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Covering the integers by arithmetic sequences
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1. Introduction. Let R be the field of real numbers and R™ the set of
positive reals. For a € R and 8 € R* we call

a+03Z={...,0a-20,c0—-0F,a,a+B3,a+283,...}

an arithmetic sequence with common difference . In the case a € Z and
B e Zt, o+ B7Z is just the residue class & mod J with modulus 5.

Let m be a positive integer. A finite system
(1) A:{a3+ﬁﬁz}km1 (aiﬁ*“&&EERaﬂd ﬁlﬁ"*?ﬁ}\f €R+)

of arithmetic sequences is said to be an (exact) m-cover of Z if it covers each
integer at least (resp., exactly) m times. Instead of “l-cover” and “exact
1-cover” we use the terms “cover” and “exact cover” respectively.

Since they were introduced by P. Erdés ([5]) in the early 1930’s, covers
of Z by (finitely many) residue classes have been studied seriously and many
nice applications have been found. (Cf. sections A19, B21, E23, F13 and F14
of R. K. Guy [9].) For problems and results in this area we refer the reader to
surveys of Erdés [7, 8], S. Porubsky [13] and S..Zndm [21]. Recently further
progress was made by various authors.

If a finite system

(2) A={a, + nSE}‘;"ml (@1,...,ar € Z and ny,...,ng € Z*)

of residue classes forms an m-cover of Z, then Zf:m 1/ns > m, and the
equality holds if and only if (2) is an exact m-cover of Z. This becomes
apparent if we calculate

k N1
Y o<z < N:z=a, (modny)} =) {1<s<k:z=a, (modn,)}
g=z] &)

where NV is the least common multiple of ny, ..., ng.

L
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110 Z. W. Sun

In this paper we investigate properties of m-covers of Z in the form (1).
In the next section we shall give three equivalent conditions for (1) to be
an m-cover of Z. One is that (1) covers W consecutive integers at least m

times where
1
W = — > T C{l,.. ..,k
W) IS et

s&i

([z] and {z} stand for the integral and fractional parts of a real z respectively
throughout the paper), the other two are finite systems of equalities (not
inequalities) involving roots of unity. Our tools used to deduce them include
Vandermonde determinants, Stirling numbers, a little analysis and linear
algebra.

In Sections 3 and 4 we, will derive a number of results including the
following ones:

(I) Let (1) be an m~cover of Z and J C {1,...,k}. Then

1 1
— — for some I C{1,...,k} with I £ J,
(a1 = o kv 1

provided me 1/8: = m (e.g. (1) is an exact m-cover of Z with o, € Z and
Bs € Z7 for s = 1,...,k) we have ) ;1/8s = ) ..;1/8; for some I C

{1,... k}withI #Ji0#J C{l,...,k}, when ) ., 1/8s =3 .c;1/0s
for no I C {1,...,k} with I # J there are at least m nonzero integers of

the form .., 1/8s — 2 4 1/Bs where 1 C {1,...,k}.

(II) Let k& > [ > 0 be integers. Then 2*~!(l + 1) is the smallest n € Z*
such that any system of &k arithmetic sequences with at least { equal common
differences covers an arithmetic sequence at least m times if it covers n
consecutive terms in the sequence at least m times.

The last section contains some unsolved problems related to possible
extensions.

2. Characterizations of m-covers. Let us provide several technical
lemmas the first of which serves as the starting point of our new approach.

LesMA 1. Letm € Z1 and @ € R. Then (1) covers x at least m times if
and only f

2
(3) H(1 - Ti/gtiﬂﬁﬁw.ﬁ(nﬁw:ﬁ}fﬁﬁ) — 6((1 . ?*)?nw}) (T’ R 1)
o |

A

Proof. Set I = {1 <s<k:z€ a,+8Z}and I' = {1,...,k} \ 1.
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Clearly,
I* Hf—l(l _— Tl/ﬁs egwi(ﬁs"’m)/ﬁ#)
] o (1 _ Tm)Tfl | “
_ _. ] — - 1/153
- lim (1 . Tl/ﬁa gg?rZ(ﬁs“ﬁi)fﬁ&) . lilTi H W?..m
| A | 1 — 7
se I/ s f
: d
— 1 — 2rilas—z)/0s 178,
[To-e RIFCO
se [/ scf P
- H (1 B ﬁz?ri{'ﬁgm:ﬁ}fﬁﬁ) i Hﬁ;l ?4 0,
sl sef
and hence
K Ti{tx s — s
lim Hﬁm},(l - ?‘*1/;{3362 (o )1}5 )
1 (1 L T)TRMI

k miloag—2 4
— Lm H§=1(1 — Tlfﬁii? ( /B )(1 B T)lﬂ—*ﬂt-{-l
P+l (1 — ?“)HE

_ {D if I} >m -1,

oo if |} <m— 1.
Now it is apparent that |I| > m if and only if (3) holds. We are done.

LEMMA 2. Let 01,...,0, be real numbers with distinct fractional parts.
For any € > 0 there exists a 6 > 0 such that if

n
t Z eﬁwiaﬂt Ts| < 5
=1 .

foreverys=1,...,n then |z¢| <€ forallt=1,...,n.

Proof. Let A be the matrix (¢*™*%%) <4<, . Then

1i<n
1 1 o 1 |
! e?‘ﬂ“iﬁi 82'&'%92 o e?‘ﬂ'iﬁn
!Al (esz&z)z (eﬁwiég)z o (Ezm_gﬂ)g |
€201 27102 | @2Mibn | L.l
|
1 (6271"?191 )ﬂ-*—l (ezﬂiﬁg)n—-l o (egﬂ"iﬁﬁ)n-—l

is a determinant of Vandermonde’s type. As |A| # 0 the inverse matrix of

A exists; we denote it by B = (bst) 1<s<n -
1<t<n

Let b = max{|bs:| : s,t = 1,...,n} > 0and § = ¢/(bn). Let z1,...,2,
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be any complex numbers, and set

7i
Yg = E 62””&*3‘35 fors=1,...,n.
fom}

Let
Iy (751
z=1 : and 7=

Ln Un

Then £ = BAX = By. If |ys| < 6 for every s =1,...,n, then

o] = | Y b < S byl <bné=e foralls=1,...,n.
= | fom ]

This concludes the proot.

LEMMA 3. Let m € Z*. Then

m—1

(4) 3 ant" ™ =0(1)  (t - 0)
e}

if and only ifagp = ... = am-1 = 0.

Proof. The “if” direction is trivial. When ag, ..., am-1 are not all zero,

for the least &k such that ax # 0 we have

m—1 =~
Z; :ﬁﬂ(z—?{)nmm-i-l — E ;anxm-ﬂ-i—n ~ &kxm-—*l—k
11 2=} n=4k

which contradicts (4). This ends the proof.

LEMMA 4. Let n > m > 0 be integers and a1, ...,a, distinct numbers.

Then the system

(5)

$1+:-~+ﬂ?%m0,
alml"!"*“'l'aﬁmnmo:
2 2
&1$1+*1.+&R$ﬁ moa}

ttttttttttttttttttttttttttt

18 equivalent to

(6)

lllllllllllllllllllllllll

(z — o0),
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where

m<i<n
G121+ ..o+ Gy = -~ E sy,
min
2 2 2
Q1T+ ...+ 0T = — E a; Ti,
metan
a‘f‘“lxl + ...+ ﬁﬁ“lmm = - E a?’*“lzzg
mﬂiﬁﬂn
By Cramer’s rule, this says that
1 r % B 1 mzm{ti:ﬁ:xt 1- E % ¥ 1
’ {&1 s w4 ﬁg_l — Zmﬁiiﬁﬂ &gfﬂg &5_5_1 « x o @m
- 2 P 2 2 2
Ls a; - g1 2ome<t<n @t Tt Ggp Dm
M1 m--1 -1 me-1 -1
; ay * Qg1 Zm{z‘:{n Qy Ly &3+1 ' Um {
-1
1 . 1 §
5] Um
2 2
X | ai Oy, |
&?‘“1 ,... a1 |
; l £ *® # ]— 1 1 * o ¥ 1 ]
a1 vos  Ugunl ¢ dgi1 RPN Lipry

Z |
— - mt {Zl 'R a‘sml at a!3+1 . & ¥ alm
mﬁfiﬁﬂ ii!rﬂri1!=i‘=~i#i#ﬂ##ttﬁ##ii*i##*######*#***#*####*llr!-

77— 1 1m—1 -1 Fry -} 11y~ 1
dy ver Qg ay &3+1 coe Uy

1 ... 1 !

al * &m
x| af ... a2
rre—1 m—1 i
&1 * &m
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H as — a;) H (a; — ay) - H (a; — a;)

| 1<i<s s<i<m 1<i<i<m
ke
- E P
m<t<n H (s — a;) H (&z - ‘3'5) H (a; — a;)
._ 1<2<8 s<i<m 1<i<i<m
1,JF#8
e E G gt Lt (Vandermonde)

for every s=1,...,m, 1.e.

Zéﬁ%i -+ Z Ggidp = {) for s = 1

Fom 1 m'ﬂ:t<?‘%

where 0, is the Kronecker delta. Since a4 = 64 for s,t = 1,...,m, we have
finished the proof.

Now we are ready to present

THEOREM 1. Let A = {a, + BsZ}F_,, where a;,...,ar € R and
Bi,....0. € RT. Let m € Z and

1 .
S=<0<6<1: — % =8 for some I C{1,...,k} ;.
Poso<t:{ S5m0 foromerc ... i}
Let

{Zﬁg Ic:{l k}andzmmﬂez}

56 [ & ]

and U(0) be a set of m distinct numbers comparable with V(8) (i.e. |U(8)

= m, and either U(8) C V(8) or U(6) D V(6)). Then the following state-
ments are equivalent:

(a) A is an m-cover of Z.
(b} A covers |S| af}ngemﬁiw integers at least m times.
(c) For each 8 € §,

(7) Z (Hl)lfl (iZseii/ﬁs}) e?riggggaﬂ/ﬁa .

1CH{1,...,k}
{Zse1l/B:}=6

m{mwlj {z=n+1) )

holds for everyn=10,1,...,m— 1. (As usual ( ) denotes T

(d) For any 8 € §,
(8) Z auo f(V) =0 forallu € U(8),

pEV(H)
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where
T — -
Uyy — H and f(?}) e E (M1)|Ilegwml‘ﬂﬁfﬂﬁ/ﬁa*
r — U
xel/(8) IC{i,...,k)}
fﬂ%’tﬁ Eﬁgfl/ﬁamv

Proof. (a)=(b). This is obvious.

(b}=>(c). Suppose that each of z+1,...,2+ || is covered by A at least
m times, where z is an integer. By Lemma 1 for every n = 1,...,|5| we
have

Hk (1 _— Tlfﬁ.ﬁ egﬁiiﬁs*‘“m”ﬂ)fﬁa)

— 1 Gumm] )
= lim ((1 e ?,,)iwm-
A e 1
4 Z (Ml)ifl?wz&ﬁflf!ﬁ& egﬂiE&EI{ﬁs_:E);ﬁs E—E?{’inzggflf;ﬁj)
IC{1,...,k}
— g}ﬂ Z F{’f‘} Q)Eww?winﬁ}
ge S :
where
F(r,0) = Z (ml)EIIT-E#&Ilfﬁa ezﬂ'ﬂaem,/ﬁ,e-z-nma/(l B ?‘)m_l#
IC{1,...,k}

{35511/[33 }:::9

Let € be an arbitrary positive number. By Lemma 2 there is an n > 0
such that if

' 6€S |

for every n = 1,...,|S] then |zg| < € for all 8§ € S. Since

Z F(T‘, 9)€m2wm9 — {}(1) (T — 1) formn=1,..., 15’&?
ges

there exists a § > 0 such that whenever lr— 1] < 6,
i ZF(m fle " <« pn foralln=1,...,|9
ges

and hence by the above |F(r,0)] < ¢ for each § € §. This shows that
lim,_,; F(r,0) =0 for every 8 € S.
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For any 6 € S we have

0 = lim Z .(_1)"['7*25611/68 6271'7:):3&!&5/,63/(1 _ T)m—-l

r—1
IC{1,....k}
{Eaeﬂ/ﬁs}=9

(_1)”\ (1 - t)[EHEI1/ﬁa]+9t1—me2ﬂiﬂaema/ﬁs

|
L5
]

|
3

Saerl/fa ' _
Z (_l)|I| Z ([Zseill/)BS]) (_t)ntl—me?:ri)lsefaa/ﬁs

IC{1,...,k} n=0
{EEEI]-/)B&}:Q

l1m Z ((_l)l‘rleg"rizae.fda/ﬁa

t—0
IC{1,...,k}
{EEEI 1/185}=9

S ({ZHE; 1/54) (__mn_mﬂ)

n=0

HS[ZHEI]'/IBE]

m—1
: _1\n v [ZSEI 1//83] 2MiLse10s/Bs n—m+1
lim (1)( > (1)( ! e t .
n=0 IC{1,...,k}
{23611/63}=9
In view of Lemma 3, (7) holds for every n = 0,1,...,m — 1. Therefore part
(c) follows.

(¢)=(d). Fix 8 € §. Foreachn=0,1,...,m — 1,

" =) S(nj)z(x—1)...(x—j+1)
j=0

where S(n, j) (0 < 7 < n) are Stirling numbers of the second kind, so by (c)
we have

Z (_1)‘” P 1/63- nezwizaéfas/ﬁs

I‘;{I ..... A’:} SE
{ZHEI 1/f6ﬂ }:6

T
= j1S(n, j)
j=0

by

Z (—1)!] ([ZSEII]‘/’BS])eQTTiESEICIs/ﬁa =0,

IC{1,....k} J
EHEIl/ﬁH}:B

Z Z (__1)|f|62m$.seraa/ﬁa [U]ﬁ — 0.

vEV(0) IC{1,....k)
EHEIl/ﬁ.H:”

1.e.
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Case 1: |V(8) < m. In this case
Z " flv) =0 foreveryn=20,1,...,|[V(8)] - 1.
ve V{E)
Hence (8) holds since f(v) = 0 for all v € V(#) (Vandermonde).
Case 2: |V(8)] > m. In this case, U(8) C V() and
D L@+ Y M) =0
vel(8) veV{GI\U(8)

foreachn=20,1,...,m — 1. According to Lemma 4,

Z Gy f (V) = Z ( H {z}_{v;)f('v)m() for all u € U(0).

veEV(8) vGV(G) zeU{(8) { } B {E
THuU

So in either case we have (8).
(d)=>(a). Assume that (d) holds. Let § € S. For u,v € U(4),

T— v 1 fu=vw
Aoy = H = { . ’
U (8) T — U 0 ifus#w.
THEU
Case 1: |V{(8)| < m. In this case V(8) C U(F). As
flu) = Z auy f(v) =0 for each u € V(8),

vEV {8}

we get
S F@[p*=0 foralln=0,1,2,...

Case 2: [V(8)| > m. In this case U(#) c V(8), so for any u € U(8) and
v € V(8) we have {u} = {v} = 8 and hence [u] — {v] = u — v. Since

Z ( H g%::g%)f(v)m Z Ay f(V) =0

veV(8) * zeU(h) vV ()
THEU

for every u € U(0), it follows from Lemma 4 that
Y f@pT = ) P+ ), R f) =0
veEV(6) veU () vEV(BN\U (6)
foralln=0,1,...,m— 1.
In both cases,

Z f)v]"=0 forn=0,1,...,m~— 1.
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Thus for each nonnegative integer n < m,

> 10(5)- 2 mz (—1)"s(n, )} /n

veEV (8) véif(é) E
== Z( "is(n,5) S f)
veVig)

where s(n,7) (0 < 7 < n) are Stirling numbers of the first kind, i.e.

Z (_1)§I] ([Eﬁéf 1/)83]) E?wiﬂsé;ﬁa/ﬁﬂ

TL
IC{1,....k}
{Eséi’}-/ﬁa}mg

Z z ([:i]) (Wl)ii‘iggﬁiagﬁf&g’jﬁg — ().

veV(8) IC{1,...,k}
Faef:l-/ﬁs:v

Therefore by the proof of (b)=(c),

: — !” 2is 1,!933 Zriliscr s /B . e - 1
lim ) (=1)llpFeert/Begtnifeead/Be /(1 )

IC{1,....k)
{EHE} lfﬁﬁ}mﬂ

m—1
= lim (__1)-& ( Z (m]_)!-” ([236;1/631)gﬁﬂigaefﬂr#/ﬁa)tn—m-f.l

£ et 3}
n=u IC{1,....,k}
{zaﬁf 1{’55}=§

= 0.
Now for every integer z,

k
TT(1 — rV/Beg2rilaa=a)/te)

g ]

1

Z (__1)1”?,,3345}1/5’3eg?f’igﬁgf({rs—m)/ﬁﬂ

IC{1,....k})
i Z ﬁmgﬁtﬂﬁg Z (ml)gltyzﬂﬁfls’{ﬁﬂ gzﬁizﬂﬁiﬁﬁ,jﬁa
g€ s IC{1,....k}

{Yeerl/Bs}=0

e Z E—Eﬂ*iﬂ'zﬁa((l . ?,)m-—l) e G((]. . ?,)mml) (7‘ N 1)

ge s

Applying Lemma 1 we then obtain part (a).
The proof of Theorem 1 is now complete.
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3. Reciprocals of common differences. In 1989 M. Z. Zhang [19]
showed the following surprising result analytically: Provided that (2) is a
cover of Z, .., 1/ns € ZT for some I C {1,...,k}. Here we give

THEOREM 2. Let (1) be a cover of Z. Then for any J C {1,.. .;1, k} there
isan I C{1,...,k} with I # J such that

(9) Z ZWEZ

SEI
Proof. Set 8 ={> _, 1/,6’3},, By Theorem 1,

Z (M}_)!If ([2361 1/53}) aﬁﬂiﬂﬁwaﬁﬁﬁ = 0,

I’;{l,mjk} 0
{Saﬁf I/Qﬂ}mﬂ

that is,
Z (ml)lllggﬂizﬁgfaa/ﬁﬁ s m{ml)!Jlazw’iEaEJﬂfafﬁH*

JEIC{L,... .k}
{E#ﬁf 1/8s p=0

Therefore
{If_; {1,...,k}: T # J and {Zgi} =9} #* 0.

s f
We are done.

In the case J = @), Theorem 2 yields a generalization of Zhang’s result

({19]).

Provided that (1) is an m-cover of Z with m € Z™*, Theorem 2 asserts
that for any J C {1,...,k},

(10) S(J) = {I C{1,...,k}:1+# J and Z Z—— = Z}

3&.{ 3€ J -
is nonempty. This bec&m&s trivial if

(11) z . Z ﬁ for some I C {1,...,k} with I # J.

sl
What can we say a,bout

(12) Z(J) = {Z zﬁ : 1€ S(J }

s&l s&J
if it does not contain zero? The following theorem gives us more information.

THEOREM 3. Assume that (1) is an m-cover of Z. Let J be a subset of
{1,...,k} such that (11) fails, i.e. 0 & Z(J) where S(J) and Z(J) are given
by (10) and (12). Then



120 Z. W. Sun

(i) |Z(J)| 2 m and hence

(13) Z-E;}md(J) {Zé}am,

gz=] 86 J

where d(J) is the least positive integer that can be written as the difference
of two (distinct) numbers of the form

ZE—-EZ-I-Z[J, where I C {1,...,k}.

sl sed

(i) When d(J) > [S5_, 1/8,]/m, d(J) equals [, 1/8:)/m and di
vides [) .7 1/8s], and for every n =0,1,...,m there exist at least

(?:) / * (m{zgy 1/5?/[zf=1 1/@})
subsets I of {1,...,k} such that

(14) > 5= {éé‘] {Zﬁs}

s&f s€J
hence
Tl

S =2 ( *
N2 S ey 118158 1781
Proof . Let 0 = {) .., 1/8:}, V(8), U(#) and f(x) be as in Theorem 1.
If |[V(8)] < m, then V(8) C U(#), hence by Theorem 1 for all u € V(8) C

U(®),
fw= Y ((II F=2)sw=o

veEV{(8) ~ xeU(H)
THEU

which is impossible since 0 ¢ Z(J) and

(Z ﬁ ) 1) 1 Eﬂzﬁwgaﬂ/ﬁq :75 0.

5¢.J

) -1 and |Z(J)]=m.

Thus |V(8)| > m.
(i) Let vg < v3 < ... < v,, be the first m + 1 elements of V(8) in
ascending order. Clearly

L+ [ Z(J)] = 12(J) U {0}] = {ﬁ-Z%:vev(a)}i = |V(0)| > m+1
seJ 7°

arnd
K FrE— 1

1
Z —— > Max v > Uy, = Z(‘iﬁi ] — vi) + vg 2 md(J) + 8.

)
1 veV(8) P
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(it) If (V(8)] > m + 1 then

Zw} max v 2 Upym + 12 14+ md(J)+ 6.
*:z veEV{8)

Now suppose that d{(J) > {Zifml 1/8s]/m. Then we must have |V (8)| =
m + 1, thus V{(8) = {vg,vy,...,vn} and {Z{J)i = |V{8)| — 1 =m. As

md(J) > {Zg } [Vm] =vo — 0 + Z(vwzmm)>[v{;}+md(ﬂ

5=1 4 s}
f o1
md(J) = {Z m}? lwe] = 0
— fs
and
g1 I v §
o] =v0— 0+ (Vg1 —v:) =0+ Y d(J) =nd(J)
i) 3 s

forn=1,...,m.
Choose 0 < j < m such that v; = ) _;1/8,. Then

M-z i]/ 5]
Set

U'(8) = {vi: 0 < i <m, i # j}.
By Theorem 1, for anyn=0,1,...,m with n #:},

o= > (I z=)mo=% (11 223

SICREO =0 G
_ i( ﬁ W(J) +6 = (td(1) +6)\ o,
=\ 2t d(J)+ 0~ (nd(J) +0) |
i#jn |
“f e i—t
f==f} =1 I
17,1
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Since
ﬁ i—j _ Ilizo,iz;(0 j)/l_ﬂio,a;en(% - n)
o LT n—7J j—n
1=0
i,
_ im0 (0= 7) - T1iZ ;416 = 5)
].—.[?;01 (Z o n) ' H;in+1(7/ TL)
— . (__1).7'7'(m._})' _(“1)3 n+1 m m |
(—=1)*nl(m — n)! n ]
we have
Z (—1) 1 e2miZacras /B,
IC{1,....k}

= f(on) = —(=17"" (7:) (?) K (Z f}')

sCJ
~1
. m, 1m :
= (—=1)7—" —1 | J| 27miXseras/Ba
(7)) o
and hence
(rea. m: Y f=2l 1 (1)
- vy Bs  m [ Bs — Bs
— Z 1
IC{1,....k}
Ysc1l/Bs=nd(J)+6
~ —1 [ I] 2mi8seras /Bs | m my
> Z ( yle . ;)
IC{1....k}
Eaejl/ﬁsznd(t])-{—g-
theretfore
1
1+ |S(J)| = {Ig{l,...,k}:zme\/(@)}
"y s
1TL 1
= I C{1,...,k}: — =, = nd(J —I—Q}
> 1L >3 ()

=3 (1)) =2 (7)

This ends the prootf.
Now let us apply Theorem 3 to those m-covers (1) with Zle 1/8s = m.
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THEOREM 4. Let (1) be an m-cover of Z with Zk 1/8s = m € ZT,

gu=l

which happens if (1) is an exact m-cover of Z by residue classes. Then

(i) For everyl=1,...,k — 1 we have

k
1 1
15) el e
( 5) ﬁmzf"'i:':{ 163’ o maﬁ{ﬁl}“**'ﬁﬁf}

(ii) Forany @ #£ J C{1,...,k} there exists an I C {1,...,k} withI # J
such that

1 1
25 "2,

furthermore when ) ., 1/8s € Z there are at least

m
>m > 1
(236,} 1/}33)
subsets I of {1,...,k} satisfying (186).

Proof. (i) For I = 1,...,k — 1 (15) follows from part (ii) in the case

J=A{l+1,...,k}, so we proceed to the proof of part (ii).
* & : . * - * - * &
(ii) If (11) fails then by part (i) of Theorem 3 and the equality > _, 1/8,

= m we must have
1 } 1
Y —=0, ie. Y —€L
{3EJ '83 ﬁ‘g

s&J
Observe that
1 i 1
0 < Z — < w— == YT,
B =B
Y ,c;1/Bs €Z,thenm >1and }, ;1/Bs =nforsomen=1,...,m-1,

by part (ii) of Theorem 3 there are at least (7"} /(™) = (') > m subsets I
of {1,...,k} such that

1 nlenl ~ 1 1
P RS I SV >
We are done.

Remark. In 1992 Z. W. Sun ([17]) proved that if (2) is an exact
m-cover of Z then for each n = 1,...,m there exist at least (7') subsets I of

{1,...,k} such that 3}, ., 1/n, equals n. The lower bounds (") (1 < n < m)
are best possible, and the Riemann zeta function was used in the proof.

From Theorem 3 we can also deduce the following theorem which extends
Zhang’s result ([19]) and the theorem of Sun [17] even in the case [ = k.
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THEOREM 5. Let (1) be an m-cover of Z and | a positive integer not
exceeding k such that

4. 1
(17) mm{l,a 51} > Z Bt

I<t<k |
where ), <t<k 1/B; is considered to be zero for | = k. Then
(i) There are at least m pﬁsitii}e integers representable by

(18) Z - Y ,5 where I C {1,...,k},
15

&ef i<t<k

thus we have

(19) Zﬁ Z Z;t::»

s=x] s=1 3 <tk

(ii) Provided that any positive integer iegs'than [Zz’m 1/Bs]/m cannot

be erpressed as the difference of two integers of the form (18), {}:ﬁm 1/8s]

is divisible by m and for each n = 0,1,...,m there are at least (") subsets
I of {1,...,k} such that

r k&
20) Zﬁs m z }+ E Bﬁ

s€l hﬂml [<i<k

hence there exist at least 2™ — 1 subsets I of {1,...,k} with

c 7+
Zﬁ Z""Zﬁt

s& [ [<t<k

Proof Let J={1<t<k:t> 1} By (17),

S0 m {S5)-

teJ teJ

>R

{<t<k
For any I C {1,...,k},if I C J then

U<Zﬁt Zm<l

teJd
and it I € J then

1
m>mm{ I{Sfi} m>0
% iezi Bs z;k

So (11) fails, moreover Z(J) given by (12) contains only positive integers.
Applying Theorem 3 we obtain the desired results.
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Erdds conjectured {bef{}re 1950) that if (2) is a cover of Z with 1 < n; <

ng < ... < ng then E , 1/ng > 1. H. Davenport, L. Mirsky, D. Newman
and R Rado confirmed thzs conjecture (independently) by proving that if
(2) is an exact cover of Z with 1 < ny < ... < ng—y < ng then ppoy = ng.
For further improvements see Znam [20], Eﬁ’L Newman [10], Porubsky [11,
12], M. A. Berger, A. Felzenbaum and A. S. Fraenkel [1]. The best record
in this direction is the following result due to the author which is partially
announced in [15] and completely proved in [16]: Let Ay,..., A; be complex
numbers and ng € Z* a period of the function
k

ﬁ‘(ﬁf) m Z Aﬂ‘

3 ]
TEa, {mod ng)

If d € Z* does not divide ng and
k

\ |
Z j # 0 for some integer a,
din,, aji;{m{m d)
then
_ _ d .
- - 1< s < > e >
{asmodd:1< s <k, ding}| in, TR > p(d),

d{ﬁg
where p(d) is the least prime divisor of d. Here we have

THEOREM 6. Let (1) be an m-cover of Z with By < ... € Br <

Bret+1 = ... = Oy where 1 <1 < k. Then either

(21) | 2 Bx/max{l,Bx-1} (>1ifBx>1),
or there are at least m pmé'tiz}e integers in the form

22 — where I C {1,...,k},
( } ; ﬁ& ﬁk - { }
and hence

23 — — >,
(2 ; 5, ;1 5, ; 7

(Also, ng 1/8s > Zsmz 1/Br 2 k2 m if B < 1.)
Proof. Clearly | < B/ max{l, Bx_;} if and mly if
1 1
min<l, —,..., —— (== ]
{ B ﬁkmf} Z ﬁf; (= 1/Be)

k-l<i<k

Therefore Theorem 6 follows from part (i) of Theorem 5.
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Note that when Br_; > 1 and Br/fr—; € Z
53{:/3171&3{{}»3 ﬁscms} = ﬁk/ﬁ&wi D ?(ﬁk/ﬁkw) (E: p(ﬂg) 1f ﬁkmg”@k - Z}f

4. Some local-global results. In 1958 5. K. Stein [14] conjectured
that whenever the residue classes in (2) are pairwise disjoint and the moduli
ni,...,ng > 1 are distinct there exists an integer £ with 1 < z < 2% such
thai z is not covered by (2). Erdés [6] confirmed this conjecture with & - 2%
instead of 2%. Since the Davenport-Mirsky—Newman-Radé result indicates
that an exact cover of Z by (finitely many) residue classes cannot have its
moduli distinct and greater than one, Erdés proposed the stronger conjec-
ture that any system of & residue classes not covering all the integers omits
a positive integer not exceeding 2*. Both conjectures have some local-global
character. In 1969 R. B. Crittenden and C. L. Vanden Eynden [2] claimed
their positive answer to the stronger conjecture. Later in [3] a long indirect
and awkward proot was given for k 2> 20, the authors concluded the paper
with the statements: “Of course it remains to show the conjecture is true
for ¥ < 20. This may be checked by more special arguments.”

In 1970 Crittenden and Vanden Eynden [4] conjectured further that if
all the moduli ne in (2) are greater than an integer 0 <! < k then (2) is
a cover of Z if it covers all the integers in the interval {1,2%~!(1 4+ 1)]. In
contrast with the Crittenden—Vanden Eynden conjecture we give

THEOREM 7. For any m € Z%, (1) is an m-cover of Z if it covers
2F=M(M + 1) consecutive integers at least m times, where

(24) M = I%ﬁ;bi{l <s<k:Bs =P}

Proof. Let 8 > 0 be a number such that J = {1 <s < k: 8, = §} has
cardinality A, As

| 1 |
*{{25} IC 1)
(T 5+ X gorctnf

A
gt s,
T e

g

I

By
et
e ey,
N

g

1

gy

b

“?‘*‘

i

e

g
St pomnnnn?

ue AL s, AN\ T
< {E—.IQJ}; {I:1C{1,... k}\J}

= (|J]+ 1) - 28" Ml = 2v=M (a1 4 1),

Theorem 1 implies Tneorem 7.
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The following example noted by Crittenden and Vanden Eynden [4]
shows that the number g(k, M) = 2™ (A7 + 1) in Theorem 7 is best pos-
sible.

EXAMPLE. Let M = n — 1 € Z7. Consider the system A consisting of
the following k > A residue classes:

14nZ, 2+nZ, ..., M-+nZ,
n+ 2nd, 2n+ QERZ§ e Qb =M=lp L od=Mp7

Observe that A together with 2" ~MnZ forms an exact cover of Z. So A
covers positive integers from 1 to 28 M (Al 4+ 1) — 1, but it does not cover
all the integers.

Result (II) stated in Section 1 follows from Theorem 7 and Example,
since (1) covers o + fz (where a € R, g € R* and z € Z) at least m times
if and only if {ﬂﬁ;;"lﬁ + %Z}:=1 covers x at least m times, and 2°7H{({+1) >

28 M(AM +1)if k> M > 1> 0. (The case | = 0 can be reduced to the case
| =1.)

5. Several open problems. Theorem 1 tells us that (2) is a cover of
Z if it covers integers from 1 to

]

1{{2“?%“} :Ig {1}**§k}} g 23& E 2?11‘1‘*..'5“?13&*
: 8

s ]

This suggests

PROBLEM 1. Can we find a polynomial P with integer coefficients such
that a finite system (2) of residue classes forms a cover of Z whenever it
covers all positive integers not exceeding P(ny 4+ ...+ ng)?

In 1973 L. J. Stockmeyer and A. R. Meyer proved that the problem
whether there exists an integer not covered by a given (2) is NP-complete.
In 1991 S. P. Tung [18] extended this result to algebraic integer rings. If the
required P in Problem 1 exists, then there is a polynomial time algorithm
to decide whether (2) covers all the integers or not. So a positive answer to
- Problem 1 would imply that NP = P.

By appearances Theorems 2-7 involve no roots of unity. Perhaps vast
generalizations of them could be made.

PROBLEM 2. Let Aq,..., A be sets of natural numbers having pos-
itive densities d{A1),...,d(Ax) respectively. If no A, contains my € Z7

. k , .
consecutive integers, does | J,_, As have density 1 when it covers m; ... my

arbitrarily large consecutive integers? Suppose that {A4,}*_, covers all the
natural numbers; does there exist, forany J C {1,...,k},an I C {1,...,k}
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with I # J such that
> d(Ag) =) d(A,) € Z?

s€] sed
PrOBLEM 3. Let K be an algebraic number field and Og the ring of
algebraic integers in K. Let ay,...,a; € Og and Ay, ..., A beideals of Og
with norms N(A;),..., N(A) respectively. If {a, + A, }*_, forms an exact
m-cover of Oy for some m € Z™, is it true that for any § # J C {1,...,k}
there exists a subset [ of {1,...,k} with I # J such that
1 1 0
— N(A;) ; N(As)

Acknowledgements. The author is indebted to the referee for his help-
ful suggestions. |
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