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ON SOME DETERMINANTS
ARISING FROM QUADRATIC RESIDUES

CHEN-KAI REN AND ZHI-WEI SUN

Abstract. Let p > 3 be a prime, and let d ∈ Z with p - d. For
m ∈ Z with (p−1)/2 6 m 6 p−1, Sun considered the determinant

Sm(d, p) = det
[
(i2 + dj2)m

]
16i,j6(p−1)/2

,

and determined Sm(d, p) modulo p when m ∈ {p − 2, p − 3} and
(−d

p ) = −1. In this paper, we obtain Sp−2(d, p) modulo p in the

remaining case (−d
p ) = 1, and determine the Legendre symbols

(
Sp−3(d,p)

p ) and (
Sp−4(d,p)

p ) in some special cases.

1. Introduction

Let p be an odd prime, and let ( .
p
) be the Legendre symbol. In

1959, Carlitz [3, (4.9)] proved that the characteristic polynomial of the
matrix [(

i− j
p

)]
16i,j6p−1

is (
x2 −

(
−1

p

))(
x2 −

(
−1

p

)
p

)(p−3)/2

.

In 2004, via quadratic Gauss sums Chapman [4] showed that for p > 3
we have

det

[(
i+ j − 1

p

)]
16i,j6(p−1)/2

=

{
(−1)(p−1)/42(p−1)/2bp if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4),

and

det

[(
i+ j − 1

p

)]
16i,j6(p+1)/2

=

{
(−1)(p+3)/42(p−1)/2ap if p ≡ 1 (mod 4),

2(p−1)/2 if p ≡ 3 (mod 4),
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where ap and bp are rational numbers given by ε
h(p)
p = ap + bp

√
p, and

εp and h(p) denote the fundamental unit and the class number of the
real quadratic field Q(

√
p) respectively. During 2012–2013, Vsemirnov

[12, 13] confirmed a challenging conjecture of Chapman which states
that

det

[(
i− j
p

)]
06i,j6(p−1)/2

=

{
−a′p if p ≡ 1 (mod 4),

1 if p ≡ 3 (mod 4),

where we write ε
(2−( 2

p
))h(p)

p as a′p + b′p
√
p with a′P , b

′
p ∈ Q.

Let d be any integer not divisible by an odd prime p. Sun [9] studied
the determinant

S(d, p) = det

[(
i2 + dj2

p

)]
16i,j6(p−1)/2

,

and proved that (−S(d.p)
p

) = 1 if (d
p
) = 1, and S(d, p) = 0 if (d

p
) = −1.

Grinberg, Sun and Zhao [6] showed that if p > 3 then

det

[
(i2 + dj2)

(
i2 + dj2

p

)]
06i,j6(p−1)/2

≡ 0 (mod p). (1.1)

For any integer m in the interval ((p− 1)/2, p− 1), we have from [11]
that

det[(i2 + dj2)m]06i,j6(p−1)/2 ≡ 0 (mod p),

which extends (1.1). For each m = (p − 1)/2, . . . , p − 1, Sun [11]
introduced the determinant

Sm(d, p) = det
[
(i2 + dj2)m

]
16i,j6(p−1)/2 .

Let d be any integer not divisible by an odd prime p. In 2022, Wu,
She and Wang [15] confirmed [9, Conjecture 4.5(ii)] which states that
when p > 3 we have(

S(p+1)/2(d, p)

p

)
=

{
(d
p
)(p−1)/4 if p ≡ 1 (mod 4),

(d
p
)(p+1)/4(−1)(h(−p)−1)/2 if p ≡ 3 (mod 4),

where h(−p) denotes the class number of the imaginary quadratic field
Q(
√
−p). Sun [11] proved that if (−d

p
) = −1 then

Sp−2(d, p) ≡ det

[
1

i2 + dj2

]
16i,j6(p−1)/2

≡

{
d(p−1)/4 (mod p) if p ≡ 1 (mod 4),

(−1)(p+1)/4 (mod p) if p ≡ 3 (mod 4),
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and

Sp−3(d, p) ≡ det

[
1

(i2 + dj2)2

]
16i,j6(p−1)/2

≡ 1

4

bp/4c∏
r=1

(
r +

1

4

)2

(mod p).

In this paper, we obtain some further results along this line. Our
method is different from that of Sun [11].

We first present a general result.

Theorem 1.1. Let p be a prime with p ≡ 1 (mod 4). For any integer
d with (d

p
) = 1 and any odd integer m ∈ ((p− 1)/2, p− 1), we have(

Sm(d, p)

p

)
6= −1.

Our following three theorems deal with Sm(d, p) for m = p − 2, p −
3, p − 4. For convenience, we define n!! =

∏
06j<n/2(n − 2j) for any

positive integer n.

Theorem 1.2. Let p be an odd prime, and let d ∈ Z with (−d
p

) = 1.

Then

Sp−2(d, p) ≡

{
(−1)(p+3)/4d(p−1)/4(p−3

2
!!)2 (mod p) if p ≡ 1 (mod 4),

0 (mod p) if p ≡ 3 (mod 4).

(1.2)

Remark 1.1. Let p be a prime with p ≡ 1 (mod 4), and write p =
x2 + y2 (x, y ∈ Z) with x ≡ 1 (mod 4) and y ≡ p−1

2
!x (mod p).

(Note that (p−1
2

!x)2 ≡ −x2 (mod p) by Wilson’s theorem.) As 2x ≡(
(p−1)/2
(p−1)/4

)
(mod p) by Gauss’ congruence (cf. [1, (9.0.1)] or [5]), we have

2y ≡ p− 1

2
!(2x) ≡

(p−1
2

!)2

(p−1
4

!)2
=

(
2

p−1
4
p− 3

2
!!

)2

≡
(

2

p

)(
p− 3

2
!!

)2

(mod p).

Thus, for any d ∈ Z with (d
p
) = 1, by (1.2) we have

Sp−2(d, p) ≡ −2yd(p−1)/4 (mod p).

With the aid of [1, Theorem 6.2.9, p. 190], this implies Sun’s conjecture
(cf. [11, Conjecture 6.2]) that

Sp−2(1, p) ≡ −2y = 2δ(s, p)

(p−1)/2∑
k=1

(
k(k2 + s)

p

)
(mod p),

where s is any quadratic nonresidue modulo p, and

δ(s, p) =

{
1 if s(p−1)/4 ≡ p−1

2
! (mod p),

−1 otherwise.
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Theorem 1.3. Let p > 3 be a prime with p ≡ 1 (mod 4), and let d be
any integer with p - d. Then(

6Sp−3(d, p)

p

)
6= −1.

Moreover, if (d
p
) = 1 and p ≡ 5 (mod 12), then(

Sp−3(d, p)

p

)
= (−1)(p+3)/4.

Theorem 1.4. Let p > 3 be a prime, and let d be any integer with
(d
p
) = 1. Then(

Sp−4(d, p)

p

)
= −1 if and only if p ≡ 3, 7 (mod 20). (1.3)

We are going to provide some auxiliary results in the next section,
and prove Theorems 1.1-1.4 in Section 3.

To end this section, we mention that there are some other works
inspired by Sun [11]. For example, Conjectures 6.3–6.5 in [11] have
been confirmed by Chaliha and Kalita [2], and also Ren and Luo [8]
independently.

2. Some auxiliary results

For any odd prime p, by Wilson’s theorem we have

(−1)(p+1)/2

(
p− 1

2
!

)2

≡ −
(p−1)/2∏
k=1

k(p− k) = −(p− 1)! ≡ 1 (mod p).

(2.1)
We need the following auxiliary result (cf. [14, Lemma 2.2]).

Proposition 2.1. Let p be an odd prime. Then∏
16i<j6(p−1)/2

(i2 − j2)
(

1

i2
− 1

j2

)
≡ (−1)bp/4c (mod p). (2.2)

Remark 2.1. Actually,∏
16i<j6(p−1)/2

(i2 − j2)2 ≡ (−1)(p+1)/2 (mod p)

by [10, (1.5)] and the congruence (2.1). Thus it remains to prove∏
16i<j6(p−1)/2

(ij)2 ≡ (−1)(p+1)/2 (mod p).
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For any positive integers m and n, we clearly have∏
16i1<...<im6n

i1 · · · im =
∏

A⊆{1,...,n}
|A|=m

∏
k∈A

k

=
n∏

k=1

k|{A⊆{1,...,n}: k∈A & |A\{k}|=m−1}| = (n!)(
n−1
m−1).

Thus we have an alternate proof of (2.2).

We also need the following known lemma [7, Lemma 10] on determi-
nants.

Lemma 2.1. Let R be a commutative ring with identity, and let P (x) =∑n−1
i=0 aix

i ∈ R[x]. Then we have

det [P (XiYj)]16i,j6n = a0a1 · · · an−1
∏

16i<j6n

(Xi −Xj)(Yi − Yj).

Now we state our second auxiliary proposition.

Proposition 2.2. Let p = 2n + 1 > 3 be a prime. For d,m ∈ Z with
p - d and (p− 1)/2 < m < p− 1, we have

Sm(d, p) ≡ am(d, p)2bm(d, p) (mod p), (2.3)

where

am(d, p) =

b(m−n−1)/2c∏
k=0

((
m

k

)
+

(
d

p

)(
m

m− n− k

))
×

∏
06k<n−1−bm/2c

(
m

m− n+ 1 + k

)
and

bm(d, p) =



(−d)n/2
(

1 +
(

d
p

)) (
m

(m−n)/2

)(
m

m/2

)
if 2 | m and 2 | n,

(−1)(n−1)/2
(

d
p

)m/2 (
m

m/2

)
if 2 | m and 2 - n,

(−1)n/2+1dn/2
(

d
p

)(m−1)/2
if 2 - m and 2 | n,

(−1)(n−1)/2
(

1 +
(

d
p

)) (
m

(m−n)/2

)
if 2 - m and 2 - n.

Remark 2.2. Proposition 2.2 clearly implies the following result: Let
p > 5 be a prime, and let d be an integer with (d

p
) = −1. If m be an

integer in the interval ((p − 1)/2, p − 1) with m ≡ (p − 1)/2 (mod 2),
then Sm(d, p) ≡ 0 (mod p).
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Proof of Proposition 2.2. Observe that

Sm(d, p) =
n∏

j=1

(j2)m × det
[(
i2j−2 + d

)m]
16i,j6n

= (n!)2m det
[(
i2j−2 + d

)m]
16i,j6n

.

By (2.1),

(n!)2m ≡ (−1)m(n+1) (mod p).

For i, j ∈ {1, . . . , n}, clearly(
i2j−2 + d

)m
=

m∑
k=0

(
m

k

)
dm−k

(
i2j−2

)k
≡

m−n∑
k=0

((
m

k

)
dm−k +

(
m

n+ k

)
dm−k−n

)(
i2j−2

)k
+

∑
m−n+16k<n

(
m

k

)
dm−k

(
i2j−2

)k
≡ f(i2j−2) (mod p),

where

f(x) =
m−n∑
k=0

((
m

k

)
+ d−n

(
m

m− n− k

))
dm−kxk

+
∑

06k<p−2−m

(
m

m− n+ 1 + k

)
dn−1−kxm−n+1+k.

Combining the above, we obtain

Sm(d, p) ≡ (−1)m(n+1) det[f(i2j−2)]16i,j6n (mod p). (2.4)

By Lemma 2.1 and the congruence (2.2), we have

det[f(i2j−2)]16i,j6n

≡ (−1)bp/4c
∏

06k<p−2−m

(
m

m− n+ 1 + k

)
dn−1−k

×
m−n∏
k=0

((
m

k

)
+ d−n

(
m

m− n− k

))
dm−k (mod p).

It is easy to see that∏
06k<p−2−m

dn−1−k ×
m−n∏
k=0

dm−k = dn(2m−n+1)/2.
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Note also that∏
06k<p−2−m

(
m

m− n+ 1 + k

)
=

(
m

δmm/2

) ∏
06k<n−1−bm/2c

(
m

m− n+ 1 + k

)2

,

where δm = (1 + (−1)m)/2. As d−n ≡ (d
p
) = ±1 (mod p), for each

k = 0, . . . ,m− n we have((
m

k

)
+ d−n

(
m

m− n− k

))((
m

m− n− k

)
+ d−n

(
m

k

))
≡
(
d

p

)((
m

k

)
+

(
d

p

)(
m

m− n− k

))2

(mod p).

Therefore

det[f(i2j−2)]16i,j6n

≡ (−1)bp/4cdn(2m−n+1)/2

(
m

δmm/2

) ∏
06k<n−1−bm/2c

(
m

m− n+ 1 + k

)2

× cm(d, p)

(
d

p

)b(m−n+1)/2c b(m−n−1)/2c∏
k=0

((
m

k

)
+

(
d

p

)(
m

m− n− k

))2

≡ (−1)bp/4cdn((2m−n+1)/2−b(m−n+1)/2c)am(d, p)2
(

m

δmm/2

)
cm(d, p) (mod p),

where

cm(d, p) :=

{
(1 + (d

p
))
(

m
(m−n)/2

)
if m ≡ n (mod 2),

1 otherwise.

Combining this with (2.4), we obtain the desired (2.3) since

(−1)m(n+1)+bp/4cdn((2m−n+1)/2−b(m−n+1)/2c)
(

m

δmm/2

)
cm(d, p)

is congruent to bm(d, p) modulo p. This ends our proof. �

3. Proofs of Theorems 1.1-1.4

Proof of Theorem 1.1. Since (−1
p

) = 1, by Proposition 2.2 we obtain(
bm(d, p)

p

)
=

(
d

p

)n/2

= 1.

Thus(
Sm(d, p)

p

)
=

(
am(d, p)

p

)2(
bm(d, p)

p

)
=

(
am(d, p)

p

)2

6= −1.
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�

Proof of Theorem 1.2. Set n = (p− 1)/2. When p ≡ 3 (mod 4) and
(d
p
) = −1, we have

Sp−2(d, p) ≡ 0 (mod p)

by Remark 2.2.
Now we assume p ≡ 1 (mod 4). Then (d

p
) = 1 and 2 | n. By

Proposition 2.2, we have

Sp−2(d, p) ≡ ap−2(d, p)
2bp−2(d, p) (mod p),

where

ap−2(d, p) =

n/2−1∏
k=0

((
p− 2

k

)
+

(
p− 2

n− 1− k

))

and
bp−2(d, p) = (−1)n/2+1dn/2.

Since (
p− r − 1

k

)
≡
(
−r − 1

k

)
≡ (−1)k

(
k + r

r

)
(mod p)

for each r = 0, 1, 2, . . ., we can verify that(
p− 2

k

)
+

(
p− 2

n− 1− k

)
≡ (−1)k

(
k + 1

1

)
+ (−1)n−1−k

(
n− k

1

)
≡ (−1)k (2k − n+ 1) (mod p).

Combining the above, we obtain

Sp−2(d, p) ≡ (−1)n/2+1dn/2
n/2−1∏
k=0

((
p− 2

k

)
+ d−n

(
p− 2

n− 1− k

))2

≡ (−1)n/2+1dn/2
n/2−1∏
k=0

(
(−1)k(2k − n+ 1)

)2
≡ (−1)(p+3)/4d(p−1)/4

(
p− 3

2
!!

)2

(mod p).

This concludes the proof. �

Proof of Theorem 1.3. Set n = (p− 1)/2. By [11, Theorem 1.2], if
(d
p
) = −1, then (

Sp−3(d, p)

p

)
= 0.
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Below we assume that (d
p
) = 1. By Proposition 2.2,

Sp−3(d, p) ≡ ap−3(d, p)
2bp−3(d, p) (mod p), (3.1)

where

ap−3(d, p) =

n/2−2∏
k=0

((
p− 3

k

)
+

(
p− 3

n− 2− k

))

and

bp−3(d, p) = 2(−d)n/2
(

p− 3

(n− 2)/2

)(
p− 3

n− 1

)
.

Case 1. ap−3(d, p) ≡ 0 (mod p).
In this case we have Sp−3(d, p) ≡ 0 (mod p) by (3.1).

Case 2. ap−3(d, p) 6≡ 0 (mod p).
Observe that

2

(
p− 3

(n− 2)/2

)(
p− 3

n− 1

)
≡ 2

(
−3

n/2− 1

)(
−3

n− 1

)
= 2(−1)n/2−1

(
n/2 + 1

2

)
(−1)n−1

(
n+ 1

2

)
= (−1)n/2

n2(n+ 1)(n+ 2)

8

≡ (−1)n/2

8
× 1

4
× 1

2
× 3

2
=

6(−1)n/2

162
(mod p),

and thus (
bp−3(d, p)

p

)
=

(
d

p

)n/2(
6

p

)
=

(
6

p

)
.

Thus, applying (3.1) we obtain(
6Sp−3(d, p)

p

)
= 1.

In view of the above, we get(
6Sp−3(d, p)

p

)
6= −1.

Suppose that p ≡ 5 (mod 12) and (d
p
) = 1. We claim that

p -
((

p− 3

k

)
+

(
p− 3

n− 2− k

))
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for any integer k with 0 6 k 6 n/2− 2. Note that(
p− 3

k

)
+

(
p− 3

n− 2− k

)
≡ (−1)k

(
k + 2

2

)
+ (−1)n−2−k

(
n− k

2

)
≡ (−1)k

2
((k + 1)(k + 2) + (k − n)(k − n+ 1))

≡ (−1)k

((
k +

5

4

)2

− 3

16

)
(mod p).

Since (3
p
) = −1, the claim holds.

In view of the above discussion, we obtain(
Sp−3(d, p)

p

)
=

(
6

p

)
= (−1)

p+3
4 .

This ends the proof. �

Proof of Theorem 1.4. Set n = (p− 1)/2.
If (

Sp−4(d, p)

p

)
= −1,

then p ≡ 3 (mod 4) by Theorem 1.1. Below we suppose p ≡ 3 (mod 4).
In light of Proposition 2.2, we have

Sp−4(d, p) ≡ ap−4(d, p)
2bp−4(d, p) (mod p), (3.2)

where

ap−4(d, p) =

(
p− 4

n− 2

) (n−5)/2∏
k=0

((
p− 4

k

)
+

(
p− 4

n− 3− k

))

and

bp−4(d, p) = 2(−1)(n−1)/2
(

p− 4

(n− 3)/2

)
.

If p | ap−4(d, p), then(
Sp−4(d, p)

p

)
= 0 6= −1

by (3.2).
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Now assume that p - ap−4(d, p). Clearly,

2

(
p− 4

(n− 3)/2

)
≡ 2

(
−4

(n− 3)/2

)
= 2(−1)(n−3)/2

(
(n+ 3)/2

3

)
=

(−1)(n+1)/2

3
× n+ 3

2
× n+ 1

2
× n− 1

2

≡ 5(−1)(n−1)/2

64
(mod p)

and thus (
bp−4(d, p)

p

)
=

(
5

p

)
=
(p

5

)
.

Combining this with (3.2), we obtain(
Sp−4(d, p)

p

)
=

(
5

p

)
=
(p

5

)
.

Suppose that (Sp−4(d,p)

p
) = −1. Then p ≡ ±2 (mod 5). As p ≡ 3 (mod 4)

and p ≡ ±2 (mod 5), we get p ≡ 3, 7 (mod 20). This proves one
direction of (1.3).

Now suppose that p ≡ 3, 7 (mod 20). We claim that

p -
((

p− 4

k

)
+

(
p− 4

n− 3− k

))
(3.3)

for any integer k with 0 6 k 6 (n− 5)/2. Note that(
p− 4

k

)
+

(
p− 4

n− 3− k

)
≡ (−1)k

(
k + 3

3

)
+ (−1)n−3−k

(
n− k

3

)
≡ (−1)k

6

(
(k + 1) (k + 2) (k + 3)−

(
k +

1

2

)(
k +

3

2

)(
k +

5

2

))
≡ (−1)k

4

((
k +

7

4

)2

− 5

16

)
(mod p).

Since (5
p
) = −1, we do have (3.3). In view of this, using previous

arguments we obtain(
Sp−4(d, p)

p

)
=

(
5

p

)
= −1.

So the other direction of (1.3) also holds.
In view of the above, the proof of Theorem 1.4 is now complete. �
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