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PROBLEMS AND RESULTS ON DETERMINANTS
INVOLVING LEGENDRE SYMBOLS

ZHI-WEI SUN

ABSTRACT. In this paper we investigate determinants whose entries are
linear combinations of Legendre symbols. We deduce some new results
in this direction: for example, we prove that for any prime p = 3 (mod 4)

we haVe
0<j,k<(p )/2

where (5) is the Legendre symbol. We also pose many conjectures for
further research. For example, for any prime p > 3 we conjecture that

[ (155)+ (55)+ (%))
p p P/ 1< k<r-1)/2

B (%)p(P*m/‘l if p=1 (mod 4),
T (=) RERD2(1 (2= (2))h(—p))p® /Y if p=3 (mod 4),

P
where h(—p) is the class number of the imaginary quadratic field Q(y/—p).

1. INTRODUCTION

Let p be an odd prime, and let (5) denote the Legendre symbol. For any
integer a # 0 (mod p), by the quadratic Gauss sum formula we have

p—1
Z€2ﬂiak2/p _ <a> (—1)=1/2p,
k=0 b

Let ¢, and h(p) be the fundamental unit and the class number of the real
quadratic field Q(,/p). When p = 1 (mod 4), by Dirichlet’s class number
formula we have

p—1

H (1— 627Fim/p)(%) — 6Z;?h(p),

m=1

which implies that
(p—1)/2
: —(2)h
| | (1 o 627rwk2/p) — \/ﬁep(p) (p)
k=1
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for each integer a # 0 (mod p) (see, e.g., [9, Theorem 1.3(i)]). For conve-
nience, we write

ehP) = a, + by /p with 2ay, 2b, € Z. (1.1)

For a matrix A = [a;i]1<jk<n over a field, let det A or |aji|1<jk<n denote
its determinant. In this paper we focus on determinants involving Legendre
symbols.

Let p = 2n + 1 be an odd prime. In 2004, R. Chapman [2] used qua-
dratic Gauss sums and Dirichlet’s class number formula to determine the
determinants of the matrices

k-1 k-1
Cp(z) = [x + <‘7+>} and C;(a:) = [w + (‘Hﬂ .
D 1<, k<n p 1<, k<n+1

By [2, Corollary 3], provided p > 3 we have

—1)"/227 (b, — if p=1 (mod 4
det Cp(x) — ( ) ( P apr) 1 p (mo )7 (12)
—2"x if p=3 (mod 4),
and
—1)™/22" (pbyx — if p=1 (mod 4
det C*(CL') —_ ( ) (p pL ap) 1 p (mo )7 (13>
P 2n if p=3 (mod 4).
Since (n+1—j)+ (n+1—k)—1=—j —k (mod p), we also have
—j—k j + k
det Cp(z) = |z + ( J ) =(-D"(-1)"z + <]+>
p 1<j,k<n p 1<j,k<n
(1.4)
and
—j—k |+ k
det Gy (2) = |z + ( J ) = ‘(—1)”x+ (H—) . (1.5)
p 0<j,k<n p 0<j,k<n
Let p be an odd prime, and write
—(2))h
sf GIne _ ap + by,/p with 2aj,, 2b), € Z. (1.6)

In 2003, Chapman conjectured that
—ay, ifp=1 (mod 4),

(5) :
P 0<j k< (p—1)/2 1 if p =3 (mod 4);

this challenging conjecture was finally confirmed by M. Vsemirnov [11, 12] in
2012-2013 via matrix decomposition and quadratic Gauss sums. Recently,
L.-Y. Wang, H.-L. Wu and H.-X. Ni [13] extended this as follows:

(%)pb;x —a, ifp=1(mod4),

)
+ (T— = .
p 0<j,k<(p—1)/2 1 if p =3 (mod 4),

which was ever conjectured by the author.

(1.7)
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Let p = 2n + 1 be an odd prime, and let d € Z. The author [8] initiated
the study of the determinants

| (222)

32 +dk2>

and T(d, p) = '< ;

1<j,k<n 0<j,k<n

He proved that

2. 7(d,p) if (¢
S(d’p):{g_l “ ifE§;=1.’

<T(d,p))_ (2) if (=1,
D | @ =-1

We first state a basic result.

and

Theorem 1.1. (i) Let p be an odd prime, and let m,n € Z with n > m+ 3.
Then, for any complex numbers a, b, c,d, we have

() (2) ()

(ii) Let p > 5 be a prime with p = 1 (mod 4). For any 6 € {*1} and
m € {0,1}, we have

-2 1{22 22 l{?2
‘x+<‘] a >+5(J >‘ _0. (1.9)
p p m<j,k<(p—1)/2

Remark 1.1. In 1956, D. H. Lehmer [6] found all the eigenvalues of the

] .

where p is an odd prime and a, b, ¢, d are complex numbers. As a supplement
to Theorem 1.1(ii), we conjecture that
_ (1’—133 _ 1> o-3)/4

-2 ]432 '2_k2
= (50)+(5)
p D 2
(1.10)

for any prime p =3 (mod 4).

= 0. (1.8)

m<j,k<n

)
1<y, k<p—1

1<5,k<(p—1)/2

Now we state our central result.

Theorem 1.2. Let p be an odd prime, and let a;,b; € Z for alli=1,...,m.
Let c1, ..., ¢y be complex numbers, and set

=2 (5)20 ()

s=1
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(i) For eachn € {1,...,p — 1}, we have

ZCi<GJ+ )+<])a:
i=1 p p

Z (aﬂ%—bk)

=1

0<y,k<n 0<y,k<n
(1.11)
and
m .
bik k
e () ()
=1 p 1<j,k<n
- STRS (1.12)
m]+bk) (aijerlk:)

=c c —x ci

2o e ()]

1= 1<j,k<n =1 0<j,k<n
(ii) For any positive integer n, we have

bk j k
e e (52)+ () (5)-
b b 0<j,k<
m m m .
; b i + bik
e Bel) (BB (2
=1 p =1 =1 p 0<j,k<n
m . m . m
; bk ; b; k

() ) ) £

P p -1 NPSANPS o AP AP en

(1.13)

Applying Theorem 1.2 and using the known values of

|+ k i — k
- (50 (50
D p 0<,k<(p—1)/2

(where p is an odd prime), we can deduce the following general result.

and |z

0<4,k<(p—1)/2

Theorem 1.3. Let p be an odd prime.
(i) If p > 3, then

() 6)re ()

0<jk<(p-1)/2

ol ‘ (1.14)
_ {(p)2(p D2(pbyr — (y + 1) (2 + 1)a,) if p=1 (mod 4),
(y +1)(z +1)20—1)/2 if p=3 (mod 4).
(ii) We have
(56 6
0<5,k<(p—1)/2 (1.15)

_ JCwbr — (1 +y)(1+2)a, ifp=1 (mod 4),
(14+y)(1—2) if p=3 (mod 4).

Clearly, this theorem has the following consequence.
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Corollary 1.1. Let p be a prime with p =3 (mod 4). Then

j — k j k
T+ (‘7> n <‘7) - <> — 4. (1.16)
p p P/ lo<jk<(p—1)/2
When p > 3, we have
p p P/ logjks<(p-1)/2
We also have the following general result.
Theorem 1.4. Let p > 3 be a prime. Then
+k—1 ] k
- (57) G ()
1<,k<(p—1)/2
Jk<(p—1)/ (1.18)

[ (220792((yz — w)ay + (y+ 1)(z + 1)by)  if p=1 (mod 4),
) 2eD2(y, — 2) if p=3 (mod 4).
Also,

i+ k—1 j k
()G ()
p p P/ 1<) k<(p+1)/2

320 D2 (pby(z — yz) — ap(y + 1) (2 +1)) ifp=1 (mod 4),
27 D2(y + 1) (2 4+ 1) if p=3 (mod 4).
(1.19)

We are going to prove Theorems 1.1-1.4 in the next section, and pose in
Sections 3-5 many conjectures on determinants involving linear combinations
of Legendre symbols.

2. PROOFS OoF THEOREMS 1.1-1.4

Proof of Theorem 1.1. (i) We now prove part (i) of Theorem 1.1. As the
four Legendre symbols

) (57) (57) (57)

cannot be pairwise distinct, there are j,j € {m,m + 1, m + 2, m + 3} with
j # j' such that (2) = (2). Thus

coo(3) e () ra(5) e () e () o ()

for all k = m,...,n, and hence (1.8) holds.
(ii) We now turn to prove part (ii) of Theorem 1.1. Set n = (p—1)/2 and
q = n!. By Wilson’s theorem,

—1=p-1)!=]]kp-k) = (-1)"(n)’ = ¢ (mod p).
k=1
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For each k = 1,...,n, there is a unique rp € {1,...,n} such that ¢k is
congruent to r or —r; modulo p. Note that 7“,% = —k? (mod p) and r, # k
since ¢> = —1 # 1 (mod p). As qry, = £¢*k = Fk (mod p), we also have
rr, = k. For any k € {1,...,n} and j € {m,...,n}, clearly

) 2 2 2 2 2 9 9
o (5 ) o () o (o () + (55))
p p p b
9 2 9 .2 2 2 ) 2
—o (55 ) re () o (o (55F) + (550))
b b b p

=(1-9¢)x.
When 0 = 1, this clearly implies the equality (1.9).
Now we consider the case § = —1. Asn = (p —1)/2 > 4, we may

choose k € {1,...,n}\ {1,71}. Note that 1,71, k,r are distinct elements of
{1,...,n} with

) 2 9 7.2 ) 2 22
e () e () o (e () 10 (551)
p p p p
-2 2 2 12 -2 2 2 2
zgxzﬂ(f“)m(f 1)_5(x+(f+ﬁ)+5(fﬁ))
p p p p

for all j =m,...,n. So (1.9) holds.
In view of the above, we have completed the proof of Theorem 1.1. [l
To prove Theorem 1.2, we need the following basic lemma which can be
found in [10, Lemma 2.1].

Lemma 2.1. Let A = [a;i]o<jk<m be a matriz over a field. Then
det[z + ajrlo<jk<m — detlajkloc)kcm = @ det[bjr]i1<)k<m, (2.1)

where bjk = Qjk — G0 — Aok + apo-

Proof of Theorem 1.2. For convenience, we set

m .
) a;j + bik
fungy(EJZ)
i=1 p
for any j,k=0,1,2,....
(i) We first prove part (i) of Theorem 1.2. For i = 1,...,m and j, k =
1,...,n, clearly

e (5= () G umes),

It follows that

ﬂx@+(ﬁ)x

z? =c <;> X H (p> x det Ag = cdet Ag,

0<j,k<n j=1 k=1
(2.2)
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where A is obtained from the matrix A = [(%)f(j, k) + z)o<jk<n via re-
placing the first entry z in the first row by 0. If we expand det Ag and det A
along their first rows, we immediately see that

Jjk :
p
By Lemma 2.1,

@mL:K”)fuw> (”)fum
p p
Combining this with (2.2) and (2.3), we obtain

ﬂmm+<ﬁ)x

=c (33 fG R icjhen —

det A —det Ag = x (2.3)

1<j,k<n

+x

0<j,k<n

=z |f(J, k) |1<jpen -
1<j,k<n

.’I}2

0<yg,k<n

and hence

X

ﬂﬂ@+(ﬁ>x

=c <‘f(]', k)’lgj,kén o

0<j,k<n
jk .
p
Applying Lemma 2.1, we find that

kN (kY 4,
() somes =) r0m

where D = [djk]Kj,kgn with

o= (2) 60~ () 6.0 - (5) sa.m + s,

Therefore
” .
‘<7>ﬂmm+w
b

Combining this with (2.4), we immediately get
= —cdet D

ik
‘ﬂ$m+<]>x
p 0<j,k<n

and hence (1.11) follows. In light of (1.11) and (2.4),
: L
ﬂ%@+<;)w

(2.4)
1<j7k<n> .

+ xdet D,

1<j,k<n

= |f(]7 k”léj,kgn + xdet D.

1<j,k<n

clf(J, k) li<iken — | f (G, B)logjhcn = €

9
1<g,k<n

which gives (1.12).



8 ZHI-WEI SUN

(ii) Now we turn to prove part (ii) of Theorem 1.2. Let

aji = FG.F) + @ v (l;) )

for j,k=0,...,n. It is easy to see that

ajk — ajo — dok + aoo = f (5, k) — ;Ci <j?> (i)) e <p> <p) |

1=
Thus, in view of Lemma 2.1,
|z + ajklocjksn — lajrlosgkn

o -£(2)(0)£(5) ()

1=

=X

1<5,k<n

)

So we have reduced (1.13) to the equality

For k=0,...,n, clearly

aon = F(0, k) + (;) 2= (”g” <I;>> (;:)

o= 160+ (D)5 S () (£)

forall j =1,...,n. Thus

ci | — ) X |ajklo<jk<n = z—i—E ci| — k —i—()
£ <p> ‘ Jk‘0<J,k< ( — (p)) ‘f(] ) P Yy

For j =0,...,n, apparently

7(5,0) + (;) y= <y+ i@ <CZ>> (;)
and
FG.k) + (;) v- (f(j, 0) + (;) y) =fGk) - éc (C;) (i)

for all k =1,...,n. Therefore
- ai , J

D e <> x| f( k) + () y
i=1 p p
Combining this with (2.6), we immediately obtain the desired (2.5).

and

0<yg,k<n

(2.6)

0<j,k<n i=1
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In view of the above, we have completed the proof of Theorem 1.2. [
Recall that an n x n matrix A = [aji]i1<jk<n Over a field is called skew-
symmetric if a;i +ap; =0 for all j,k=1,...,n.

Suppose that A = [ajx]1<jr<n Is a skew-symmetric matrix over Z. Note
that

det A = [ay;|1<jh<n = | — ajkligkn = (—1)" det A.
Thus det A = 0 if n is odd. By a theorem of Cayley, det A is a square if n
is even (cf. [5]).

Lemma 2.2. Let p be an odd prime. Then

(57)-G)-G)

1<j,k<(p—1)/2

2.7
(%)2(p*1)/2pbp if p=1 (mod 4), 27)
~ o if p>3 and p=3 (mod 4).
We also have
‘ , ) L
(J—k> _ <J> _ (—k> _J@)pb), ifp=1 (mod 4),
p p P Jli<ik<(p-1)/2 0 if p=3 (mod 4).

(2.8)

Proof. Let n = (p —1)/2 and § € {£1}. Define aj;, = (%) for j, k =
0,...,n. Then

57)-6)- ()
Ak — Gjo — Aok + o0 = =)=\
p p p

Thus, by Lemma 2.1 we have

det[1 + ajklo<sk<n — detajrlocsken

JEG S
P P P/ li<inen
Combining (1.3) and (1.5), we obtain
‘x—k <j+k) _ (%)2”(pbpm—ap) if p=1 (mod 4),
p 0<j,k<n 2" if p>3& p=3(mod 4).
(2.10)

So we know the exact value of |z + aji|o<jk<n in the case § = 1. When
d = —1, the equality (1.7) gives the exact value of |z + a;i|o<jr<n. Since
|z + aji]o<jk<n is evaluated, we immediately obtain the exact value of

(55 -6)-()
p p P Jligik<n

by using (2.9). Therefore (2.7) and (2.8) hold. In the case p = 3 (mod 4),
we may prove (2.8) without using (1.7) since the matrix in (2.8) is skew-
symmetric and of odd order. This ends our proof. O
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Proof of Theorem 1.3. Set n = (p — 1)/2. Combining Theorem 1.2(ii),
(2.10), (1.7) and Lemma 2.2, we immediately obtain the desired results. [

Proof of Theorem 1.4. Let n€ {(p—1)/2,(p+1)/2}, and set

+k—1 '
e (£12). ()
p p

for j,k=1,...,n. Observe that
ail j—|—k‘—1> T
aQip —a;] + —2— = +
AR | < P y+1
forall 1 < j<mand1l<k<n. Thus

() 6)

j+k1) T
=(y+1 +
W )K P y+1

Combining this with (1.2) and (1.3), we have

()G

1<j,k<n

1<j,k<n

2.11
_ (%)2(pﬂ)/2(bp(y +1) —apz) ifp=1 (mod 4), ( )

2 if p =3 (mod 4),

and
()1 ()
p p 1<4,k<(p+1)/2

2\9(p—1)/2 N <.(p+ / (2.12)

_ (,3)2 P (pbpr —ap(y+1)) if p=1 (mod 4),

2(p—1)/2(y +1) if p=3 (mod 4).

Let

+k—1 ' k
s (452) (o ()
p p p

for j,k=1,...,n. Note that

b1k Jtk—1 J T —yz
bi — b = J
ik 1k+2+1 < » + » y+ ]

for all j,k=1,...,n. Thus

jt+k—-1 J T —yz
|bjkl1<) k< —(Z+1)‘<)+<>y+ .
S p p 2+ 1 g kn

Combining this with (2.11) and (2.12), we immediately obtain the desired
identities (1.18) and (1.19). Note that both sides of the equalities (1.18) and
(1.19) are polynomials in z,y, z. If we view y and z as complex numbers, to
handle the case y = —1 or z = —1 we may take limits. This concludes our
proof of Theorem 1.4. O
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3. CONJECTURES ON DETERMINANTS INVOLVING (£58), (1), (k) anp (Z)

Conjecture 3.1. Let p be an odd prime.
(i) If p > 3, then

()G ()= ()
p p p p 0<5,k<(p—1)/2

_ {(i)Q(pl)/Q(pbpx +ap(wz — (y+1)(2+1))) ifp=1 (mod 4),

20-D/2((y + 1)(z + 1) — wa) if p=3 (mod 4).
(3.1)
(i) We have
()G () () vl
(3.2)

0<y
_ {ap(wa: —(y+1)(z+1)) + (2)pb’ if p=1 (mod 4),
wr+ (1+y)(1—=2) if p=3 (mod 4).

Remark 3.1. Conjecture 3.1 in the case wx = 0 follows from Theorems 1.2
and 1.3.

Conjecture 3.2. Let p be an odd prime, and set v =wx — (y + 1)(z + 1).
(i) If p > 3, then

(5 (e () ()

0<j,k<(p—3)/2

_ (%)2(}773)/2((1@[’1} — 2ap)z + (ap — 2bp)v) if p=1 (mod 4), (33)
] 203/2(y — 22) if p=3 (mod 4).
(ii) We have
o (5) G (G) e ()
0<j:k<(p—3)/2 (3.4)

—a,T — (%)b;ﬂ] if p=1 (mod 4),
x if p=3 (mod 4).

Remark 3.2. In light of Theorem 1.2, in the case wx = 0 we can reduce
anjecture 3.2 to the case y = z = 0. For any prime p = 3 (mod 4), clearly
|(%) l1<jk<(p—1)/2 = 0 since the matrix is skew-symmetric and of odd order;
the author [8] conjectured that
 — k | — k
=+ (5) -~ (5)
p p

=z, i.e., =x.
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In view of Lemma 2.1 or Theorem 1.2(ii), for any prime p > 3, part (i) of
Conjecture 3.2 implies that

)-0)-G)
p p P/ 1<) k<(p—3)/2

B (%)2(1’3—3)/2(pbp —2a,) ifp=1 (mod4),
) —o-1)/2 if p=3 (mod 4),

(3.5)

while part (ii) of Conjecture 3.2 implies that
5)-0)-)
p p p

Conjecture 3.3. Let p > 5 be a prime. Then

(5 ()o () ()
T+ | — |+ ]y+ |- )2+ |—|w
p p p p 0<j,k<(p—5)/2

_ {@)(2@;—Pbﬁo)H(a}—?b;)<<1+y)(1+z) —wz) ifp=1 (mod 4),

—a, ifp=1 (mod 4),

1<5,k<(p—3)/2 B {1 if p=3 (mod 4).
(3.6)

wr+ (1+y)(1—2) if p=3 (mod 4).
(3.7)

Remark 3.3. In light of Theorem 1.2, in the case wxz = 0 we can reduce this
conjecture to the case y = z = 0. In a unpublished preprint written in 2003,
for each prime p > 5 with p = 3 (mod 4), R. Chapman conjectured that

) - |(557)
—_— =1, i.e., —_—
P /1< k<(p-3)/2 p

In view of Lemma 2.1 of Theorem 1.2(ii), Conjecture 3.3 implies that

—k ' k 2
(5)-6)-6) -(G)es—r o9
p p P/ hi<jk<p-5)/2  \P
for any prime p > 5 with p =1 (mod 4), and that
—k ' k
(5)-6)+6)
p p p

for any prime p > 5 with p = 3 (mod 4). The equality (3.9) is easy since
the matrix is skew-symmetric and of odd order.

=1.
0<j,k<(p—5)/2

=0 (3.9)

Conjecture 3.4. For any prime p > 7 with p =3 (mod 4), we have

- ()

Remark 3.4. Surprisingly, this concise conjecture has not been found before.

p—21?
=|—| =z (3.10)
0<4,k<(p—7)/2 3
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Conjecture 3.5. Let p > 3 be a prime.
(i) If p=1 (mod 4), then

() () () ()

= (Z2)2e-D2(q (v -z — z) — cp(wz — yz
_<p>2 (ap(w — 2) + by + (by — D)y + 2) — cplws — y2)),

1<,k<(p—1)/2 (3.11)

where ¢, = (p+1)b, — 2. When p =3 (mod 4), we have

(506 (G) (G
P D D D 1<5,k<(p—1)/2 (3.12)

= — 2P D2y 4 g 4 (=1)PEPITD2(y 45 4 22 — 2wa)),

where h(—p) denotes the class number of the imaginary quadratic field Q(v/—p).
(ii) If p=1 (mod 4), then

2 (5) G G (5)
c+H|({— |+ | = ]Jy+ |- )z+|—|w
p p p p 1<4,k<(p—1)/2 (3.13)

= ay(w—1z) + <2> (b, + (b, — 1) (y + 2) + ¢, (yz — wz)),

b

where ¢, = (p+1)b, —2. When p =3 (mod 4), we have

(5 e () ()

= w4z — (=1)PEP=D20 4 2,

1<,k<(p—1)/2 (3.14)

Conjecture 3.6. Let p > 5 be a prime.
(i) If p=1 (mod 4), then

(5 (e () ()

= (2) 279200, — a4 (ay = By 0y = D+ 2) + dylys — w),
(3.15)

where d, = (p+ 1)by, — 2(ap + 1). When p = 3 (mod 4), we have

= (5) G G (5)
T+ +{=)y+ |- )z+|—|w
p p p p 1<5,k<(p—3)/2

= 2072w + x + 2(wz — yz) + (—1)PEPT2(y 4 2 4 292 — 2wa)).
(3.16)
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(ii) If p=1 (mod 4), then

J—k J k Jk
T+ | — |+ ]Jy+ |- )z+|—|w
p p p p 1<5,k<(p—3)/2

= ey (2) (2 = )~ ) + (6 + 100+ 2)+ 205, — D — ),
(3.17)

where €}, = a;, — 2b,,. When p = 3 (mod 4), we have

(55 G ()= (5)
T+ |\ — |+l ]Jy+ |- )z+|—|w
p p p p 1<5,k<(p—3)/2 (3.18)

=1+ (1 — (=1)(r=P)=1)/2 <2>> 2wz —yz) +y — 2).

p
Conjecture 3.7. Let p > 3 be a prime.
(i) We have
|+ k | — k ' k ik
(5) (5) G)re ()= ()
p p p p p 0<j,k<(p—1)/2
B (%)p(p+3)/4ac if p=1 (mod 4),
() RERNRYEE A (pr 1 (2 = (2))A(—p)v)  if p =3 (mod 4),
(3.19)
where v = (y + 2)z — wx.
(ii)) If p=1 (mod 4), then
(58)- (5 6o+ (1 0o
p p p p 0<j,k<(p—1)/2
(3.20)
for some x, € Z only depending on p.
Remark 3.5. Our computation indicates that
x5 =1, w13 = =3, v17 = 2, x99 = 7, x37 = —7, w41 = 6, T53 = 3, x61 = 15.
Conjecture 3.8. Let p > 3 be a prime.
(i) If p=1 (mod 4), then
|+ k j— k _
() (5 e
p p 1<5,k<(p—1)/2

and

|+ k —k ' k ik
p p p p p 1<5,k<(p—1)/2
2
_ (w5 (P _(p=1 N\ (Pl
(—p) << 5 > wx ( 5 Y 1)( 5 % 1 .

(3.22)
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(ii) When p =3 (mod 4), we have

=) " (T) " (J;k> " <Zj?> v (jff> N 1<j,k<(p—1)/2
= plp=3)/4 (29;1y -1+ <2 - (;)) h(—p)(w + ) — <]2)) m}f”wx)

(3.23)

h(=p)+1
2

for some integer g, only depending on p.
Remark 3.6. Our computation indicates that

g7 =qu1 =1, q19 =9, qa3 = 15, q31 = 24, qu3 = 27, q47 = 72, q59 = 62,
qe7 = 51, q71 = 259, q79 = 82, g3 = 18, q103 = 349, quo7 = —68, q127 = 478.

Conjecture 3.9. Let p > 3 be a prime. If p=1 (mod 4), then

R RAMORIOR

_ (;) P (pa —wz + (y + 2)(z + 2)).

0<j,k<(p—3)/2

(3.24)
When p = 3 (mod 4), there is an integer my, € Z only depending on p such
that

() ) G G ()

0<4,k<(p—3)/2

(3.25)
Remark 3.7. Our computation indicates that

my =2, my1 =1, mg=—3, me3=—1,m3g1 =3, my3 =1, myr =0, msg = 8.

, o
4. CONJECTURES ON DETERMINANTS INVOLVING (#) OR (£ tk )

Conjecture 4.1. Let p > 3 be a prime.
(i) If p=1 (mod 4), then

() () (6) = (5)
T+ +l=)y+ |- )z+|—|w
p p p p 1<5,k<(p—1)/2

- @ 20 D2((yz — (w + D)ay + (w(l = 2) + (y + 1)(z + 1)by)-
(4.1)

When p = 3 (mod 4), we have

(2 e 5)- ()

=2 D2(y7 — (w4 1)z).

1< k<(p—1)/2  (4.2)
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(ii) If p=1 (mod 4), then

‘x " <]+;_1> " <§?> v (i) ot <J;> v 1<),k<(p+1)/2

= (2) 22y (w4 12 = 92) + e = 1) = (g4 1)+ 1)

When p = 3 (mod 4), we have )
o () (G) o () ()

= 22 (1 — ) + (y + 1) (2 + 1)).

1<k<(p+1)/2  (4.4)

Remark 4.1. In the case w = 0, this reduces to Theorem 1.4.

Conjecture 4.2. Let p > 3 be a prime. If p=1 (mod 4), then

()G () ()

=62 () o) ”
N (GRSt
< ) o(p— 5>/2( —1)b, +<<;>—1> (ap+bp)> (yz — wz).

When p = 3 (mod 4), we have

1<j,k<(p—3)/2

(520 (e () ()1
() )e-vveoere - () o)

4.6)

Remark 4.2. Let p=2n+ 1> 3 be a prime. As

()

1<j,k<n—1 b

e (52

:‘$+<n—|—1—s—|—(n+1—t)—1)

— (_1)n(n—1)

2<j,k<n
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Conjecture 4.2 implies that

- (50
T+ | ——
p 2<5,k<(p—1)/2

_ {(12))2(175)/2(% — pbyr + (2 — (%))(apx —b,)) ifp=1 (mod 4),

2(P=5)/2((2 — (%))x —1) if p=3 (mod 4).
(4.7)
Conjecture 4.3. Let p > 3 be a prime. If p=1 (mod 4), then
i+ k—1 ' k ik
) (e () ()
p p p p 0<j,k<(p—1)/2
2
= <p> 2P=3/2(pb, — 2a,)(w+y + 2 + 1) (4.8)
2
+(2) 20797 (2~ e + (0~ 2y~ ) oz~ ).

If p=3 (mod 4), then

j+k—1 j k ik
() () () ()
p p p b 0<jk<(p—1)/2  (4.9)

= 2079/2 (2w (1 — 2) + 2(y + 1) (2 + 1) + p((w + D)z — y2)).
Remark 4.3. Let p=2n+1 > 3 be a prime. As

‘“(W) :'x+<n+1—s+(n+1—t)—l)

p
|+ k
(—1)"z + <]+>
p
Conjecture 4.3 implies that
|+ k
()
p 1<5,k<(p+1)/2

B (%)2(p_3)/2(pbp — 2a, + (2b, — ap)pzr) if p=1 (mod 4),
| 20-3/2(2 — pa) if p=3 (mod 4).

0<j,k<n 1<s,t<n+1

— (_1)n(n+1)

)

1<g,k<n+1

(4.10)

Conjecture 4.4. For any prime p > 3 with p = 3 (mod 4), we have

‘x+ <j +f)— 1> + (i?) Y+ <Zk;> z+ <‘7;> w et
o (oG o)
() @)t

(4.11)
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Remark 4.4. Let p=2n+1 > 3 be a prime. As

‘H(pri—l) x+<n—|—1—s+(z+1—t)—1)

e ()

when p = 3 (mod 4) Conjecture 4.4 implies that

=+ (5)
T+ | —
p 2<5,k<(p+1)/2 (4.12)

(2 ()5 Ge-0) 1))

Conjecture 4.5. Let p > 3 be a prime. If p=1 (mod 4), then

k41 j k k
() () () (5
p p p p 0<),k<(p—1)/2

_ (;) 2r-1)/2pp <$ N 2%2@2 N wm)> (4.13)

N (;) 20112, (w (;z ; pf) D+ 1>> |

When p = 3 (mod 4), we have
+k+1 ’ k k
()G G )
p p p p
= o-1)/2 <w (pg 2_ x) +y+1)(z+ 1)) :

Remark 4.5. For any prime p = 2n+ 1 > 3, by (1.3) we have
i+ k+1 )+ 1 k+1)—1
x+<9++> (G+1)+(k+1) >

p

= ‘:p + (
0<j,k<n p
= det Oy (r) = {

0<j,k<n—1 2<s,t<n+1

)

2<g,k<n+1

—(-1)"

0<j,k<(p—1)/2 (4.14)

0<j,k<n
(—1)™227 (pbyx — a,) if p=1 (mod 4),
2" if p =3 (mod 4).

Conjecture 4.6. Let p > 3 be a prime. If p=1 (mod 4), then

j+k+1 J k
T+ |\ || )y+ | )%
p p P/ lhi<jk<(p-1)/2

< > 22 ((pbp — 2ap)z +2(np + by — ap)yz) (4.15)
+

( ) 2072 (2bp — ap = Dy + 2+ 1) +1)
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for some positive integer n,. When p =3 (mod 4), we have

() () () ()
T+ Tl )yt o2+l |w
p p p p 1<5,k<(p—1)/2
_ o(-3)/2 (1 _ (_1)(h<fp>71>/2) (y+ 2 + 2(yz — wz)) (4.16)

+2(r=3)/2 ((p —3) (yz —wx + %) —2r + 1) .

Remark 4.6. Our computation indicates that
ny = 1, niz = 11, ni7 = 39, nog — 68, nar = 230, ng1 — 1441, Nn53 — 256.
For any odd prime p = 2n + 1, we clearly have

‘x+<]+k+1> :'$+((n—j)+(n—k)+1>
p 1<j,k<n p

= ()" |(=1)"z + (T)

Conjecture 4.7. Let p > 3 be a prime. If p=1 (mod 4), then

(S (e (3)-0 ().

0<j,k<n—1

0<j,k<n—1

0<4,k<(p—1)/2

= (pb, — a,)(w(l —2) + (y + 1)(2 + 1)) (4.17)
+p <wx —(y+1)z+ <]29> (b, — ap) (1 + w)z — yz)> )

When p = 3 (mod 4), we have
j—k+1 ] k ik
) G ) (5)
p p p p 0<j,k<(p—1)/2

Qe (e
+ <p (;) (1 + (—1)(h(—p)—1)/z> B 1) (v — wa).

Conjecture 4.8. Let p > 3 be a prime. If p=1 (mod 4), then

() 6)o ()= (5)
T+ +l=)y+ |- )2+ | —|w
p p p p 0<4,k<(p—3)/2

= (pb, — ap)(w + D)z — yz) + (;) (wz — (y +1)2) (4.19)

2 / /
T (p) (b, — ) (w(l — ) + (y + 1)(= + 1).
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When p = 3 (mod 4), we have
j—k+1 ] k ik
() () () ()
p p p p 0<4,k<(p—3)/2
=z- <2> (wHy—2z+1) — (-2, (4.20)
p

+ (1 + (-1)hP=h2 (;)) (wz — yz).

Conjecture 4.9. Let p > 3 be a prime. If p=1 (mod 4), then

j—k+1 j k ik
T+ |7/ |+l |yt |2+ | —|w
p p p p 1<5,k<(p—1)/2

= <;> p%l((y—f—l)z—wx)+(pb;—a;)((w+1)x_yz) (4.21)

2 / /
N (p) (, — a)(w(1 — ) + (y + 1)(z + 1)),

When p = 3 (mod 4), we have

i — k41 j k ik
() () () (5
p p p p 1<5,k<(p—1)/2

= (w+ 1z —yz+ <;> (y+1)(z—1) —w(x+1)) (4.22)

+ (—1)R(=p)=D)/2 %(wx —(y+1)2).

Conjecture 4.10. Let p be an odd prime.
(i) When p =1 (mod 4), for any 01,02 € {£1} the number

|+ k  —k 2 + ok?
(57 (57) e (5)
p p p

18 a quadratic residue modulo p.
(ii) If p=3 (mod 4), then the number

. .2 2
|(57)+ (50)
p p

s a quadratic residue modulo p.

5. CONJECTURES ON DI%TERMINQANTS OF THE FORM
_ i2+cik+dk
{¢,d}n = ‘(] jn *)|1<j,k<n—1

Let p be a prime with p = 1 (mod 4). By a classical result conjectured by
Fermat and confirmed by Euler, p = a? + b? for some a,b € Z with a odd.
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In view of Jacobsthal’s theorem (cf. Theorem 6.2.9 of [1, p.195]),
(p—1)/2 9 2 (p—1)/2 9 2
(x4 1 x(x®+d
(% (57) (% (5)
=1 p r=1 p

for any d € Z with (g) = —1. As 22 = —1 (mod p) for a unique number
ze{l,...,(p—1)/2}, we have

Z( e +1) _(pz”/2<x<:c2p+1>> _iaso

=1
Motivated by this, we obtain the following result.

Theorem 5.1. Let n > 1 be an integer with n =1 (mod 4). Then n is not
a sum of two squares if and only if

=0

Proof. Write n = p{*--- pZ’“, where pq,...,pr are distinct odd primes and
at,-..,ar € N. Applying the Chinese Remainder Theorem, we obtain

S( x+1> i ZH<x3x+ >

=0 z1=0 =0 s=1
s 71 s
_ IEIPZ <x5<:cz+1>>“

s=1 xs= DPs

k psTl-1pe—1 e + 1) (Dags +7)2 + 1)\
_ 3 Z((qur )((pq+)+)>

Ps

If ps = 1 (mod 4), then {1 <z <p—-1: 22 = —1 (mod ps)}| = 2 and

hence )
Ps— 2 as
Z<M> =ps —3 %0 (mod 4).

Ps
=1
When ps; = 3 (mod 4) and 2 | as, we have

ps—1 2 as
1
3 (f’f(wﬂ> 140,
=1 p

When ps; = 3 (mod 4) and 2 1 as, we have

”g (x(:v2p+ 1))“3 _ (pé” ( (x(x;:— 1)) . <—a:(i+ 1))) .
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In view of the above, we see that Zz;é(x(xzﬂ)) = 0 if and only if ps =
3 (mod 4) and 2 { as for some s = 1,...,k. By a known result (cf. [3,
p.279]), n is not a sum of two squares if and only if for some prime divisor
p of n we have p = 3 (mod 4) and ord,(n) = 1 (mod 2), where ord,(n) is
the p-adic order of n at the prime p. So the desired result follows. O

Let n > 1 be an odd integer, and let ¢,d € Z. The author [8] investigated
the new kinds of determinants

e.d], = <j2 + cjk + dk:2>
n 0<j,k<n—1
" | (£t |
n 1<),k<n—1

where () denotes the Jacobi symbol. Some conjectures on such determi-
nants were later confirmed by D. Krachun, F. Petrov, Z.-W. Sun and M.
Vsemirnov [4]. Now we introduce the new determinant

2 ik + dk?
(e.d}y = <J+CJ+>

n

(5.1)

1<j,k<n—1
This is motivated by the standard proof of Wilson’s theorem; in fact, for
any prime p > 3 we have H1<k;<p—1 k=1 (mod p) since {2,...,p — 2} can
be partitioned as {z1,y1} U - U{T(p_3)/2, Y(p—3)/2} With 2y =1 (mod p)
forallk=1,...,(p—3)/2.

Conjecture 5.1. (i) For any positive integer n = 1 (mod 4) which is not a
sum of two squares, we have {3,2}, = 0.

(ii) For any positive integer n = 3 (mod 4), we have @ | {3,2},, where
© is Euler’s totient function.

(iii) For any positive integer n = 3 (mod 8), we have

_p(n)
{3,2}p = Taz2

for some x € 7.

Remark 5.1. We have verified this for all positive odd integers n < 2000. By
[4, Corollary 1.1], (3,2),, = [3,2],, = 0 for any positive integer n = 3 (mod 4).
Conjecture 5.2. (i) We have {2,2}, = 0 for any prime p = 13,19 (mod 24).

(ii) We have {2,2}, =0 (mod p) for any prime p = 17,23 (mod 24).
Remark 5.2. We have verified this conjecture for odd primes p < 2000.
Conjecture 5.3. (i) We have {4,2},, = {8, 8}, = 0 for any positive integer
n =5 (mod 8).

(ii) We have {3,3}, =0 for any positive integer n =5 (mod 12).
Remark 5.3. We have verified this conjecture for positive odd integers n <

2000. By [4, Corollary 1.1], (4,2),, = (8,8)n = (3,3), = 0 for any positive
integer n = 3 (mod 4).
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Conjecture 5.4. We have {42,-7}, = {21,112}, = 0 for any positive
integer n = 1 (mod 4) with (%) = —1.

Remark 5.4. We have verified this conjecture for positive odd integers n <
2000. By [4, Theorem 1.1(iv)], (42,—7), = (21,112),, = 0 for any positive
integer n with (%) = —1.

Conjecture 5.5. (i) Let n > 3 be an odd integer. Then {2,3}, =0 (mod n).
Moreover, {2,3},, =0 (mod n?) if n # £1 (mod 12).
(ii) For any odd integer n > 7, we have {6,15},, =0 (mod n).

Remark 5.5. We have verified this conjecture for positive odd integers n <
2000. The author [8, Conjecture 4.8] conjectured that (2,3), = 0 (mod n?)
for each odd integer n > 3, and that (6,15),, = 0 (mod n?) for any odd
integer n > 5.

Conjecture 5.6. (i) For any positive integer n = 13,17 (mod 20) which is
a sum of two squares, we have {5,5}, = 0.

(ii) Letn > 1 be an odd integer. We have ({5’2}”) = 0ifn = 11,19 (mod 20),
orn =9 (mod 60) and n > 69.

Remark 5.6. We have verified this conjecture for positive odd integers n <
2000. By [4, Theorem 1.4], [5, 5], = 0 for any prime p = 13,17 (mod 20).

Conjecture 5.7. (i) For any positive integer n = 5 (mod 12) which is a
sum of two squares, we have {10,9}, = 0.
(ii) We have {10,9}, =0 (mod p) for any prime p = 11 (mod 12).

Remark 5.7. We have verified this conjecture for n, p < 2000. By [4, Theo-
rem 1.4], (10,9), = 0 for any prime p =5 (mod 12).

Conjecture 5.8. (i) For any positive integer n = 13,17 (mod 24) which is
a sum of two squares, we have {8,18}, = 0.

(ii) We have {8,18}, =0 (mod p?) for any prime p =19 (mod 24).

(iii) We have {8,18}, =0 (mod p) for any prime p = 23 (mod 24).

Remark 5.8. We have verified this conjecture for n,p < 2000. In 2018, the
author [7] conjectured that [8,18], = 0 for any prime p = 13,17 (mod 24),
which was confirmed by Michael Stoll (cf. [7]) by using advanced tools such
as elliptic curves with complex multiplication by Z[v/—6] and f-adic Tate
modules.

Acknowledgment. The author would like to thank the anonymous referee
for helpful comments.
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