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SOME DETERMINANTS INVOLVING

QUADRATIC RESIDUES MODULO PRIMES

ZHI-WEI SUN

Abstract. In this paper we evaluate several determinants involving
quadratic residues modulo primes. For example, for any prime p > 3
with p ≡ 3 (mod 4) and a, b ∈ Z with p - ab, we prove that

det

[
1 + tanπ

aj2 + bk2

p

]
16j,k6 p−1

2

=

{
−2(p−1)/2p(p−3)/4 if (ab

p
) = 1,

p(p−3)/4 if (ab
p
) = −1,

where ( ·
p
) denotes the Legendre symbol. We also pose some conjectures

for further research.

1. Introduction

Let p be an odd prime, and let ( ·p) be the Legendre symbol. Let d be any

integer. Sun [7] introduced the determinants

S(d, p) = det

[(
j2 + dk2

p

)]
16j,k6(p−1)/2

and

T (d, p) = det

[(
j2 + dk2

p

)]
06j,k6(p−1)/2

,

and determined the Legendre symbols(
S(d, p)

p

)
and

(
T (d, p)

p

)
.

Namely, the author [7, Theorem 1.2] showed that(
S(d, p)

p

)
=

{
(−1p ) if (dp) = 1,

0 if (dp) = −1,

and (
T (d, p)

p

)
=

{
(2p) if (dp) = 1,

1 if (dp) = −1.

Key words and phrases. Determinants, Legendre symbols, quadratic residues modulo
primes, the tangent function.
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D. Grinberg, the author and L. Zhao [2] proved that if p > 3 then

det

[
(j2 + dk2)

(
j2 + dk2

p

)]
06j,k6(p−1)/2

≡ 0 (mod p).

For any positive integer n with (p − 1)/2 6 n 6 p − 1, we introduce the
determinants

Sn(d, p) = det
[
(j2 + dk2)n

]
16j,k6(p−1)/2 (1.1)

and

Tn(d, p) = det
[
(j2 + dk2)n

]
06j,k6(p−1)/2 . (1.2)

Note that

S(p−1)/2(d, p) ≡ S(d, p) (mod p), T(p−1)/2(d, p) ≡ T (d, p) (mod p),

and

T(p+1)/2(d, p) ≡ det

[
(j2 + dk2)

(
j2 + dk2

p

)]
06j,k6(p−1)/2

(mod p).

When p > 3 and p - d, the author [7, Conjecture 4.5(iii)] conjectured that(
S(p+1)/2(d, p)

p

)
=

{
(dp)(p−1)/4 if p ≡ 1 (mod 4),

(dp)(p+1)/4(−1)(h(−p)−1)/2 if p ≡ 3 (mod 4),

where h(−p) denotes the class number of the imaginary quadratic field
Q(
√
−p); this was confirmed by H.-L. Wu, Y.-F. She and L.-Y. Wang [12]

in 2022.

Theorem 1.1. Let p > 3 be a prime, and let d ∈ Z.

(i) Let S̄(d, p) be the determiant obtained from det[( j
2+dk2

p )]16j,k6(p−1)/2

by replacing all the entries in the first row by 1. If (dp) = 1, then

S̄(d, p) = −S(d, p).

When (dp) = −1, we have

S̄(d, p) =
2

p− 1
T (d, p) =

p− 1

2
det

[(
j2 + dk2

p

)]
26j,k6(p−1)/2

. (1.3)

(ii) For any integer n with (p− 1)/2 < n < p− 1, we have

Tn(d, p) ≡ 0 (mod p). (1.4)

Remark 1.1. Part (ii) of Theorem 1.1 extends [2, Theorem 1.1].

For any prime p ≡ 3 (mod 4), Sun [7] proved that

Sp−2(1, p) ≡ det

[
1

j2 + k2

]
16j,k6(p−1)/2

≡
(

2

p

)
(mod p).

In contrast with this, we get the following result.
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Theorem 1.2. Let p be an odd prime, and let d ∈ Z with (−dp ) = −1.

(i) We have (
Sp−2(d, p)

p

)
=

(
2

p

)
. (1.5)

Moreover,

det

[
1

j2 + dk2

]
16j,k6(p−1)/2

≡

{
d(p−1)/4 (mod p) if p ≡ 1 (mod 4),

(−1)(p+1)/4 (mod p) if p ≡ 3 (mod 4).

(1.6)
(ii) We have (

Sp−3(d, p)

p

)
=

1− (−1p )

2
. (1.7)

Moreover, when p ≡ 3 (mod 4) we have

det

[
1

(j2 + dk2)2

]
16j,k6(p−1)/2

≡ 1

4

(p−3)/4∏
r=1

(
r +

1

4

)2

(mod p). (1.8)

Let p be an odd prime, and let a, b ∈ Z with p - ab. The author [10]
introduced

T (0)
p (a, b, x) = det

[
x+ tanπ

aj2 + bk2

p

]
06j,k6(p−1)/2

(1.9)

and

T (1)
p (a, b, x) = det

[
x+ tanπ

aj2 + bk2

p

]
16j,k6(p−1)/2

, (1.10)

and simply denote T
(0)
p (a, b, 0) and T

(1)
p (a, b, 0) by T

(0)
p (a, b) and T

(1)
p (a, b),

respectively. When p > 3 and p ≡ 3 (mod 4), the author [10, Theorem
1.1(ii)] proved that

T (0)
p (a, b, x) =

{
2(p−1)/2p(p+1)/4 if (abp ) = 1,

p(p+1)/4 if (abp ) = −1.
(1.11)

When p ≡ 1 (mod 4), by [10, Theorem 1.1(i)] we have

T (1)
p (a, b, x) = T (1)

p (a, b)

=


(
2c
p

)
p(p−3)/4ε

(a
p
)(2−( 2

p
))h(p)

p if p | b− ac2 with c ∈ Z,
±2(p−1)/2p(p−3)/4 if (abp ) = −1,

(1.12)
where εp and h(p) are the fundamental unit and the class number of the real
quadratic field Q(

√
p), respectively. As a supplement to [10, Theorem 1.1],

we obtain the following result.
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Theorem 1.3. Let p > 3 be a prime, and let a, b ∈ Z with p - ab.
(i) Assume that p ≡ 1 (mod 4). If (abp ) = 1 and ac2 ≡ b with c ∈ Z, then

T (0)
p (a, b, x) =

(
2c

p

)
p(p+1)/4ε

(a
p
)(( 2

p
)−2)h(p)

p x. (1.13)

If (abp ) = −1, then

T (1)
p (a, b) = −δ(ab, p)2(p−1)/2p(p−3)/4 (1.14)

and

T (0)
p (a, b, x) = pT (1)

p (a, b)x = −δ(ab, p)2(p−1)/2p(p+1)/4x, (1.15)

where

δ(c, p) =

{
1 if c(p−1)/4 ≡ p−1

2 ! (mod p),

−1 otherwise.
(1.16)

(ii) Suppose that p ≡ 3 (mod 4). Then

T (1)
p (a, b, x) =

{
−2(p−1)/2p(p−3)/4x if (abp ) = 1,

p(p−3)/4x if (abp ) = −1.
(1.17)

Remark 1.2. In light of Theorem 1.3 and [10, Theorem 1.1], for any prime
p > 3 and a, b ∈ Z with p - ab, we have completely determined the exact

values of T
(0)
p (a, b, x) and T

(1)
p (a, b, x).

Let p > 3 be a prime, and let a, b ∈ Z with (−abp ) = −1. Define

Cp(a, b, x) = det

[
x+ cotπ

aj2 + bk2

p

]
16j,k6(p−1)/2

. (1.18)

By [10, Theorem 1.3],

Cp(a, b, x) =

{
T
(1)
p (a, b)/(−p)(p−1)/4 = ±2(p−1)/2/

√
p if p ≡ 1 (mod 4),

(−1)(h(−p)+1)/2(ap )2(p−1)/2/
√
p if p ≡ 3 (mod 4).

(1.19)
In the case p ≡ 1 (mod 4), with the aid of (1.14) we have

Cp(a, b, x) = (−1)(p+3)/4δ(ab, p)
2(p−1)/2
√
p

. (1.20)

Now we state our last two theorems.

Theorem 1.4. Let p > 3 be a prime, and let a, b ∈ Z with p - ab. Let
T̄p(a, b, x) denote the determinant obtained from

T (0)
p (a, b, x) = det

[
x+ tanπ

aj2 + bk2

p

]
06j,k6(p−1)/2

via replacing all the entries in the first row by 1.
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(i) Suppose that p ≡ 1 (mod 4). If (abp ) = 1 and ac2 ≡ b (mod p) with

c ∈ Z, then

T̄p(a, b, x) =

(
2c

p

)
p(p−1)/4. (1.21)

If (abp ) = −1, then

T̄p(a, b, x) = −δ(ab, p)2(p−1)/2p(p−1)/4ε
( 2a

p
)h(p)

p . (1.22)

(ii) When p ≡ 3 (mod 4), we have

T̄p(a, b, x) = (−1)
p+1
4

+
h(−p)+1

2

(
a

p

)
2
(1+(ab

p
)) p−1

4 p(p−1)/4. (1.23)

Theorem 1.5. Let p > 3 be a prime, and let a, b ∈ Z with (−abp ) = −1. Let

C̄p(a, b, x) denote the determinant of the matrix [cjk]06j,k6(p−1)/2, where

cjk =

{
1 if j = 0,

x+ cotπ(aj2 + bk2)/p if j > 0.

Then

C̄p(a, b, x) =
2(p−1)/2
√
p
×

{
(−1)(p+3)/4δ(ab, p)ε

(a
p
)2h(p)

p if p ≡ 1 (mod 4),

(−1)(h(−p)−1)/2(ap ) if p ≡ 3 (mod 4).

(1.24)

We are going to prove Theorems 1.1-1.2 in the next section. Based on
two auxiliary theorems in Section 3, we will prove Theorem 1.3 in Section
4. Our proofs of Theorems 1.4-1.5 will be given in Section 5. In Section 6
we pose several conjectures on determinants for further research.

2. Proofs of Theorems 1.1-1.2

We need the following known lemma (cf. [1, p. 58]).

Lemma 2.1. Let p be an odd prime, and let a, b, c ∈ Z with p - a. Then

p−1∑
x=0

(
ax2 + bx+ c

p

)
=

{
(p− 1)(ap ) if p | b2 − 4ac,

−(ap ) if p - b2 − 4ac.

Proof of Theorem 1.1(i). By Lemma 2.1, for each k = 1, . . . , (p − 1)/2
we have

(p−1)/2∑
j=1

(
j2 + dk2

p

)
=

1

2

( p−1∑
j=0

(
j2 + dk2

p

)
−
(
dk2

p

))
= −

1 + (dp)

2
. (2.1)

Thus, for the determinant T (d, p) = |( j
2+dk2

p )|06j,k6(p−1)/2, if we add all the

rows below the second row to the second row, then the second row becomes(
p− 1

2
,−

1 + (dp)

2
, . . . ,−

1 + (dp)

2

)



6 ZHI-WEI SUN

while the first row is (
0,

(
d

p

)
, . . . ,

(
d

p

))
.

Therefore, in the case (dp) = −1, we have

T (d, p) =
p− 1

2
S̄(d, p).

Now we consider the case (dp) = 1. If we add to the second row of T (d, p)

all the other rows, then the second row becomes (p−12 , 0, . . . , 0) by (2.1) while
the first row is (0, 1, . . . , 1). It follows that

T (d, p) = −p− 1

2
S̄(d, p).

By [7, (1.20)],

T (d, p) =
p− 1

2
S(d, p).

Combining the last two equalities, we get S̄(d, p) = −S(d, p).
By Lemma 2.1, for any j = 1, . . . , (p− 1)/2 we have

(p−1)/2∑
k=1

(
j2 + dk2

p

)
=

1

2

( p−1∑
k=0

(
j2 + dk2

p

)
− 1

)
= −

(dp) + 1

2
. (2.2)

Suppose that (dp) = −1. If we add to the first column of S̄(d, p) all the other

columns, then the first column turns out to be (p−12 , 0, . . . , 0)T by (2.2).
Therefore,

S̄(d, p) =
p− 1

2
det

[(
j2 + dk2

p

)]
26j,k6(p−1)/2

.

Combining the above, we have completed our proof of Theorem 1.1(i). �

Proof of Theorem 1.1(ii). Let k ∈ {1, . . . , (p − 1)/2}. In view of the
binomial theorem, we have

(p−1)/2∑
j=1

(j2 + dk2)n =

(p−1)/2∑
j=1

n∑
r=0

(
n

r

)
j2r(dk2)n−r

≡
n∑
r=0

(
n

r

)
(dk2)n−r

1

2

(p−1)/2∑
j=1

(
j2r + (p− j)2r

)
=

1

2

n∑
r=0

(
n

r

)
(dk2)n−r

p−1∑
j=1

j2r (mod p).

By a well known result (cf. [3, Section 15.2, Lemma 2]),

p−1∑
j=1

j2r ≡

{
−1 (mod p) if p− 1 | 2r,
0 (mod p) otherwise.
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As (p− 1)/2 < n < p− 1, for r ∈ {0, . . . , n} we have

p− 1 | 2r ⇐⇒ p− 1

2

∣∣ r ⇐⇒ r = 0 or r =
p− 1

2
.

Thus

2

(p−1)/2∑
j=1

(j2 + dk2)n ≡ −
∑

r∈{0,(p−1)/2}

(
n

r

)
(dk2)n−r

=− (dk2)n −
(

n

(p− 1)/2

)
(dk2)n−(p−1)/2 (mod p)

and hence(
1 +

(
d

p

)(
n

(p− 1)/2

))
(dk2)n + 2

(p−1)/2∑
j=1

(j2 + dk2)n ≡ 0 (mod p).

As p− 1 - 2n, we also have(
1 +

(
d

p

)(
n

(p− 1)/2

))
(d02)n+2

(p−1)/2∑
j=1

(j2+d02)n ≡
p−1∑
j=1

j2n ≡ 0 (mod p).

Combining this with the last paragraph, we see that(
1 +

(
d

p

)(
n

(p− 1)/2

))
t0k + 2

(p−1)/2∑
j=1

tjk ≡ 0 (mod p)

for all k = 0, . . . , (p− 1)/2, where tjk = (j2 + dk2)n. Therefore

Tn(d, p) = det[tjk]06j,k6(p−1)/2 ≡ 0 (mod p)

as desired. �
The following well known result can be found in the survey [4, (5.5)].

Lemma 2.2 (Cauchy). We have

det

[
1

xj + yk

]
16j,k6n

=

∏
16j<k6n(xj − xk)(yj − yk)∏n

j=1

∏n
k=1(xj + yk)

. (2.3)

Let p be an odd prime. In view of Wilson’s theorem,

(p−1)/2∏
k=1

k(p− k) = (p− 1)! ≡ −1 (mod p)

and hence (
p− 1

2
!

)2

≡ (−1)(p+1)/2 (mod p). (2.4)

By [7, (1.5)], we have∏
16j<k6(p−1)/2

(k2 − j2) ≡

{
−p−1

2 ! (mod p) if p ≡ 1 (mod 4),

1 (mod p) if p ≡ 3 (mod 4).
(2.5)
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Therefore ∏
16j<k6(p−1)/2

(k2 − j2)2 ≡ (−1)(p+1)/2 (mod p). (2.6)

Proof of Theorem 1.2(i). Let n = (p − 1)/2. By Lemma 2.2 and (2.6),
we have

det

[
1

j2 + dk2

]
16j,k6n

=

∏
16j<k6n(k2 − j2)(dk2 − dj2)∏n

j=1

∏n
k=1(j

2 + dk2)

=
dn(n−1)/2

Π

∏
16j<k6n

(k2 − j2)2

≡ (−1)n+1d
n(n−1)/2

Π
(mod p),

where

Π :=

n∏
k=1

(
k2n

n∏
j=1

(
j2

k2
+ d

))
≡

n∏
k=1

n∏
x=1

(x2 + d) (mod p).

Note that
n∏
x=1

(x2 + d) ≡ (−1)n+12 (mod p)

by [7, Lemma 3.1]. Thus

Π ≡ ((−1)n+12)n = 2n ≡
(

2

p

)
= (−1)(p

2−1)/8 (mod p).

If p ≡ 1 (mod 4), then 2 | n and hence

dn(n−1)/2 = (dn)n/2−1dn/2 ≡
(
d

p

)n/2−1
dn/2 = (−1)n/2−1d(p−1)/4 (mod p).

If p ≡ 3 (mod 4), then 2 - n and hence

dn(n−1)/2 = (dn)(n−1)/2 ≡
(
d

p

)(n−1)/2
= 1 (mod p).

Therefore

dn(n−1)/2

Π
≡

{
−d(p−1)/4 (mod p) if p ≡ 1 (mod 4),

(−1)(p+1)/4 (mod p) if p ≡ 3 (mod 4).

Combining this with the first paragraph in the proof, we immediately obtain
the congruence (1.6), which clearly implies (1.5). This concludes the proof.

�
Recall that the permanent of an n × n matrix A = [aj,k]16j,k6n over a

field is given by

per(A) = per[aj,k]16j,k6n =
∑
σ∈Sn

n∏
j=1

aj,σ(j).
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Lemma 2.3. Let p be an odd prime, and let d ∈ Z with (−dp ) = −1. Then

per

[
1

j2 + dk2

]
16j,k6(p−1)/2

≡

{
0 (mod p) if p ≡ 1 (mod 4),
(−1)(p+1)/4

4

∏(p−3)/4
r=1 (r + 1

4)2 (mod p) if p ≡ 3 (mod 4).

(2.7)

Proof. Let g be a primitive root modulo p, and set n = (p − 1)/2. Then
those g2k (k = 1, . . . , n) are incongruent quadratic residues modulo p. Thus

per

[
1

j2 + dk2

]
16j,k6n

=
1∏n

k=1 k
2
per

[
1

1 + dk2/j2

]
16j,k6n

≡ 1

(n!)2
per

[
1

1 + dg2(j−k)

]
16j,k6n

≡ (−1)n−1
n∏
r=1

(
n(−d)n

1− (−d)n
+ r

)
(mod p)

by (2.4) and [9, Theorem 1.3(i)]. As (−d)n ≡ (−dp ) = −1 (mod p), from the

above we get

per

[
1

j2 + dk2

]
16j,k6n

≡ (−1)n−1
n∏
r=1

(
r +

1

4

)
(mod p). (2.8)

If p ≡ 1 (mod 4), then r + 1/4 ≡ 0 (mod p) for r = (p − 1)/4. When
p ≡ 3 (mod 4), we have

n∏
r=1

(
r +

1

4

)
=

(
p− 1

2
+

1

4

) (p−3)/4∏
r=1

(
r +

1

4

)(
p− 1

2
− r +

1

4

)

≡ (−1)(p+1)/4

4

(p−3)/4∏
r=1

(
r +

1

4

)2

(mod p).

Therefore (2.8) implies the desired congruence (2.7). �
The following result due to Borchardt can be found in [5].

Lemma 2.4. We have

det

[
1

(xj + yk)2

]
16j,k6n

= det

[
1

xj + yk

]
16j,k6n

per

[
1

xj + yk

]
16j,k6n

.

(2.9)

Proof of Theorem 1.2(ii). Combining (1.6), and Lemmas 2.3 and 2.4, we
immediately get the desired results. �
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3. Two Auxiliary Theorems

Our first auxiliary theorem is as follows.

Theorem 3.1. Let p be an odd prime, and let k,m ∈ Z+ = {1, 2, 3, . . .} with
km = p − 1. Let G be the multiplicative group {r + pZ : r = 1, . . . , p − 1}
and let H be its subgroup {xm + pZ : x = 1, . . . , p− 1} of order k. Suppose
that all the m distinct cosets of H in G are

{a1j + pZ : j = 1, . . . , k}, . . . , {amj + pZ : j = 1, . . . , k}
with 1 6 ai1 < . . . < aik 6 p− 1 for all i = 1, . . . ,m. Then

m∏
i=1

∏
16s<t6k

(ait − ais)

≡

{
(−1)

p+1
2
· p−1
2m

+b p−3
4
c p−1

2 ! (mod p) if p ≡ 1 (mod 2m),

(−1)
p+1
2
· p−1−m

2m (mod p) if p ≡ 1 +m (mod 2m).

(3.1)

Proof. Set

Rm = {1 6 r 6 p− 1 : xm ≡ r (mod p) for some x = 1, . . . , p− 1}.
Then H = {r + pZ : r ∈ Rm} and |H| = |Rm| = (p− 1)/m = k. Note that

m∏
i=1

∏
16s<t6k

(ait − ais) =

p−1∏
d=1

ded ,

where

ed : = |{1 6 x < p− d : {x, x+ d} ⊆ {ai1, . . . , aik} for some i = 1, . . . ,m}|

=

∣∣∣∣{1 6 x < p− d :
x+ d

x
≡ r (mod p) for some r ∈ Rm

}∣∣∣∣ .
Clearly,

p−1∏
d=1

ded =

(p−1)/2∏
d=1

ded(p− d)ep−d ≡ (−1)
∑(p−1)/2

d=1 ep−d

(p−1)/2∏
d=1

ded+ep−d (mod p).

For any d ∈ {1, . . . , p− 1}, obviously

ep−d =

∣∣∣∣{1 6 x < d :
x+ p− d

x
≡ r (mod p) for some r ∈ Rm

}∣∣∣∣
=

∣∣∣∣{p− d < y < p : 1 +
p− d
p− y

≡ r (mod p) for some r ∈ Rm
}∣∣∣∣

=

∣∣∣∣{p− d 6 y < p :
y + d

y
≡ r (mod p) for some r ∈ Rm

}∣∣∣∣
and hence

ed + ep−d =

∣∣∣∣{1 6 x < p : 1 +
d

x
≡ r (mod p) for some r ∈ Rm

}∣∣∣∣
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= |{1 < y < p : y ≡ r (mod p) for some r ∈ Rm}|
= |Rm| − 1 = k − 1.

Observe that
(p−1)/2∑
d=1

ep−d =

(p−1)/2∑
d=1

∣∣∣∣{1 6 x < d :
d− x
x
≡ −r (mod p) for some r ∈ Rm

}∣∣∣∣
coincides with∣∣∣∣{(x, y) ∈ (Z+)2 : x+ y 6

p− 1

2
and

y

x
≡ −r (mod p) for some r ∈ Rm

}∣∣∣∣ .
As H is a multiplicative group, given x, y ∈ {1, . . . , p− 1} we have

y

x
≡ −r (mod p) for some r ∈ Rm ⇐⇒

x

y
≡ −r (mod p) for some r ∈ Rm.

Therefore,
∑(p−1)/2

d=1 ep−d has the same parity with∣∣∣∣{x ∈ Z+ : x+ x 6
p− 1

2
and

x

x
≡ −r (mod p) for some r ∈ Rm

}∣∣∣∣
=
∣∣∣{1 6 x <

p

4
: p− 1 ∈ Rm

}∣∣∣ =
∣∣∣{1 6 x <

p

4
: (−1)(p−1)/m = 1

}∣∣∣
=

{
b(p− 1)/4c if 2 | k,
0 if 2 - k,

and hence

(−1)
∑(p−1)/2

d=1 ep−d = (−1)(k−1)b
p−1
4
c.

Combining the above, we see that

m∏
i=1

∏
16s<t6k

(ait − ais) ≡ (−1)(k−1)b
p−1
4
c
(p−1)/2∏
d=1

dk−1 (mod p).

Recall that (
p− 1

2
!

)2

≡ (−1)(p+1)/2 (mod p)

by Wilson’s theorem. So, by the last two congruences we immediately obtain
the desired congruence (3.1). �

Theorem 3.1 in the case m = 2 yields the following result.

Corollary 3.1. Let p = 2n+ 1 be an odd prime, and write

{1, . . . , p− 1} = {a1, . . . , an} ∪ {b1, . . . , bn}
with a1 < . . . < an and b1 < . . . < bn such that a1, . . . , an are quadratic
residues modulo p, and b1, . . . , bn are quadratic nonresidues modulo p. Then∏

16j<k6n

(ak − aj)(bk − bj) ≡

{
−n! (mod p) if p ≡ 1 (mod 4),

1 (mod p) if p ≡ 3 (mod 4).
(3.2)
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For any odd prime p and integer a 6≡ 0 (mod p), we define

sp(a) = (−1)|{{j,k}: 16j<k6(p−1)/2 and {aj2}p>{ak2}p}|,

where {m}p denotes the least nonnegative residue of an integer m modulo p.
The author [8, Theorem 1.4(i)] determined sp(1) in the case p ≡ 3 (mod 4).
When p ≡ 1 (mod 4), H.-L. Wu [11] deduced a complicated formula for sp(1)
modulo p, which involves the fundamental unit εp and the class numbers of
the quadratic fields Q(

√
±p).

Based on Corollary 3.1, we get the following result.

Lemma 3.1. Let p be an odd prime, and let a, b ∈ Z with (ap ) = 1 and

( bp) = −1. Then

sp(a)sp(b) =

{
(−1)(p+3)/4δ(ab, p) if p ≡ 1 (mod 4),

(−1)(p−3)/4 if p ≡ 3 (mod 4).
(3.3)

Proof. Let n = (p−1)/2, and write {1, . . . , p−1} = {a1, . . . , an}∪{b1, . . . , bn}
with a1 < . . . < an and b1 < . . . < bn such that a1, . . . , an are quadratic
residues modulo p and b1, . . . , bn are quadratic nonresidues modulo p. As

{{aj2}p : j = 1, . . . , n} = {a1, . . . , an}
and

{{bj2}p : j = 1, . . . , n} = {b1, . . . , bn},
we have

sp(a)sp(b) =
∏

16j<k6n

{ak2}p − {aj2}p
ak − aj

×
∏

16j<k6n

{bk2}p − {aj2}p
bk − bj

and hence

sp(a)sp(b)
∏

16j<k6n

(ak − aj)(bk − bj)

≡
∏

16j<k6n

(ak2 − aj2)(bk2 − bj2) = (ab)n(n−1)/2
∏

16j<k6n

(k2 − j2)2 (mod p).

Note that

(ab)n ≡
(
ab

p

)
= −1 (mod p).

By (2.6) we have ∏
16j<k6n

(k2 − j2)2 ≡ (−1)(p+1)/2 (mod p).

Therefore

sp(a)sp(b)
∏

16j<k6n

(ak − aj)(bk − bj)

≡

{
(−1)n/2−1(ab)n/2 × (−1) (mod p) if p ≡ 1 (mod 4),

(−1)(n−1)/2 × 1 (mod p) if p ≡ 3 (mod 4).
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Combining this with (3.2), we obtain that

sp(a)sp(b) ≡

{
(−1)n/2(ab)n/2/(−n!) (mod p) if p ≡ 1 (mod 4),

(−1)(n−1)/2 (mod p) if p ≡ 3 (mod 4).

In the case p ≡ 1 (mod 4), we have

(ab)n ≡ −1 ≡ (n!)2 (mod p)

and hence

(ab)n/2 ≡ ±n! (mod p),

therefore

sp(a)sp(b) = (−1)n/2+1δ(ab, p) = (−1)(p+3)/4δ(ab, p).

This concludes our proof. �
Now we are ready to present another auxiliary theorem.

Theorem 3.2. Let p be a prime with p ≡ 1 (mod 4), and let ζ = e2πi/p.
Let a, b ∈ Z with (abp ) = −1. Then, we have∏

16j<k6(p−1)/2

(ζaj
2 − ζak2)(ζbj

2 − ζbk2) = −δ(ab, p)p(p−3)/4 (3.4)

and ∏
16j<k6(p−1)/2

(
cotπ

aj2

p
− cotπ

ak2

p

)(
cotπ

bj2

p
− cotπ

bk2

p

)

= δ(ab, p)(−1)(p+3)/4

(
2p−1

p

)(p−3)/4
.

(3.5)

Remark 3.1. For any prime p > 3 with p ≡ 3 (mod 4) and integer a 6≡
0 (mod p), the author [7, part (ii) of Theorems 1.3-1.4] obtained closed
forms for the products∏
16j<k6(p−1)/2

(
e2πiaj

2/p − e2πiak2/p
)

and
∏

16j<k6(p−1)/2

(
cotπ

aj2

p
− cotπ

ak2

p

)
.

Proof of Theorem 3.2. Set n = (p− 1)/2 and ζ = e2πi/p. By [8, (4.2) and
(4.3)], we have∏
16j<k6n

sinπ
a(k2 − j2)

p
= (−1)a(n+1)n/2

(
i

2

)n(n−1)/2 ∏
16j<k6n

(ζaj
2 − ζak2)

and ∏
16j<k6n sinπ a(k

2−j2)
p∏

16j<k6n(cotπ aj
2

p − cotπ ak
2

p )
=
( p

2p−1

)(n−1)/2
(−1)(a−1)n/2ε

(a
p
)(1−n)h(p)

p .
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Therefore∏
16j<k6n

cotπ aj
2

p − cotπ ak
2

p

ζaj2 − ζak2
=

(
2n

p

)(n−1)/2
in(n+1)/2ε

(a
p
)(1−n)h(p)

p . (3.6)

Similarly,

∏
16j<k6n

cotπ bj
2

p − cotπ bk
2

p

ζbj2 − ζbk2
=

(
2n

p

)(n−1)/2
in(n+1)/2ε

( b
p
)(1−n)h(p)

p . (3.7)

Combining (3.6) with (3.7), and noting (ap ) + ( bp) = 0, we deduce that

∏
16j<k6n

(cotπ aj
2

p − cotπ ak
2

p )(cotπ bj
2

p − cotπ bk
2

p )

(ζaj2 − ζak2)(ζbj2 − ζbk2)
= (−1)n/2

(
2n

p

)n−1
.

(3.8)
So (3.4) and (3.5) are equivalent.

By [8, Theorem 1.3(i)],∏
16j<k6n

(ζaj
2 − ζak2) = tp(a)in/2p(n−1)/4ε

(a
p
)
h(p)
2

p

for some tp(a) ∈ {±1}. Combining this with (3.6) we see that tp(a) coincides
with the sign of the product∏

16j<k6n

(
cotπ

aj2

p
− cotπ

ak2

p

)
which should be

(−1)|{16j<k6n: {aj
2}p>{ak2}p}| = sp(a).

Thus ∏
16j<k6n

(ζaj
2 − ζak2) = sp(a)in/2p(n−1)/4ε

(a
p
)
h(p)
2

p .

Similarly, ∏
16j<k6n

(ζbj
2 − ζbk2) = sp(b)i

n/2p(n−1)/4ε
( b
p
)
h(p)
2

p .

Therefore ∏
16j<k6n

(ζaj
2 − ζak2)(ζbj

2 − ζbk2)

= sp(a)sp(b)(−1)n/2p(n−1)/2 = −δ(ab, p)p(p−3)/4.

This proves (3.4).
In view of the above, we have completed our proof of Theorem 3.2. �
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4. Proof of Theorem 1.3

The following lemma is a known result (see, e.g., [8, (1.12)]).

Lemma 4.1. For any prime p ≡ 1 (mod 4) and integer a 6≡ 0 (mod p), we
have

(p−1)/2∏
k=1

(
1− e2πiak2/p

)
=
√
p ε
−(a

p
)h(p)

p . (4.1)

Lemma 4.2. Let m,n ∈ Z+ = {1, 2, 3, . . .} with 2 - n. Let ak, bk ∈ Z for
k = 0, 1, . . . ,m. with a0 + b0 = 0. Then

det

[
x+ tanπ

aj + bk
n

]
06j,k6m

− det

[
tanπ

aj + bk
n

]
06j,k6m

= x det

[
tanπ

aj + bk
n

]
16j,k6m

×
m∏
k=1

(
tanπ

ak + b0
n

× tanπ
a0 + bk
n

)
.

(4.2)

Proof. Let ajk = tanπ(aj + bk)/n for j, k = 0, . . . ,m. By [10, Lemma 2.1],
we have

det[x+ ajk]06j,k6m − det[ajk]06j,k6m = x det[bjk]16j,k6m, (4.3)

where bjk = ajk − aj0 − a0k + a00. Note that a00 = tan 0 = 0 and recall the
known identity

(1− tanx1 × tanx2) tan(x1 + x2) = tanx1 + tanx2.

Then we have

bjk = tanπ
aj + bk
n

− tanπ
aj + b0
n

− tanπ
a0 + bk
n

= tanπ
aj + b0
n

× tanπ
a0 + bk
n

× tanπ
aj + bk
n

.

Thus

det[bjk]16j,k6m = det

[
tanπ

aj + bk
n

]
16j,k6m

m∏
k=1

(
tanπ

ak + b0
n

× tanπ
a0 + bk
n

)
.

Combining this with (4.3), we immediately obtain the desired identity (4.2).
�

Proof of Theorem 1.3(i). Let n = (p−1)/2, and let ajk = tanπ(aj2+bk2)/p
for j, k = 0, . . . , n. Set q = n!. By (2.4) we have q2 ≡ −1 (mod p). Thus

T (0)
p (a, b) = det

[
tanπ

a(qj)2 + b(qk)2

p

]
06j,k6n

= det

[
− tanπ

aj2 + bk2

p

]
06j,k6n

= −T (0)
p (a, b)

and hence T
(0)
p (a, b) = 0 (which also follows from [10, (1.3)]).
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In view of the above and Lemma 4.2, we have

T (0)
p (a, b, x) = xT (1)

p (a, b)

n∏
k=1

(
tanπ

ak2

p
× tanπ

bk2

p

)
.

For any x ∈ Q with odd denominator, clearly

tanπx =
2 sinπx

2 cosπx
=

(eiπx − e−iπx)/i

eiπx + e−iπx
= i

1− e2πix

1 + e2πix
= i

(1− e2πix)2

1− e2πi(2x)
.

In view of this and Lemma 4.1, we deduce that
n∏
k=1

tanπ
ak2

p
= in

∏n
k=1(1− e2πiak

2/p)2∏n
k=1(1− e2πi(2a)k

2/p)

== (i2)n/2
(
√
p ε
−(a

p
)h(p)

p )2

√
p ε
−( 2a

p
)h(p)

p

= (−1)(p−1)/4
√
p ε

(( 2
p
)−2)(a

p
)h(p)

p .

Similarly,
n∏
k=1

tanπ
bk2

p
= (−1)(p−1)/4

√
p ε

(( 2
p
)−2)( b

p
)h(p)

p .

If (abp ) = −1, then

n∏
k=1

(
tanπ

ak2

p
× tanπ

bk2

p

)
=
√
p2 = p.

When (abp ) = 1, we have

n∏
k=1

(
tanπ

ak2

p
× tanπ

bk2

p

)
= pε

2(( 2
p
)−2)(a

p
)h(p)

p .

Combining the above with (1.12), we see that it suffices to prove (1.14)
in the case (abp ) = −1.

Now assume (abp ) = −1 and set ζ = e2πi/p. By the proof of [10, Theorem

1.1(i)], T
(1)
p (a, b) is the real part of

Dp(a, b) := det

[
2i

ζaj2+bk2 + 1

]
16j,k6n

,

and
Dp(a, b) = (−1)n/22n

∏
16j<k6n

(ζaj
2 − ζak2)(ζ−bj

2 − ζ−bk2).

Since (
a(−b)
p

)
=

(
ab

p

)
= −1,

by Theorem 3.2 we have∏
16j<k6n

(ζaj
2 − ζak2)(ζ−bj

2 − ζ−bk2) = −δ(−ab, p)p(p−3)/4
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and hence

Dp(a, b) = (−1)n/22n×(−1)n/2+1δ(ab, p)p(p−3)/4 = −δ(ab, p)2(p−1)/2p(p−3)/4.
Therefore

T (1)
p (a, b) = <(Dp(a, b)) = −δ(ab, p)2(p−1)/2p(p−3)/4.

This proves the desired (1.14).
By the above, we have completed our proof of Theorem 1.3(i). �

Lemma 4.3 (Sun [8]). Let p > 3 be a prime with p ≡ 3 (mod 4). Let

ζ = e2πi/p, and a ∈ Z with p - a. Then

(p−1)/2∏
k=1

(1− ζak2) = (−1)(h(−p)+1)/2

(
a

p

)
√
p i, (4.4)

and ∏
16j<k6(p−1)/2

(ζaj
2 − ζak2)

=

{
(−p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(p+1)/8+(h(−p)−1)/2(ap )p(p−3)/8i if p ≡ 7 (mod 8),

(4.5)

where h(−p) denotes the class number of the quadratic field Q(
√
−p). Also,∏

16j<k6(p−1)/2

(ζaj
2

+ ζak
2
) = 1, (4.6)

The following result can be found in [10, Lemma 2.5].

Lemma 4.4 (Sun [10]). Let p > 3 be a prime with p ≡ 3 (mod 4). Let

ζ = e2πi/p, and a, b ∈ Z with (abp ) = 1. Then

(p−1)/2∏
j=1

(p−1)/2∏
k=1

(1− ζaj2+bk2) = (−1)(h(−p)−1)/2
(
a

p

)
p(p−1)/4i. (4.7)

Proof of Theorem 1.3(ii). By [10, Lemma 2.1],

T (1)
p (a, b, x) = c+ dx

for some real numbers c and d not depending on x. So, it suffices to deter-

mine the value of T
(1)
p (a, b, i).

Let n = (p− 1)/2 and ζ = e2πi/p. Then
∏n
k=1 ζ

k2 = 1 since

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
=
p2 − 1

24
p ≡ 0 (mod p).

For any integer r, clearly

i+ tanπ
r

p
= i+

(eiπr/p − e−iπr/p)/(2i)
(eiπr/p + e−iπr/p)/2

= i− iζ
r − 1

ζr + 1
=

2i

ζr + 1
.
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Thus, with the aid of Lemma 2.2, we have

T (1)
p (a, b, i) = det

[
2i

ζaj2+bk2 + 1

]
16j,k6n

=
n∏
k=1

2i

ζbk2
× det

[
1

ζaj2 + ζ−bk2

]
16j,k6n

=
2ni(i2)(n−1)/2

ζb
∑n

k=1 k
2 ×

∏
16j<k6n(ζaj

2 − ζak2)(ζ−bj
2 − ζ−bk2)∏n

j=1

∏n
k=1(ζ

aj2 + ζ−bk2)

and hence

T (1)
p (a, b, i) = i(−1)(p−3)/42(p−1)/2 ×

∏
16j<k6n(ζaj

2 − ζak2)(ζ−bj
2 − ζ−bk2)∏n

j=1

∏n
k=1(ζ

aj2+bk2 + 1)
.

(4.8)
By Lemma 4.3,∏
16j<k6n

(ζaj
2 − ζak2)(ζ−bj

2 − ζ−bk2) =

{
p(p−3)/4 if p ≡ 3 (mod 8),

(abp )p(p−3)/4 if p ≡ 7 (mod 8).

If (abp ) = −1, then ( bp) = (−ap ) and hence

n∏
j=1

n∏
k=1

(ζaj
2+bk2 + 1) =

n∏
j=1

n∏
k=1

(ζaj
2−ak2 + 1) =

n∏
j=1

n∏
k=1

(ζaj
2

+ ζak
2
)

=
n∏
k=1

(2ζak
2
)×

∏
16j<k6n

(ζaj
2

+ ζak
2
)2 = 2(p−1)/2

by (4.6). If (abp ) = 1, then by Lemma 4.4 we have

n∏
j=1

n∏
k=1

(ζaj
2+bk2 + 1) =

n∏
j=1

n∏
k=1

1− ζ2aj2+2bk2

1− ζaj2+bk2
=

(2ap )

(ap )
=

(
2

p

)
= (−1)(p+1)/4.

Combining (4.8) with the last paragraph, we see that if (abp ) = −1 then

c+ di = T (1)
p (a, b, i) = i(−1)(p−3)/42(p−1)/2 × (−p)(p−3)/4

2(p−1)/2
= ip(p−3)/4

and hence
T (1)
p (a, b, x) = c+ dx = p(p−3)/4x.

Similarly, when (abp ) = 1 we have

c+di = T (1)
p (a, b, i) = i(−1)(p−3)/42(p−1)/2× p(p−3)/4

(−1)(p+1)/4
= −i2(p−1)/2p(p−3)/4

and hence
T (1)
p (a, b, x) = c+ dx = −2(p−1)/2p(p−3)/4x.

This concludes our proof of Theorem 1.3(ii). �
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5. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Note that T̄p(a, b, x) = det[tjk]06j,k6n, where n =
(p− 1)/2 and

tjk =

{
1 if j = 0,

x+ tanπ aj
2+bk2

p if j > 0.

Let k ∈ {1, . . . , n}. Clearly, t0k − t00 = 0. Let ζ = e2πi/p. As

tanπy =
2 sinπy

2 cosπy
=

(eiπy − e−iπy)/i
eiπy + e−iπy

=
2i

e2πiy + 1
− i

for all y ∈ R with 2y 6∈ {2m+ 1 : m ∈ Z}, for each j = 1, . . . , n we have

tjk − tj0 =
2i

ζaj2+bk2 + 1
− 2i

ζaj2 + 1
=

1− ζbk2

1 + ζ−aj2
× 2i

ζaj2+bk2 + 1

=
(1− ζaj2)(1− ζbk2)

1− ζ−2aj2
×
(
i+ tanπ

aj2 + bk2

p

)
.

In view of the last paragraph, via all the columns (except for the first
column) of T̄p(a, b, x) minus the first column, we see that

T̄p(a, b, x) = det[tjk− tj0]16j,k6n =

∏n
k=1(1− ζ−ak

2
)(1− ζbk2)∏n

j=1(1− ζ−2aj
2)

×T (1)
p (a, b, i).

(5.1)
Case 1. p ≡ 1 (mod 4).
In this case, by Lemma 4.1 we have∏n

k=1(1− ζ−ak
2
)(1− ζbk2)∏n

j=1(1− ζ−2aj
2)

=

√
p ε
−(−a

p
)h(p)

p
√
p ε
−( b

p
)h(p)

p

√
p ε
−(−2a

p
)h(p)

p

=
√
p ε

(( 2a
p
)−(a

p
)−( b

p
))h(p)

p

=


√
p ε

(a
p
)(( 2

p
)−2)h(p)

p if (abp ) = 1,

√
p ε

( 2a
p
)h(p)

p if (abp ) = −1.

Combining this with (5.1), (1.12) and Theorem 1.3(i), we obtain the desired
result concerning the exact value of T̄p(a, b, x).

Case 2. p ≡ 3 (mod 4).
In this case, by Lemma 4.3 we have∏n

k=1(1− ζ−ak
2
)(1− ζbk2)∏n

j=1(1− ζ−2aj
2)

= (−1)
h(−p)+1

2

(
b

p

)
√
p i×

(−ap )

(−2ap )
= (−1)

h(−p)+1
2

(
2b

p

)
√
p i.

Combining this with (5.1) and (1.17), we obtain the desired (1.23).
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In view of the above, we have completed the proof of Theorem 1.4. �

Proof of Theorem 1.5. Set n = (p − 1)/2. Let k ∈ {1, . . . , n}. Clearly,

c0k − c00 = 0. Let ζ = e2πi/p. As

cotπy =
2 cosπy

2 sinπy
=

eiπy + e−iπy

(eiπy − e−iπy)/i
= i+

2i

e2πiy − 1
for all y ∈ R \ Z,

for each j = 1, . . . , n we have

cjk − cj0 =
2i

ζaj2+bk2 − 1
− 2i

ζaj2 − 1
=

1− ζbk2

1− ζ−aj2
× 2i

ζaj2+bk2 − 1

=
1− ζbk2

1− ζ−aj2
×
(
−i+ cotπ

aj2 + bk2

p

)
.

In view of the last paragraph, via all the columns (except for the first
column) of C̄p(a, b, x) minus the first column, we see that

C̄p(a, b, x) = det[cjk − cj0]16j,k6n =

∏n
k=1(1− ζbk

2
)∏n

j=1(1− ζ−aj
2)
× Cp(a, b,−i). (5.2)

Case 1. p ≡ 1 (mod 4).
In this case, by Lemma 4.1 we have∏n

k=1(1− ζbk
2
)∏n

j=1(1− ζ−aj
2)

=

√
p ε
−( b

p
)h(p)

p

√
p ε
−(−a

p
)h(p)

p

= ε
2(a

p
)h(p)

p .

Combining this with (5.2) and (1.20), we obtain

C̄p(a, b, x) = (−1)(p+3)/4δ(ab, p)
2(p−1)/2
√
p

ε
2(a

p
)h(p)

p .

Case 2. p ≡ 3 (mod 4).
In this case, by Lemma 4.3 we have∏n

k=1(1− ζbk
2
)∏n

j=1(1− ζ−aj
2)

=
( bp)

(−ap )
=

(
−ab
p

)
= −1.

Combining this with (5.2) and (1.19), we obtain

C̄p(a, b, x) = (−1)
h(−p)−1

2

(
a

p

)
2(p−1)/2
√
p

.

In view of the above, we have completed the proof of Theorem 1.5. �

6. Some conjectures

Let p be an odd prime, and let d ∈ Z with p - d. We first show that the
determiants

det

[
x+

(
j2 + dk2

p

)]
16j,k6(p−1)/2

and det

[
x+

(
j2 + dk2

p

)]
06j,k6(p−1)/2
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can be expressed in terms of x, S(d, p) and T (d, p).
Suppose that (dp) = 1. For any k = 1, . . . , (p− 1)/2, we have

(p−1)/2∑
j=1

((
j2 + dk2

p

)
+

2

p− 1

)
= −1 +

p− 1

2
× 2

p− 1
= 0.

with the aid of (2.1). Thus

det

[(
j2 + dk2

p

)
+

2

p− 1

]
16j,k6(p−1)/2

= 0,

and hence

det

[
x+

(
j2 + dk2

p

)]
16j,k6(p−1)/2

=

(
1− p− 1

2
x

)
S(d, p). (6.1)

by [10, Lemma 2.1]. Recall that T (d, p) = p−1
2 S(d, p) by [7, (1.20)]. Thus,

by applying [10, Lemma 2.1] we get that

det

[
x+

(
j2 + dk2

p

)]
06j,k6(p−1)/2

= T (d, p) + x det

[(
j2 + dk2

p

)
− 2

]
16j,k6(p−1)/2

=
p− 1

2
S(d, p) + x

(
1− 2× p− 1

2

)
S(d, p).

Therefore

det

[
x+

(
j2 + dk2

p

)]
06j,k6(p−1)/2

=

(
px+

p− 1

2

)
S(d, p) =

(
1 +

2px

p− 1

)
T (d, p).

(6.2)

Now we assume that (dp) = −1. Then S(d, p) = 0 by [7, (1.15)], and hence

det

[
x+

(
j2 + dk2

p

)]
06j,k6(p−1)/2

= T (d, p) + S(d, p)x = T (d, p) (6.3)

with the aid of [10, Lemma 2.1]. Note that

1 +

(
02 + d02

p

)
= 1 and 1 +

(
02 + dk2

p

)
= 0 for all k = 1, . . . ,

p− 1

2
.

Thus

det

[
1 +

(
j2 + dk2

p

)]
06j,k6(p−1)/2

= det

[
1 +

(
j2 + dk2

p

)]
16j,k6(p−1)/2

,
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and hence

det

[
x+

(
j2 + dk2

p

)]
16j,k6(p−1)/2

= x det

[
1 +

(
j2 + dk2

p

)]
16j,k6(p−1)/2

= xT (d, p)

(6.4)

in light of [10, Lemma 2.1] and (6.3).
Let p > 3 be a prime, and let d ∈ Z with (dp) = −1. By (1.3),

T (d, p) =

(
p− 1

2

)2

det

[(
j2 + dk2

p

)]
26j,k6(p−1)/2

. (6.5)

If p ≡ 3 (mod 4), then T (d, p) = T (−1, p) by [7, (1.14)], and T (−1, p) is
an integer square by Cayley’s theorem (cf. [6, Prop. 2.2]) since it is skew-
symmetric and of even order.

Conjecture 6.1. Let p be a prime with p ≡ 1 (mod 4). Then, there is a

positive integer tp with (
tp
p ) = 1 such that for any d ∈ Z with (dp) = −1, we

have

T (d, p) = 2(p−3)/2
(
p− 1

4
tp

)2 (p−1)/2∑
x=1

(
x(x2 + d)

p

)
, (6.6)

which has the equivalent form

det

[(
j2 + dk2

p

)]
26j,k6(p−1)/2

= 2(p−7)/2t2p

(p−1)/2∑
x=1

(
x(x2 + d)

p

)
. (6.7)

Remark 6.1. For any prime p ≡ 1 (mod 4) and d ∈ Z with (dp) = −1, by

Jacobsthal’s theorem (cf. Theorem 6.2.9 of [1, p. 195]) we have

p =

( (p−1)/2∑
x=1

(
x(x2 + 1)

p

))2

+

( (p−1)/2∑
x=1

(
x(x2 + d)

p

))2

.

So Conjecture 6.1 is a refinement of [7, Conjecture 4.2(ii)]. We have verified
Conjecture 6.1 for all primes p < 1000 with p ≡ 1 (mod 4), and found that

t5 = t13 = t17 = 1, t29 = 13, t37 = 32, t41 = 2× 32,

t53 = 131, t61 = 24 × 3× 112, t73 = 24 × 33 × 19× 109,

t89 = 109× 199× 8273 and t97 = 29 × 32 × 472 × 79.

Let p be an odd prime, and let d ∈ Z with (−dp ) = −1. For the matrix

Ap = [ajk]06j,k6(p−1)/2 with

ajk =

{
1 if j = 0,

1/(j2 + dk2) if j > 0,
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we have

detAp = (−d)(p−1)/2 det

[
1

j2 + dk2

]
16j,k6(p−1)/2

≡ −det

[
1

j2 + dk2

]
16j,k6(p−1)/2

(mod p);

this can be seen by considering each column (except the first column) minus
the first column and noting that

1

j2 + dk2
− 1

j2 + d02
=

−dk2

j2(j2 + dk2)
for all j, k = 1, . . . ,

p− 1

2
.

Thus, with the aid of (1.6), we get

detAp ≡

{
−d(p−1)/4 (mod p) if p ≡ 1 (mod 4),

(−1)(p−3)/4 (mod p) if p ≡ 3 (mod 4),
(6.8)

and hence (
detAp
p

)
= (−1)b(p−3)/4c =

(
−2

p

)
. (6.9)

Conjecture 6.2. Let p be a prime with p ≡ 1 (mod 4), and let d ∈ Z with
(dp) = −1. Then

3S̄p−2(1, p) ≡ Sp−2(1, p) ≡ 2δ(d, p)

(p−1)/2∑
x=1

(
x(x2 + d)

p

)
(mod p), (6.10)

where S̄p−2(1, p) = det[sjk]06j,k6(p−1)/2 with

sjk =

{
1 if j = 0,

(j2 + k2)p−2 if j > 0.

Remark 6.2. Let p ≡ 1 (mod 4) be a prime, and write p = x2 + y2 with
x, y ∈ Z+ and 2 | y. Then, for any d ∈ Z with (dp) = −1, we have∑(p−1)/2

x=1

(
x(x2+d)

p

)
= ±y by Jacobsthal’s theorem. Let q = p−1

2 !. Then

(y/x)2 ≡ −1 ≡ q2 (mod p) and hence(
y

p

)
=

(
qx

p

)
=

(
q

p

)(p
x

)
=

(
2

p

)
with the aid of [7, Lemma 2.3]. Thus Conjecture 6.2 implies that(

Sp−2(1, p)

p

)
=

(
3S̄p−2(1, p)

p

)
= 1. (6.11)

Let m,n ∈ Z+ with n odd. For the determinant

D(m)
n := det

[
(j2 − k2)m

(
j2 − k2

n

)]
16j,k6(n−1)/2

, (6.12)
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clearly

D(m)
n = det

[
(k2 − j2)m

(
k2 − j2

n

)]
16j,k6(n−1)/2

=

(
(−1)m

(
−1

n

))(n−1)/2
D(m)
n = (−1)(m−1)(n−1)/2D(m)

n ,

and hence D
(m)
n = 0 when 2 | m and 4 | n − 3. If 2 - m and 4 | n − 1, then

D
(m)
n is skew-symmetric and of even order, hence it is an integer square by

Cayley’s theorem.

Conjecture 6.3. For any prime p ≡ 1 (mod 4), we have
√
D

(1)
p

p

 = (−1)
|{0<k< p

4
: ( k

p
)=−1}|

(p
3

)
. (6.13)

Remark 6.3. We have verified (6.13) for all primes p < 1000 with p ≡
1 (mod 4).

Conjecture 6.4. For any prime p ≡ 1 (mod 4), we have
√
D

(3)
p

p

 = (−1)
|{0<k< p

4
: ( k

p
)=−1}|

(
p

4 + (−1)(p−1)/4

)
. (6.14)

Remark 6.4. We have verified (6.14) for all primes p < 1000 with p ≡
1 (mod 4).

Conjecture 6.5. For any positive odd integer m, the set

E(m) =
{
p : p is a prime with 4 | p− 1 and p | D(m)

p

}
is finite. In particular,

E(5) = {29}, E(7) = {13, 53}, E(9) = {13, 17, 29}, E(11) = {17, 29}.

Remark 6.5. This is based on our computation. For m = 5, 7, 9, 11, we
find those primes p < 1000 in E(m) via Mathematica. We also note that
{p ∈ E(13) : p < 1000} = {17, 109, 401}.
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