6
p2qp(2)3

+ 4p2qp(2) + p2qp(2)2 +
7

48
p2Bp−3 (mod p3).

Proof. In view of Lemma 2.4,

(p−1)/2∑
k=1

1

k(2k − 1)
= 2

(p−1)/2∑
k=1

1

2k − 1
−H(p−1)/2

≡ 4qp(2)− 2pqp(2)2 (mod p2)

(3.5)

and
(p−1)/2∑
k=1

1

k(2k − 1)2
= H(p−1)/2 − 2

(p−1)/2∑
k=1

1

2k − 1
+ 2

(p−1)/2∑
k=1

1

(2k − 1)2

≡ −4qp(2)− 1

2
H(2; (p− 1)/2) ≡ −4qp(2) (mod p).

(3.6)
It is easy to see that

(p−1)/2∑
k=1

(p/2− k)

(p+ 1− 2k)(p+ 2k)

=

(p−1)/2∑
k=1

k − 1/2

(2k)(2p+ 1− 2k)
= −1

4

(p−1)/2∑
k=1

1

k(1− 2p
2k−1)

≡ − 1

4
H(p−1)/2 −

p

2

(p−1)/2∑
k=1

1

k(2k − 1)
− p2

(p−1)/2∑
k=1

1

k(2k − 1)2
(mod p3).

Then we immediately obtain the desired result by Lemma 2.6, (3.5)
and (3.6). 2

Lemma 3.3. For any prime p > 3, we have

(p−1)/2∑
k=1

(p/2− k)Hk

(p+ 1− 2k)(p+ 2k)

≡ 2qp(2)− qp(2)2 − 6pqp(2) + 2pqp(2)2 + pqp(2)3 +
7

12
pBp−3 (mod p2).
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Proof. By Lemmas 2.5 and 2.6, and (2.3), we have

(p−1)/2∑
k=1

H2k

k
=

p−1∑
k=1

(1 + (−1)k)Hk

k

= H(1, 1; p− 1) +H(1,−1; p− 1) +
1

2
H

(
2;
p− 1

2

)
≡ qp(2)2 − pqp(2)3 +

7

24
pBp−3 (mod p2).

(3.7)
Noting 2H(1, 1;n) = H2

n −H(2;n), we get

(p−1)/2∑
k=1

Hk

k
= H(1, 1; (p− 1)/2) +H(2; (p− 1)/2)

=
1

2
H2

(p−1)/2 +
1

2
H(2; (p− 1)/2)

≡ 2qp(2)2 − 2pqp(2)3 +
7

6
pBp−3 (mod p2).

It is easy to see that

H(p+1)/2−k ≡
2

p+ 1− 2k
+ 2pH(2; 2k)− p

2
H(2; k)

+H(p−1)/2 + 2H2k −Hk (mod p2).

This, together with (3.5)-(3.8), (2.9) and (2.10), yields that

(p−1)/2∑
k=1

H(p+1)/2−k

k
≡− 8qp(2) + 4qp(2)2 + 4pqp(2)2 + 8pqp(2)

− 4pqp(2)3 − 7

3
pBp−3 (mod p2)

(3.8)

and

(p−1)/2∑
k=1

H(p+1)/2−k

k(2k − 1)
≡

(p−1)/2∑
k=1

Hk

k(2k − 1)
= 2

(p−1)/2∑
k=1

Hk

2k − 1
−

(p−1)/2∑
k=1

Hk

k

≡ −
(p−1)/2∑
k=1

H(p+1)/2−k

k
−

(p−1)/2∑
k=1

Hk

k

≡ 8qp(2)− 6qp(2)2 (mod p).
(3.9)
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Since

(p−1)/2∑
k=1

(p/2− k)Hk

(p+ 1− 2k)(p+ 2k)

=

(p−1)/2∑
k=1

(k − 1/2)H(p+1)/2−k

(2k)(2p+ 1− 2k)
= −1

4

(p−1)/2∑
k=1

H(p+1)/2−k

k(1− 2p
2k−1)

≡ − 1

4

(p−1)/2∑
k=1

H(p+1)/2−k

k
− p

2

(p−1)/2∑
k=1

H(p+1)/2−k

k(2k − 1)
(mod p2),

we immediately get the desired result by using (3.8) and (3.9). 2

Lemma 3.4. Let p > 3 be a prime. Then

(p−1)/2∑
k=1

(p/2− k)H2k

(p+ 1− 2k)(p+ 2k)

≡ qp(2)− 1

4
qp(2)2 − 3pqp(2) +

p

2
qp(2)2 +

p

4
qp(2)3 +

13

32
pBp−3 (mod p2).

Proof. It is easy to check that for each 0 ≤ k ≤ p− 1, we have

Hp−1−k ≡ pH(2; k) +Hk (mod p2),

hence

Hp+1−2k ≡ pH(2; 2k − 2) +H2k−2 (mod p2) (3.10)

for each 1 ≤ k ≤ (p− 1)/2. So

(p−1)/2∑
k=1

Hp+1−2k

k

≡ p

(p−1)/2∑
k=1

H(2; 2k − 2)

k
+

(p−1)/2∑
k=1

H2k−2

k

= p

( (p−1)/2∑
k=1

H(2; 2k)

k
−

(p−1)/2∑
k=1

1

k(2k − 1)2
− 1

4
H

(
3;
p− 1

2

))

+

(p−1)/2∑
k=1

H2k

k
−

(p−1)/2∑
k=1

1

k(2k − 1)
− 1

2
H

(
2;
p− 1

2

)
(mod p2).
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Combining the result in the last paragraph with Lemma 2.6, (3.7),
(3.5), (3.6) and (2.10), we get

(p−1)/2∑
k=1

Hp+1−2k

k
≡ qp(2)2 − 4qp(2) + 4pqp(2)

+ 2pqp(2)2 − pqp(2)3 − 13

8
pBp−3 (mod p2).

Similarly, by using (3.10) and Lemma 2.4, we get

(p−1)/2∑
k=1

Hp+1−2k

k(2k − 1)
≡

(p−1)/2∑
k=1

H2k−2

k(2k − 1)

= 2

(p−1)/2∑
k=1

H2k

2k − 1
−

(p−1)/2∑
k=1

H2k

k

−
(p−1)/2∑
k=1

1

k(2k − 1)2
− 1

2

(p−1)/2∑
k=1

1

k2(2k − 1)

≡ −
(p−1)/2∑
k=1

Hp+1−2k

k
−

(p−1)/2∑
k=1

H2k

k
−

(p−1)/2∑
k=1

1

k(2k − 1)2

− 1

2

(p−1)/2∑
k=1

(
4

2k − 1
− 2

k
− 1

k2

)
≡ 4qp(2)− 2qp(2)2 (mod p). (3.11)

Since

(p−1)/2∑
k=1

(p/2− k)H2k

(p+ 1− 2k)(p+ 2k)

≡ − 1

4

(p−1)/2∑
k=1

Hp+1−2k

k
− p

2

(p−1)/2∑
k=1

Hp+1−2k

k(2k − 1)
(mod p2),

we obtain the desired result in view of the last paragraph. 2

Lemma 3.5. For any prime p > 3, we have

(p−1)/2∑
k=1

(p/2− k)H2
k

(p+ 1− 2k)(p+ 2k)
≡ 4qp(2)−6qp(2)2+2qp(2)3+

1

8
Bp−3 (mod p).
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Proof. It is easy to verify that

(p−1)/2∑
k=1

(p/2− k)H2
k

(p+ 1− 2k)(p+ 2k)
≡ 1

2

(p−1)/2∑
k=1

H2
k

2k − 1
=

1

2

(p−3)/2∑
k=0

H2
k+1

2k + 1

=
1

2

(p−3)/2∑
k=0

H2
k

2k + 1
+

1

2

(p−1)/2∑
k=1

1

(2k − 1)k2
+

(p−1)/2∑
k=1

Hk−1

k(2k − 1)
(mod p).

Observe that

1

2

(p−1)/2∑
k=1

1

(2k − 1)k2
= 2

(p−1)/2∑
k=1

1

2k − 1
−H(p−1)/2 −

1

2
H

(
2;
p− 1

2

)
and

(p−1)/2∑
k=1

Hk−1

k(2k − 1)

= 2

(p−1)/2∑
k=1

Hk−1

2k − 1
−

(p−1)/2∑
k=1

Hk−1

k

= 2

(p−1)/2∑
k=1

Hk

2k − 1
− 2

(p−1)/2∑
k=1

1

k(2k − 1)
−

(p−1)/2∑
k=1

Hk−1

k

≡ −
(p−1)/2∑
k=1

H(p+1)/2−k

k
− 2

(p−1)/2∑
k=1

1

k(2k − 1)
−

(p−1)/2∑
k=1

Hk−1

k
(mod p).

This, together with (2.2), Lemma 2.6, (3.5), (3.8) and (2.7), yields the
desired result. 2

Lemma 3.6. Let p > 3 be a prime. Then

(p−1)/2∑
k=1

(p/2− k)HkH2k

(p+ 1− 2k)(p+ 2k)
≡ 2qp(2)−5

2
qp(2)2+

1

2
qp(2)3+

5

16
Bp−3 (mod p).

Proof. By (2.5), (2.6), (3.6) and (3.11), we have

(p−1)/2∑
k=1

H2kH2k−2

k
=

(p−1)/2∑
k=1

H2
2k

k
−

(p−1)/2∑
k=1

H2k

k(2k − 1)
− 1

2

(p−1)/2∑
k=1

H2k

k2

≡ −4qp(2) + 2qp(2)2 − 2

3
qp(2)3 − 1

12
Bp−3 (mod p).

(3.12)
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In view of (2.4), (2.8) and (3.9), we have

(p−1)/2∑
k=1

HkH2k−2

k
=

(p−1)/2∑
k=1

H2kHk

k
−

(p−1)/2∑
k=1

Hk

k(2k − 1)
− 1

2

(p−1)/2∑
k=1

Hk

k2

≡ −8qp(2) + 6qp(2)2 − 4

3
qp(2)3 +

13

12
Bp−3 (mod p).

(3.13)

For each 1 ≤ k ≤ (p− 1)/2, we clearly have

H(p+1)/2−k ≡ H(p−1)/2 + 2H2k−2 −Hk−1 (mod p).

This, together with (3.10), yields that

(p−1)/2∑
k=1

(p/2− k)HkH2k

(p+ 1− 2k)(p+ 2k)

≡ 1

2

(p−1)/2∑
k=1

HkH2k

2k − 1
≡ −1

4

(p−1)/2∑
k=1

H(p+1)/2−kHp+1−2k

k

≡ 1

2

(p−1)/2∑
k=1

H2k−2

k(2k − 1)
− 1

4
H(p−1)/2

(p−1)/2∑
k=1

H2k−2

k

− 1

2

(p−1)/2∑
k=1

H2kH2k−2

k
+

1

4

(p−1)/2∑
k=1

HkH2k−2

k

modulo p holds. Combining this with (3.12), (3.13), (3.11), (3.7), (3.5)
and Lemma 2.6, we immediately get the desired result. 2

Lemma 3.7. For any prime p > 3, we have

(p−1)/2∑
k=1

(p/2− k)H2
2k

(p+ 1− 2k)(p+ 2k)
≡ qp(2)−qp(2)2+

1

6
qp(2)3+

1

3
Bp−3 (mod p).

Proof. Replacing k in (3.6) by (p+ 1)/2− j, we have

(p−1)/2∑
j=1

1

(2j − 1)j2
≡ 8qp(2) (mod p).

In view of (2.5) and Lemma 2.6, we can deduce that

(p−1)/2∑
k=1

H2k−2

k2
≡ −8qp(2) +

5

2
Bp−3 (mod p).
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This, together with (3.10), (3.11) and (3.12), yields that

(p−1)/2∑
k=1

(p/2− k)H2
2k

(p+ 1− 2k)(p+ 2k)

≡ 1

2

(p−1)/2∑
k=1

H2
2k

2k − 1
≡ −1

4

(p−1)/2∑
k=1

H2
p+1−2k

k
≡ −1

4

(p−1)/2∑
k=1

H2
2k−2

k

≡ −1

4

( (p−1)/2∑
k=1

H2kH2k−2

k
−

(p−1)/2∑
k=1

H2k−2

k(2k − 1)
− 1

2

(p−1)/2∑
k=1

H2k−2

k2

)
≡ qp(2)− qp(2)2 +

1

6
qp(2)3 +

1

3
Bp−3 (mod p).

This ends the proof. 2

Lemma 3.8. Let p > 3 be a prime. Then

(p−1)/2∑
k=1

(p/2− k)H(2; 2k)

(p+ 1− 2k)(p+ 2k)
≡ qp(2)− 3

16
Bp−3 (mod p)

and

(p−1)/2∑
k=1

(p/2− k)H(2; k)

(p+ 1− 2k)(p+ 2k)
≡ 4qp(2)− 7

8
Bp−3 (mod p).

Proof. In view of (2.10), (3.6) and Lemma 2.6, we have

(p−1)/2∑
k=1

(p/2− k)H(2; 2k)

(p+ 1− 2k)(p+ 2k)

≡ 1

2

(p−1)/2∑
k=1

H(2; 2k)

2k − 1
≡ −1

4

(p−1)/2∑
k=1

H(2; p+ 1− 2k)

k
≡ 1

4

(p−1)/2∑
k=1

H(2; 2k − 2)

k

=
1

4

( (p−1)/2∑
k=1

H(2; 2k)

k
−

(p−1)/2∑
k=1

1

k(2k − 1)2
− 1

4

(p−1)/2∑
k=1

1

k3

)

≡ qp(2)− 3

16
Bp−3 (mod p).

(3.14)
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By Lemmas 2.5 and 2.6, we have

H(2; (p+ 1)/2− k) =

(p+1)/2−k∑
j=1

1

j2
≡ 4

(p−1)/2∑
j=k

1

(2j − 1)2

= 4

(
H(2; p− 1)− 1

4
H

(
2;
p− 1

2

)
−H(2; 2k − 2) +

1

4
H(2; k − 1)

)
≡ H(2; k − 1)− 4H(2; 2k − 2) (mod p).

Hence,

(p−1)/2∑
k=1

(p/2− k)H(2; k)

(p+ 1− 2k)(p+ 2k)

≡ 1

2

(p−1)/2∑
k=1

H(2; (p+ 1)/2− k)

p− 2k

≡
(p−1)/2∑
k=1

H(2; 2k − 2)

k
− 1

4

(p−1)/2∑
k=1

H(2; k − 1)

k
(mod p).

In view of (3.14), we have

(p−1)/2∑
k=1

H(2; 2k − 2)

k
≡ 4qp(2)− 3

4
Bp−3 (mod p).

With the aid of Lemma 2.7, we get

(p−1)/2∑
k=1

H(2; k − 1)

k
= H(2, 1; (p− 1)/2) ≡ 1

2
Bp−3 (mod p).

So
(p−1)/2∑
k=1

(p/2− k)H(2; k)

(p+ 1− 2k)(p+ 2k)
≡ 4qp(2)− 7

8
Bp−3 (mod p).

Therefore the proof of Lemma 3.8 is complete. 2

Lemma 3.9. For any primes p > 3, we have

(p−1)/2∑
k=1

G

(
p+ 1

2
, k

)
≡ (−1)(p−1)/2p2

(
qp(2)− pqp(2)2 + p2qp(2)3 +

7

8
p2Bp−3

)
(mod p5).
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Proof. For any complex number a, let (a)0 = 1 and (a)n = a(a +
1) . . . (a+ n− 1) for n ∈ Z+. By the definition of G(n, k), we have

G(n, k) =
n2
(
2n
n

)(
2n+2k
n+k

)(
2n−2k
n−k

)(
n+k
n

)
28n−4−2k(2n+ 2k − 1)

(
2k
k

) =
n2
(
2n
n

) (
1
2

)
n+k

(
1
2

)
n−k

(
n
k

)
24n−4−2kn!2(2n+ 2k − 1)

(
2k
k

)
=

n2
(
2n
n

) (
1
2

)
n

(
1
2

)
n−1

(
1
2

+ n
)
k

(
n
k

)
24n−4−2kn!2

(
1
2

+ n− k
)
k−1 (2n+ 2k − 1)

(
2k
k

)
=

n
(
2n
n

)2(2n−2
n−1

) (
1
2

+ n
)
k

(
n
k

)
28n−6−2k

(
1
2

+ n− k
)
k−1 (2n+ 2k − 1)

(
2k
k

) , (3.15)

where we have used the equalities(
1
2

)
n+k

(n+ k)!
=

(
2n+2k
n+k

)
4n+k

,

(
1
2

)
n−k

(n− k)!
=

(
2n−2k
n−k

)
4n−k ,

(
1

2

)
n+k

=

(
1

2

)
n

(
1

2
+ n

)
k

,

(
1
2

)
n

(n)!
=

(
2n
n

)
4n

and (
1

2

)
n−k

(
1

2
+ n− k

)
k−1

=

(
1

2

)
n−1

(1 ≤ k ≤ n).

It is easy to check that

(
p
2

+ 1
)
k(

p
2
− k
)
k

≡
k!
(

1 + p
2
Hk + p2

4

∑
1≤i<j≤k

1
ij

)
(−1)kk!(

(
1− p

2
Hk + p2

4

∑
1≤i<j≤k

1
ij

)
≡ (−1)k

(
1 + pHk +

p2

2
H2

k

)
(mod p3).

In view of [22, (4.4)],
(
(p−1)/2

k

)
(−4)k/

(
2k
k

)
is congruent to

1− p
k∑

j=1

1

2j − 1
+
p2

2

(( k∑
j=1

1

2j − 1

)2

−
k∑

j=1

1

(2j − 1)2

)

= 1− p
(
H2k −

1

2
Hk

)
+
p2

2

((
H2k −

1

2
Hk

)2

−H(2; 2k) +
1

4
H(2; k)

)
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modulo p3. By (3.15), we have

p−1
2∑

k=1

G

(
p+ 1

2
, k

)

=
(p+ 1)2

(
p+1

(p+1)/2

)2( p−1
(p−1)/2

)
24p−1

p−1
2∑

k=1

(p/2 + 1)k
(
(p−1)/2

k

)
4k(p/2− k)

(p/2− k)k
(
2k
k

)
(p+ 1− 2k)(p+ 2k)

≡
(p+ 1)2

(
p+1

(p+1)/2

)2( p−1
(p−1)/2

)
24p−1

(p−1)/2∑
k=1

(p/2− k)ap,k
(p+ 1− 2k)(p+ 2k)

(mod p5),

where ap,k denotes the expression

1+
3p

2
Hk−pH2k+

9p2

8
H2

k−
3p2

2
HkH2k+

p2

2
H2

2k−
p2

2

(
H(2; 2k)− H(2; k)

4

)
.

In light of Lemmas 3.2–3.8 and Lemma 2.3, we have

(p−1)/2∑
k=1

G

(
p+ 1

2
, k

)

≡
(p+ 1)2

(p+1
p+1
2

)2(p−1
p−1
2

)
24p−1

(
1

2
qp(2)− 3

2
pqp(2)2 + 3p2qp(2)3 +

7

16
p2Bp−3

)

≡
2p2
(

p−1
(p−1)/2

)3
24p−4

(
1

2
qp(2)− 3

2
pqp(2)2 + 3p2qp(2)3 +

7

16
p2Bp−3

)
≡ 2(−1)(p−1)/2p24p−1

(
1

2
qp(2)− 3

2
pqp(2)2 + 3p2qp(2)3 +

7

16
p2Bp−3

)
(mod p5).

Then we obtain the desired result by noting that

4p−1 = (1 + p qp(2))2 = 1 + 2p qp(2) + p2qp(2)2.

This ends the proof. 2

Proof of Theorem 1.1. Combining Lemmas 3.1 and 3.9 with (3.4), we
immediately get

(p−1)/2∑
n=0

F (n, 0) ≡ p(−1)(p−1)/2 + (−1)(p−1)/2
7

24
p4Bp−3 (mod p5),

which is equivalent to our desired result.
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