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SOME DETERMINANTS INVOLVING BINARY FORMS

YUE-FENG SHE AND ZHI-WEI SUN

Abstract. In this paper, we study arithmetic properties of certain determinants involving
powers of i2 + cij + dj2, where c and d are integers. For example, for any odd integer n > 1

with ( d
n ) = −1 we prove that det[( i2+cij+dj2

n )]06i,j6n−1 is divisible by ϕ(n)2, where ( ·
n ) is the

Jacobi symbol and ϕ is Euler’s totient function. This confirms a previous conjecture of Sun.

1. Introduction

For each n× n matrix M = [aij]16i,j6n over a commutative ring, we denote its determinant
by det(M) or det[aij]16i,j6n. If aij = 0 for all 1 6 i, j 6 n with i 6= j, then we simply write
M = [aij]16i,j6n as diag(a11, . . . , ann). For various results on evaluations of determinants, one
may consult the excellent survey papers [3, 4]. In this paper we study some determinants
involving certain binary forms and related Jacobi symbols.

Let a be any integer. For any odd prime p, the Legendre symbol (a
p
) is given by

(
a

p

)
=


1 if p - a and x2 ≡ a (mod p) for some x ∈ Z,
−1 if p - a and x2 ≡ a (mod p) for no x ∈ Z,
0 if p | a.

For any positive odd integer n, the Jacobi symbol ( a
n
) is defined as follows:(a

n

)
=

{
1 if n = 1,∏k

i=1(
a
pi

) if n = p1 · · · pk for some primes p1, . . . , pk.

Let c, d ∈ Z. For any odd number n > 1, Sun [8] introduced

(c, d)n := det

[(
i2 + cij + dj2

n

)]
16i,j6n−1

and

[c, d]n := det

[(
i2 + cij + dj2

n

)]
06i,j6n−1

.

By [8, Theorem 1.3], (c, d)n = 0 if ( d
n
) = −1, and [c, d]p is divisible by p−1 if p is an odd prime

with (d
p
) = 1. For some results on (c, d)n and [c, d]n with c and d special, one may consult
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Krachun et al. [2]. For an odd prime p, the values of (c, d)p and [c, d]p are sometimes related
to elliptic curves over the finite field Fp = Z/pZ (cf. [2, 14]).

In Section 2, we will prove the following result, which was first conjectured by Sun [9,
Conjecture 11.35].

Theorem 1.1. Let c, d ∈ Z. For any odd number n > 1 with ( d
n
) = −1, we have ϕ(n)2 | [c, d]n,

where ϕ is Euler’s totient function.

Let c and d be integers. By [10, Theorem 1.2], for any prime p > 3 and n ∈ {(p+1)/2, . . . , p−
2}, we have

det[(i2 + cij + dj2)n]06i,j6p−1 ≡ 0 (mod p).

By [13, Theorem 1.1], for any odd prime p with (d
p
) = −1 we have

det[(i2 + cij + dj2)n]16i,j6p−1 ≡ 0 (mod p)

for all n = 1, . . . , p− 1.
Suppose that P (x, y) ∈ Z[x, y] and its degree with respect to x is smaller than n ∈ N. For

each j = 1, . . . , n, write

P (x, j) =
n∑
k=1

ajkx
k−1

with aj1, . . . , ajn ∈ Z. By [4, Lemma 15], we have

det[P (i, j)]16i,j6n = lim
t→0

det[taj1(−i)n + P (i, j)]16i,j6n

= lim
t→0

(1− n!t)
∏

16i<j6n

(j − i)× det[ajk]16j,k6n

= 1!2! · · · (n− 1)!× det[ajk]16j,k6n.

In particular, if the degree of P (x, y) with respect to x is smaller than n− 1, then a1n = . . . =
ann = 0 and hence

det[P (i, j)]16i,j6n = 1!2! · · · (n− 1)!× det[ajk]16j,k6n = 0.

We will establish the following result in Section 3.

Theorem 1.2. Let p be an odd prime, and let

H(X, Y ) =
n∑
k=0

akX
kY n−k

with a0, . . . , an ∈ Z.
(i) If n = p− 1, then

det[x+H(i, j)]16i,j6p−1 ≡ (x+ a0 + ap−1)

p−2∏
k=1

ak (mod p).
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(ii) If n = p− 2 or p− 1 < n < 2p− 2, then

det[x+H(i, j)]16i,j6p−1 ≡ (−1)n
p−2∏
k=0

∑
06j6n

p−1|j−k

aj (mod p).

By taking H(X, Y ) = (X2 + cXY + dY 2)n with c, d ∈ Z, we obtain the following result.

Corollary 1.1. Let p > 3 be a prime, and let c, d ∈ Z and n ∈ {(p + 1)/2, . . . , p − 2}. Then
det[x+ (i2 + cij + dj2)n]16i,j6p−1 modulo p is independent of x.

Let p be an odd prime, and let c, d ∈ Z. Sun [10] first introduced

Dp(c, d) = det[(i2 + cij + dj2)p−2]16i,j6p−1

motivated by his conjecture on det[1/(i2 − ij + j2)]16i,j6p−1 for p ≡ 2 (mod 3) (cf. [8, Remark

1.3]). For (Dp(1,1)

p
) and (Dp(2,2)

p
), one may consult [5, 16]. See also [7] and [6] for further results

in this direction.
Let c, d ∈ Z. Sun [11, Section 5] investigated

{c, d}n = det

[(
i2 + cij + dj2

n

)]
1<i,j<n−1

with n an odd number greater than 3. Motivated by this, we study

D−p (c, d) := det[(i2 + cij + dj2)p−2]1<i,j<p−1

for any prime p > 3. The difficulty of evaluating D−p (c, d) lies in the fact that the indices do
not run through a whole reduced system of residues modulo p.

For a prime p, let Zp denote the ring of p-adic integers. It is well known that each p-
adic integer α can be written uniquely as a p-adic series

∑∞
k=0 akp

k with ak ∈ {0, . . . , p − 1},
which converges with respect to the p-adic norm | |p. Hence we have the congruence α ≡∑n−1

k=0 akp
k (mod pn) (in the ring Zp) for any positive integer n. For example,

1

1− p
=
∞∑
k=0

pk ≡
n−1∑
k=0

pk =
1− pn

1− p
(mod pn)

for any positive integer n. A rational number is a p-adic integer if and only if its denominator
is not divisible by p. For a, b, c ∈ Z with p - b, the congruence a/b ≡ c (mod p) in the
ring Zp is actually equivalent to the congruence a ≡ bc (mod p) in the ring Z. For instance,
2/3 ≡ 3 (mod 7).

We will prove the following result in Section 4.

Theorem 1.3. Let p > 3 be a prime, and let

P (T ) = a0 + a1T + a2T
2 + · · ·+ ap−2T

p−2,
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where a0, . . . , ap−2 ∈ Zp. Then we have

det
[
P (ij−1)

]
1<i,j<p−1 ≡ 4

(p−3)/2∑
i=0

â2i ×
(p−3)/2∑
j=0

â2j+1 (mod p),

where

âk =
∏

06j6p−2
2|j−k,j 6=k

aj for all k = 0, . . . , p− 2.

For an odd prime p and a p-adic integer α, we define (α
p
) as the Legendre symbol ( r

p
), where

r is the unique integer in {0, . . . , p − 1} with α ≡ r (mod p). If α = a/b with a, b ∈ Z and
p - b, then (α

p
) coincides with the Legendre symbol (ab

p
).

As an application of Theorem 1.3, we will prove the following result.

Corollary 1.2. Let p > 3 be a prime.
(i) When p ≡ 2 (mod 3), we have

D−p (1, 1) ≡ 2(p−8)/334 (mod p) and

(
D−p (1, 1)

p

)
=

(
2

p

)
.

(ii) When p ≡ 7 (mod 9), we have D−p (1, 1) ≡ 0 (mod p).
(iii) When p ≡ 1, 4 (mod 9), we have(

D−p (1, 1)

p

)
=

(
Σ1Σ2

p

)
,

where

Σ1 =

(p−1)/6∑
k=1

(
1

18k − 13
− 1

18k − 2

)
+

1

6
,

and

Σ2 =

(p−1)/6∑
k=1

(
1

18k − 4
− 1

18k − 11

)
+

1

6
.

Example 1.1. Let us illustrate Corollary 1.2(iii) with p = 19. It is easy to verify that

D−p (1, 1) ≡ −5 (mod p), Σ1 ≡ 3 (mod p) and Σ2 ≡ −8 (mod p).

Thus (
D−p (1, 1)

p

)
=

(
−5

19

)
=

(
3× (−8)

19

)
=

(
Σ1Σ2

p

)
.

The following conjecture of the second author might stimulate further research.
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Conjecture 1.1. Let p > 3 be a prime.
(i) We have p | D−p (2, 2) if p ≡ 7 (mod 8).
(ii) We have p | D−p (3, 3) if p > 5 and p ≡ 2 (mod 3).
(iii) We have p | D−p (3, 1) if p ≡ 3, 7 (mod 20).

We are going to prove Theorem 1.1, Theorem 1.2, Theorem 1.3 and Corollary 1.2 in Sections
2, 3, 4 and 5, respectively.

For convenience, for a matrix M = [mij]06i,j6n, we call the row (mi0, . . . ,min) with 0 6 i 6 n
the i-row of M which is actually the (i+1)-th row of M , and define the j-column with 0 6 j 6 n
similarly. Such terms will be used in Sections 3 and 4.

2. Proof of Theorem 1.1

Lemma 2.1. Suppose that n > 1 is odd and not squarefree. Then, for any c, d ∈ Z we have
[c, d]n = 0.

Proof. Write n = pαm, where p is an odd prime and α,m ∈ Z+ = {1, 2, 3, . . .} such that α > 1
and p - m. By the Chinese Remainder Theorem, there exists a number k ∈ {1, . . . , n−1} such
that m | k and k ≡ p (mod pα). For any 0 6 i 6 n− 1, we have(
i2 + cik + dk2

n

)
=

(
i2 + cik + dk2

m

)(
i2 + cik + dk2

p

)α
=

(
i2

m

)(
i2

p

)α
=

(
i2 + ci0 + d02

n

)
.

Therefore [c, d]n = 0. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. In light of Lemma 2.1, it suffices to assume that n is squarefree. Let

P+(n) :=

{
p : p is a prime divisor of n with

(
d

p

)
= 1

}
and

P−(n) =

{
p : p is a prime divisor of n with

(
d

p

)
= −1

}
.

By the Chinese Remainder Theorem and [1, p. 63, Exercise 8], for 0 6 j 6 n− 1 we have∑
06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

)

=
∑

06i6n−1
(i,n)=1

∏
p∈P+(n)∪P−(n)

(
i2 + cij + dj2

p

)

=
∏

p∈P+(n)∪P−(n)

∑
16x6p−1

(
x2 + cxj + dj2

p

)
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=
∏

p∈P+(n)

p|(c2−4d)j

(
p− 1−

(
j

p

)2)
×

∏
p∈P+(n)

p-(c2−4d)j

(−2)×
∏

p∈P−(n)
p|j

(p− 1)×
∏

p∈P−(n)
p-j

0

with the aid of the fact that (d
p
) = −1 implies p - (c2 − 4d).

Let Q =
∏

p∈P−(n) p, and define the function f : P+(n)→ Z by

f(p) =

{
p− 2 if p | (c2 − 4d),

−2 if p - (c2 − 4d).

Then ∑
06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

)
=

{
0 if Q - j,
ϕ(Q)×

∏
p∈P+(n)

p|j
(p− 1)×

∏
p∈P+(n)

p-j
f(p) if Q | j.

For any subset A of P+(n), define p(A) =
∏

p∈A p. Via similar arguments, we get∑
06i6n−1
(i,n)=p(A)

(
i2 + cij + dj2

n

)

=

{
0 if Q - j or (p(A), j) > 1,

ϕ(Q)×
∏

p∈P+(n)\A
p|j

(p− 1)×
∏

p∈P+(n)\A
p-j

f(p) if Q | j and (p(A), j) = 1.

Thus, when Q - j we have∑
06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

)
=
∏
p∈A

f(p)×
∑

06i6n−1
(i,n)=p(A)

(
i2 + cij + dj2

n

)
= 0.

When Q | j, we have( ∑
06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

))−1∏
p∈A

f(p)×
∑

06i6n−1
(i,n)=p(A)

(
i2 + cij + dj2

n

)

=

{
0 if (p(A), j) > 1,

1 if (p(A), j) = 1.

Let µ be the Möbius function. Then∑
A⊆P+(n)

µ(p(A))
∏
p∈A

f(p)×
∑

06i6n−1
(i,n)=p(A)

(
i2 + cij + dj2

n

)

=
∑

06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

)
×

∑
A⊆P+(n)
(p(A),j)=1

µ(p(A))
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=
∑

06i6n−1
(i,n)=1

(
i2 + cij + dj2

n

)
×

∑
d| p(P+(n))

(p(P+(n)),j)

µ(d)

=

{
ϕ(n) if j = 0,

0 otherwise.

The last equality follows from the well-known identity (cf. [1, p. 19])∑
d|k

µ(d) =

{
1 if k = 1,

0 if k ∈ {2, 3, . . .}.

Thus, via certain elementary row transformations we get the equality [c, d]n = det[aij]06i,j6n−1,
where

aij =


ϕ(n) if i = 1 and j = 0,

0 if i = 1 and j 6= 0,(
i2+cij+dj2

n

)
otherwise.

Similarly, for 0 6 i 6 n− 1 we have∑
A⊆P+(n)

µ(p(A))
∏
p∈A

f(p)×
∑

06j6n−1
(j,n)=p(A)

(
i2 + cij + dj2

n

)
=

{
−ϕ(n) if i = 0,

0 otherwise,

and hence det[aij]06i,j6n−1 = det[bij]06i,j6n−1, where

bij =


ϕ(n) if i = 1 and j = 0,

−ϕ(n) if i = 0 and j = 1,

0 if i = 1 and j 6= 0, or i 6= 0 and j = 1,(
i2+cij+dj2

n

)
otherwise.

Therefore,

[c, d]n = det[aij]06i,j6n−1 = det[bij]06i,j6n−1 ≡ 0 (mod ϕ(n)2).

This concludes our proof. �

3. Proof of Theorem 1.2

We need the following well-known Weinstein-Aronszajn identity (cf. [15]).

Lemma 3.1. Suppose that A and B are matrices over the complex field of sizes l × m and
m× l, respectively. Then

λm det(λIl − AB) = λl det(λIm −BA),

where In denotes the identity matrix of order n.
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Proof of Theorem 1.2. We set A = [ij] 16i6p−1
06j6n

and C = [ci,j]06i,j6n with

ci,j =


x if i = 0 and j = 0,

ai if i+ j = n,

0 otherwise.

By Lemma 3.1,

det(λIp−1 − [x+H(i, j)]16i,j6p−1)

= det(λIp−1 − ACAT )

=λp−n−2 det(λIn+1 − CATA)

=λp−n−2 det(λIn+1 − C[si+j]06i,j6n),

(3.1)

where sk =
∑p−1

i=1 i
k. According to [1, p. 235],

p−1∑
i=1

ik ≡

{
−1 (mod p) if p− 1 | k,
0 (mod p) if p− 1 - k.

(3.2)

So, when n = p− 2 we have

det[x+H(i, j)]16i,j6p−1 ≡ detC × det[si+j]06i,j6n

≡ (−1)(p−1)/2
n∏
k=0

ak × (−1)(p−3)/2 = −
n∏
k=0

ak (mod p).

Let D = [dij]06i,j6n be the matrix C[si+j]06i,j6n.

Case 1. 3(p− 1)/2 6 n < 2p− 2.
In this case, we have

dij ≡


−x (mod p) if i = 0 and j ∈ {0, p− 1},
−a0 (mod p) if i = 0 and j + n ∈ {2p− 2, 3p− 3},
−ai (mod p) if i > 1 and i− j ≡ n (mod p− 1),

0 (mod p) otherwise.
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Hence λIn+1 −D is congruent to the matrix



λ+ x a0 x a0

λ
. . . . . .

. . . . . . a2n−3p+3

. . . . . .

an−p+1
. . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . a2n−2p+2

. . . . . .
an an λ



.

(whose entries 0 are not indicated) modulo p. Subtracting the k-column from the (k + p− 1)-
column for 0 6 k 6 n− p+ 1, we find that the last matrix is transformed to the matrix



λ+ x a0 −λ
λ

. . . . . .
. . . . . . . . .

. . . an−p
. . .

an−p+1
. . . 0 −λ

. . . . . .
. . . . . .

. . . . . .
. . . . . .

an−1
. . .

an 0 λ



.
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Adding the k-row to the (k − p + 1)-row for p − 1 6 k 6 n, we see that the last matrix is
transformed to

λ+ x a0 + ap−1

λ
. . .

. . . an−p + an−1

an−p+1 + an
. . . 0

. . . . . .
. . . . . .

. . . . . .

an−1
. . .

an 0 λ



.

Thus, by (3.1), det(λIp−1 − [x+H(i, j)]16i,j6p−1) is congruent to

det



λ+ x a0 + ap−1

λ
. . .

. . . an−p + an−1

an−p+1 + an
. . .

. . . . . .
ap−2 λ


modulo p. Taking λ = 0 we obtain that

det[x+H(i, j)]16i,j6p−1 ≡ (−1)n
n−p+1∏
k=0

(ak + ak+p−1)×
∏

n−p+1<k<p−1

ak (mod p).

Case 2. p− 1 < n < 3(p− 1)/2.
In this case, we have

dij ≡


−x (mod p) if i = 0 and j ∈ {0, p− 1},
−a0 (mod p) if i = 0 and j = 2p− 2− n,

−ai (mod p) if i > 1 and i− j ≡ n (mod p− 1),

0 (mod p) otherwise.
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Hence λIn+1 −D is congruent to the matrix

λ+ x a0 x

λ
. . .

. . . . . .

an−p+1
. . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . a2n−2p+2

. . . . . .
an an λ



.

modulo p. Via some arguments similar to the discussion in Case 1, we obtain that

det[x+H(i, j)]16i,j6p−1 ≡ (−1)n
n−p+1∏
k=0

(ak + ak+p−1)×
p−2∏

k=n−p+2

ak (mod p).

Case 3. n = p− 1.
In this case, we have

dij ≡


−x− a0 (mod p) if i = 0 and j ∈ {0, p− 1},
−ai (mod p) if i > 1 and i− j ≡ 0 (mod p− 1),

0 (mod p) otherwise.

In light of (3.1), we have

det(λIp−1 − [x+H(i, j)]16i,j6p−1) ≡ (λ+ x+ a0 + ap−1)

p−2∏
k=1

(λ+ ak) (mod p).

Taking λ = 0, we immediately obtain the desired result.

In view of the above, we have completed our proof of Theorem 1.2. �

4. Proof of Theorem 1.3

We shall use the following useful lemma (cf. [12]).

Lemma 4.1 (The Matrix-Determinant Lemma). Let H be an n× n matrix over the complex
field, and let u and v be two n-dimensional column vectors whose components are complex
numbers. Then

det(H + uvT ) = detH + vTadj(H)u,

where adj(H) is the adjugate matrix of H.
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Proof of Theorem 1.3. We set A = [ij] 26i6p−2
06j6p−2

and C = [cij]06i,j6p−2 with

cij =

{
ai if i+ j = p− 2,

0 if i+ j 6= p− 2.

We also define sk :=
∑p−2

i=2 i
k for k = 0, 1, 2, . . .. In view of (3.2),

sk ≡


−3 (mod p) if p− 1 | k,

−2 (mod p) if 2 | k and p− 1 - k,

0 (mod p) if 2 - k.
(4.1)

By Wilson’s theorem, we have

det[P (ij−1)]1<i,j<p−1 ≡ det[P (ij−1)jp−2]1<i,j<p−1 ≡ det(ACAT ) (mod p).

Hence it suffices to focus on the matrix ACAT from now on. Applying Lemma 3.1 and (4.1),
we obtain

det(λIp−3 − ACAT )

= λ−2 det(λIp−1 − CAAT )

= λ−2 det(λIp−1 − C[si+j]06i,j6p−2)

≡ λ−2 det(λIp−1 − [dij]06i,j6p−2) (mod p),

(4.2)

where

dij =


−3ai if p− 1 | j − i− 1,

−2ai if 2 | j − i− 1 and p− 1 - j − i− 1,

0 if 2 - j − i− 1.

Subtracting the 0-column from the 2k-column, and subtracting the 1-column from the (2k+1)-
column for 1 6 k 6 (p− 3)/2, we find that the matrix λIp−1 − [dij]06i,j6p−2 is converted to

λ 3a0 −λ −a0 · · · −λ −a0
2a1 λ a1 −λ · · · 0 −λ
0 2a2 λ a2
...

...
. . . . . .

...
...

. . . . . .
0 2ap−3 λ ap−3

3ap−2 0 −ap−2 0 · · · −ap−2 λ


.
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Subtracting the 2k-column times 2 from the 0-column, and subtracting the (2k + 1)-column
times 2 from the 1-column for 1 6 k 6 (p− 3)/2, we see that the last matrix is transformed to

(p− 2)λ pa0 −λ −a0 · · · −λ −a0
0 (p− 2)λ a1 −λ · · · 0 −λ

(p− 2)λ 0 λ a2
...

...
. . . . . .

...
...

. . . . . .
(p− 2)λ 0 λ ap−3
pap−2 (p− 2)λ −ap−2 0 · · · −ap−2 λ


.

It follows from (4.2) that

det(ACAT ) ≡ 4 det



1 −a0 · · · −a0
1 a1

1 a2
...

...
. . .

...
...

. . .
1 ap−3

1 −ap−2 · · · −ap−2



= 4 det



1 −a0 · · · −a0
1 a2
...

. . .
1 ap−3

a1 1
. . .

...
ap−3 1

−ap−2 · · · −ap−2 1


(mod p).

Let 1 denote the (p− 3)/2-dimensional column vector whose entries are all 1. By Lemma 4.1,

det(ACAT )

≡ 4 det


1
1 diag(a2, · · · , ap−3) + a011

T

diag(a1, · · · , ap−4) + ap−211
T 1

1


≡ 4 det(diag(a2, · · · , ap−3) + a011

T ) det(diag(a1, · · · , ap−4) + ap−211
T )

≡ 4(â0 + 1Tdiag(â2, · · · , âp−3)1)(âp−2 + 1Tdiag(â1, · · · , âp−4)1)

≡ 4

(p−3)/2∑
i=0

â2i ×
(p−3)/2∑
j=0

â2j+1 (mod p).
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This concludes our proof of Theorem 1.3. �

5. Deduce Corollary 1.2 from Theorem 1.3

Proof of Theorem 1.3. By Fermat’s little theorem, there exists a polynomial

P (T ) =

p−2∑
k=0

akT
k ∈ Zp[T ]

such that

(T 2 + T + 1)p−2 ≡ P (T ) (mod p)

for any T ∈ {1, 2, . . . , p− 1}. When p ≡ 1 (mod 3), by [5, Corollary 2.1] we may take

ak =


k + 5/3 if k ≡ 0 (mod 3),

−k − 4/3 if k ≡ 1 (mod 3),

−1/3 if k ≡ 2 (mod 3).

(5.1)

When p ≡ 2 (mod 3), by [16, Lemma 2.1] we may take

ak =

{
1/3 if k ≡ 0, 2 (mod 3),

−2/3 if k ≡ 1 (mod 3).
(5.2)

Case 1. p ≡ 2 (mod 3).
Combining Theorem 1.3 with (5.2), we obtain that

D−p (1, 1) ≡ det[P (ij−1)]1<i,j<p−1

≡ 4

p−2∏
k=0

ak ×
( (p−3)/2∑

k=0

1

a2k

)
×

(p−3)/2∑
k=0

1

a2k+1

≡ 2(p−8)/334 (mod p).

Case 2. p ≡ 7 (mod 9).
Note that (p − 4)/3, (2p − 5)/3 ∈ {0, 1, . . . , p − 2}. Since (p − 4)/3 ≡ 1 (mod 3), by

(5.1) we have a(p−4)/3 = −p/3 ≡ 0 (mod p). Similarly, a(2p−5)/3 = 2p/3 ≡ 0 (mod p) since
(2p − 5)/3 ≡ 0 (mod 3). Furthermore, both (p − 4)/3 and (2p − 5)/3 are odd and hence
âk ≡ 0 (mod p) when 2 - k. It follows from Theorem 1.3 that D−p (1, 1) ≡ 0 (mod p).

Case 3. p ≡ 1, 4 (mod 9).
Suppose that ak ≡ 0 (mod p) for some k ∈ {0, . . . , p − 2}. Then k ≡ 0, 1 (mod 3). If

k ≡ 0 (mod 3), then p | 3k + 5 and 0 6 k 6 p − 4, hence 3k + 5 = p or 3k + 5 = 2p, which
implies that p ≡ 5, 7 6≡ 1, 4 (mod 9). If k ≡ 1 (mod 3), then p | 3k + 4 and 1 6 k 6 p − 3,
hence 3k + 4 = p or 3k + 4 = 2p, which implies that p ≡ 7, 8 6≡ 1, 4 (mod 9).

By the last paragraph, ak 6≡ 0 (mod p) for all k ∈ {0, . . . , p − 2}. It is easy to verify that
ak ≡ ap−3−k (mod p) for all k = 0, . . . , p−3. Hence we may derive from Theorem 1.3 and (5.1)
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that(
D−p (1, 1)

p

)
=

a(p−3)/2ap−2 ×∑(p−3)/2
j=0

1
a2j
×
∑(p−3)/2

k=0
1

a2k+1

p

 =

(
3Σ13Σ2

p

)
=

(
Σ1Σ2

p

)
.

This completes the proof of Corollary 1.2. �
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