## Covering the integers by arithmetic sequences

by

## ZHI WEI SUN (Nanjing)

1. Introduction. Let  $\mathbb{R}$  be the field of real numbers and  $\mathbb{R}^+$  the set of positive reals. For  $\alpha \in \mathbb{R}$  and  $\beta \in \mathbb{R}^+$  we call

$$\alpha + \beta \mathbb{Z} = \{ \dots, \alpha - 2\beta, \alpha - \beta, \alpha, \alpha + \beta, \alpha + 2\beta, \dots \}$$

an arithmetic sequence with common difference  $\beta$ . In the case  $\alpha \in \mathbb{Z}$  and  $\beta \in \mathbb{Z}^+$ ,  $\alpha + \beta \mathbb{Z}$  is just the residue class  $\alpha \mod \beta$  with modulus  $\beta$ .

Let m be a positive integer. A finite system

(1) 
$$A = \{\alpha_s + \beta_s \mathbb{Z}\}_{s=1}^k \quad (\alpha_1, \dots, \alpha_k \in \mathbb{R} \text{ and } \beta_1, \dots, \beta_k \in \mathbb{R}^+)$$

of arithmetic sequences is said to be an (exact) m-cover of  $\mathbb{Z}$  if it covers each integer at least (resp., exactly) m times. Instead of "1-cover" and "exact 1-cover" we use the terms "cover" and "exact cover" respectively.

Since they were introduced by P. Erdős ([5]) in the early 1930's, covers of  $\mathbb{Z}$  by (finitely many) residue classes have been studied seriously and many nice applications have been found. (Cf. sections A19, B21, E23, F13 and F14 of R. K. Guy [9].) For problems and results in this area we refer the reader to surveys of Erdős [7, 8], Š. Porubský [13] and Š. Znám [21]. Recently further progress was made by various authors.

If a finite system

(2) 
$$A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k \quad (a_1, \dots, a_k \in \mathbb{Z} \text{ and } n_1, \dots, n_k \in \mathbb{Z}^+)$$

of residue classes forms an m-cover of  $\mathbb{Z}$ , then  $\sum_{s=1}^{k} 1/n_s \geq m$ , and the equality holds if and only if (2) is an exact m-cover of  $\mathbb{Z}$ . This becomes apparent if we calculate

$$\sum_{s=1}^{k} |\{0 \le x < N : x \equiv a_s \pmod{n_s}\}| = \sum_{x=0}^{N-1} |\{1 \le s \le k : x \equiv a_s \pmod{n_s}\}|$$

where N is the least common multiple of  $n_1, \ldots, n_k$ .

Research supported by the National Nature Science Foundation of P.R. China.

110 Z. W. Sun

In this paper we investigate properties of m-covers of  $\mathbb{Z}$  in the form (1). In the next section we shall give three equivalent conditions for (1) to be an m-cover of  $\mathbb{Z}$ . One is that (1) covers W consecutive integers at least m times where

$$W = \left| \left\{ \left\{ \sum_{s \in I} \frac{1}{\beta_s} \right\} : I \subseteq \{1, \dots, k\} \right\} \right|$$

([x] and  $\{x\}$  stand for the integral and fractional parts of a real x respectively throughout the paper), the other two are finite systems of equalities (not inequalities) involving roots of unity. Our tools used to deduce them include Vandermonde determinants, Stirling numbers, a little analysis and linear algebra.

In Sections 3 and 4 we will derive a number of results including the following ones:

(I) Let (1) be an m-cover of  $\mathbb{Z}$  and  $J \subseteq \{1, \ldots, k\}$ . Then

$$\left\{\sum_{s\in I}\frac{1}{\beta_s}\right\} = \left\{\sum_{s\in J}\frac{1}{\beta_s}\right\} \quad \text{for some } I\subseteq \{1,\ldots,k\} \text{ with } I\neq J,$$

provided  $\sum_{s=1}^{k} 1/\beta_s = m$  (e.g. (1) is an exact m-cover of  $\mathbb{Z}$  with  $\alpha_s \in \mathbb{Z}$  and  $\beta_s \in \mathbb{Z}^+$  for  $s=1,\ldots,k$ ) we have  $\sum_{s\in I} 1/\beta_s = \sum_{s\in J} 1/\beta_s$  for some  $I\subseteq \{1,\ldots,k\}$  with  $I\neq J$  if  $\emptyset\neq J\subset \{1,\ldots,k\}$ , when  $\sum_{s\in I} 1/\beta_s = \sum_{s\in J} 1/\beta_s$  for no  $I\subseteq \{1,\ldots,k\}$  with  $I\neq J$  there are at least m nonzero integers of the form  $\sum_{s\in I} 1/\beta_s - \sum_{s\in J} 1/\beta_s$  where  $I\subseteq \{1,\ldots,k\}$ .

(II) Let  $k \ge l \ge 0$  be integers. Then  $2^{k-l}(l+1)$  is the smallest  $n \in \mathbb{Z}^+$  such that any system of k arithmetic sequences with at least l equal common differences covers an arithmetic sequence at least m times if it covers n consecutive terms in the sequence at least m times.

The last section contains some unsolved problems related to possible extensions.

2. Characterizations of m-covers. Let us provide several technical lemmas the first of which serves as the starting point of our new approach.

LEMMA 1. Let  $m \in \mathbb{Z}^+$  and  $x \in \mathbb{R}$ . Then (1) covers x at least m times if and only if

(3) 
$$\prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s}) = o((1 - r)^{m-1}) \quad (r \to 1).$$

Proof. Set  $I = \{1 \le s \le k : x \in \alpha_s + \beta_s \mathbb{Z}\}$  and  $I' = \{1, \ldots, k\} \setminus I$ .

Clearly,

$$\lim_{r \to 1} \frac{\prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s})}{(1 - r)^{|I|}}$$

$$= \lim_{r \to 1} \prod_{s \in I'} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s}) \cdot \lim_{r \to 1} \prod_{s \in I} \frac{1 - r^{1/\beta_s}}{1 - r}$$

$$= \prod_{s \in I'} (1 - e^{2\pi i (\alpha_s - x)/\beta_s}) \cdot \prod_{s \in I} \frac{d}{dr} (r^{1/\beta_s}) \Big|_{r=1}$$

$$= \prod_{s \in I'} (1 - e^{2\pi i (\alpha_s - x)/\beta_s}) \cdot \prod_{s \in I} \beta_s^{-1} \neq 0,$$

and hence

$$\lim_{r \to 1} \frac{\prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s})}{(1 - r)^{m-1}}$$

$$= \lim_{r \to 1} \frac{\prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s})}{(1 - r)^{|I|}} (1 - r)^{|I| - m + 1}$$

$$= \begin{cases} 0 & \text{if } |I| > m - 1, \\ \infty & \text{if } |I| < m - 1. \end{cases}$$

Now it is apparent that  $|I| \ge m$  if and only if (3) holds. We are done.

LEMMA 2. Let  $\theta_1, \ldots, \theta_n$  be real numbers with distinct fractional parts. For any  $\varepsilon > 0$  there exists a  $\delta > 0$  such that if

$$\left|\sum_{t=1}^n e^{2\pi i s \theta_t} x_t\right| < \delta$$

for every s = 1, ..., n then  $|x_t| < \varepsilon$  for all t = 1, ..., n.

Proof. Let A be the matrix  $(e^{2\pi i s \theta_t})_{\substack{1 \leq s \leq n \\ 1 \leq t \leq n}}$ . Then

is a determinant of Vandermonde's type. As  $|A| \neq 0$  the inverse matrix of A exists; we denote it by  $B = (b_{st})_{1 \leq s \leq n}$ .

Let 
$$b = \max\{|b_{st}| : s, t = 1, \ldots, n\} > 0$$
 and  $\delta = \varepsilon/(bn)$ . Let  $x_1, \ldots, x_n$ 

be any complex numbers, and set

$$y_s = \sum_{t=1}^n e^{2\pi i s \theta_t} x_t \quad \text{for } s = 1, \dots, n.$$

Let

$$ec{x} = egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} \quad ext{and} \quad ec{y} = egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix}.$$

Then  $\vec{x} = BA\vec{x} = B\vec{y}$ . If  $|y_s| < \delta$  for every  $s = 1, \ldots, n$ , then

$$|x_s| = \left|\sum_{t=1}^n b_{st} y_t\right| \le \sum_{t=1}^n b|y_t| < bn\delta = \varepsilon \quad \text{for all } s = 1, \ldots, n.$$

This concludes the proof.

LEMMA 3. Let  $m \in \mathbb{Z}^+$ . Then

(4) 
$$\sum_{n=0}^{m-1} a_n t^{n-m+1} = o(1) \quad (t \to 0)$$

if and only if  $a_0 = ... = a_{m-1} = 0$ .

Proof. The "if" direction is trivial. When  $a_0, \ldots, a_{m-1}$  are not all zero, for the least k such that  $a_k \neq 0$  we have

$$\sum_{n=0}^{m-1} a_n (x^{-1})^{n-m+1} = \sum_{n=k}^{m-1} a_n x^{m-1-n} \sim a_k x^{m-1-k} \qquad (x \to \infty),$$

which contradicts (4). This ends the proof.

Lemma 4. Let  $n \ge m > 0$  be integers and  $a_1, \ldots, a_n$  distinct numbers. Then the system

(5) 
$$\begin{cases} x_1 + \ldots + x_n = 0, \\ a_1 x_1 + \ldots + a_n x_n = 0, \\ a_1^2 x_1 + \ldots + a_n^2 x_n = 0, \\ \ldots \\ a_1^{m-1} x_1 + \ldots + a_n^{m-1} x_n = 0, \end{cases}$$

is equivalent to

(6) 
$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = 0, \\ a_{21}x_1 + \ldots + a_{2n}x_n = 0, \\ \ldots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = 0, \end{cases}$$

where

$$a_{st} = \prod_{\substack{i=1 \ i \neq s}}^{m} \frac{a_i - a_t}{a_i - a_s}$$
 for  $s = 1, ..., m$  and  $t = 1, ..., n$ .

Proof. Rewrite (5) in the form

$$\begin{cases} x_1 + \ldots + x_m = -\sum_{m < t \le n} x_t, \\ a_1 x_1 + \ldots + a_m x_m = -\sum_{m < t \le n} a_t x_t, \\ a_1^2 x_1 + \ldots + a_m^2 x_m = -\sum_{m < t \le n} a_t^2 x_t, \\ a_1^{m-1} x_1 + \ldots + a_m^{m-1} x_m = -\sum_{m < t \le n} a_t^{m-1} x_t. \end{cases}$$

By Cramer's rule, this says that

$$= -\sum_{m < t \le n} x_t \frac{\prod_{1 \le i < s} (a_t - a_i) \cdot \prod_{s < i \le m} (a_i - a_t) \cdot \prod_{1 \le i < j \le m} (a_j - a_i)}{\prod_{1 \le i < s} (a_s - a_i) \cdot \prod_{s < i \le m} (a_i - a_s) \cdot \prod_{1 \le i < j \le m} (a_j - a_i)}$$

$$= -\sum_{m < t \le n} a_{st} x_t \qquad (Vandermonde)$$

for every  $s = 1, \ldots, m$ , i.e.

$$\sum_{t=1}^{m} \delta_{st} x_t + \sum_{m < t \le n} a_{st} x_t = 0 \quad \text{for } s = 1, \dots, m$$

where  $\delta_{st}$  is the Kronecker delta. Since  $a_{st} = \delta_{st}$  for  $s, t = 1, \ldots, m$ , we have finished the proof.

Now we are ready to present

THEOREM 1. Let  $A = \{\alpha_s + \beta_s \mathbb{Z}\}_{s=1}^k$ , where  $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$  and  $\beta_1, \ldots, \beta_k \in \mathbb{R}^+$ . Let  $m \in \mathbb{Z}^+$  and

$$S = \left\{ 0 \le \theta < 1 : \left\{ \sum_{s \in I} \frac{1}{\beta_s} \right\} = \theta \text{ for some } I \subseteq \{1, \dots, k\} \right\}.$$

Let

$$V(\theta) = \left\{ \sum_{s \in I} \frac{1}{\beta_s} : I \subseteq \{1, \dots, k\} \text{ and } \sum_{s \in I} \frac{1}{\beta_s} - \theta \in \mathbb{Z} \right\}$$

and  $U(\theta)$  be a set of m distinct numbers comparable with  $V(\theta)$  (i.e.  $|U(\theta)| = m$ , and either  $U(\theta) \subseteq V(\theta)$  or  $U(\theta) \supseteq V(\theta)$ ). Then the following statements are equivalent:

- (a) A is an m-cover of  $\mathbb{Z}$ .
- (b) A covers |S| consecutive integers at least m times.
- (c) For each  $\theta \in S$ ,

(7) 
$$\sum_{\substack{I\subseteq\{1,\ldots,k\}\\\{\Sigma_{s\in I}1/\beta_s\}=\theta}} (-1)^{|I|} {\left[\sum_{s\in I}1/\beta_s\right]\choose n} e^{2\pi i \Sigma_{s\in I}\alpha_s/\beta_s} = 0$$

holds for every  $n = 0, 1, \ldots, m-1$ . (As usual  $\binom{x}{n}$  denotes  $\frac{x(x-1)\dots(x-n+1)}{1\cdot 2\cdot \dots \cdot (n-1)n}$ .)

(d) For any  $\theta \in S$ ,

(8) 
$$\sum_{v \in V(\theta)} a_{uv} f(v) = 0 \quad \text{for all } u \in U(\theta),$$

where

$$a_{uv} = \prod_{\substack{x \in U(\theta) \\ x \neq u}} \frac{x - v}{x - u} \quad and \quad f(v) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \Sigma_{s \in I} 1/\beta_s = v}} (-1)^{|I|} e^{2\pi i \Sigma_{s \in I} \alpha_s/\beta_s}.$$

Proof. (a) $\Rightarrow$ (b). This is obvious.

(b) $\Rightarrow$ (c). Suppose that each of  $x+1,\ldots,x+|S|$  is covered by  $\mathcal A$  at least m times, where x is an integer. By Lemma 1 for every  $n=1,\ldots,|S|$  we have

$$0 = \lim_{r \to 1} \frac{\prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x - n)/\beta_s})}{(1 - r)^{m - 1}}$$

$$= \lim_{r \to 1} \left( (1 - r)^{1 - m} \times \sum_{I \subseteq \{1, \dots, k\}} (-1)^{|I|} r^{\sum_{s \in I} 1/\beta_s} e^{2\pi i \sum_{s \in I} (\alpha_s - x)/\beta_s} e^{-2\pi i n \sum_{s \in I} 1/\beta_s} \right)$$

$$= \lim_{r \to 1} \sum_{\theta \in S} F(r, \theta) e^{-2\pi i n \theta},$$

where

$$F(r,\theta) = \sum_{\substack{I \subseteq \{1,...,k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} r^{\Sigma_{s \in I} 1/\beta_{s}} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}} e^{-2\pi i x \theta} / (1-r)^{m-1}.$$

Let  $\varepsilon$  be an arbitrary positive number. By Lemma 2 there is an  $\eta>0$  such that if

$$\left|\sum_{\theta \in S} e^{-2\pi i n \theta} x_{\theta}\right| < \eta$$

for every  $n=1,\ldots,|S|$  then  $|x_{\theta}|<\varepsilon$  for all  $\theta\in S$ . Since

$$\sum_{\theta \in S} F(r,\theta)e^{-2\pi i n\theta} = o(1) \quad (r \to 1) \quad \text{for } n = 1, \dots, |S|,$$

there exists a  $\delta > 0$  such that whenever  $|r-1| < \delta$ ,

$$\left|\sum_{\theta \in S} F(r,\theta)e^{-2\pi i n\theta}\right| < \eta \quad \text{for all } n = 1, \dots, |S|$$

and hence by the above  $|F(r,\theta)| < \varepsilon$  for each  $\theta \in S$ . This shows that  $\lim_{r\to 1} F(r,\theta) = 0$  for every  $\theta \in S$ .

For any  $\theta \in S$  we have

$$0 = \lim_{r \to 1} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} r^{\Sigma_{s \in I} 1/\beta_{s}} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}} / (1-r)^{m-1}$$

$$= \lim_{t \to 0} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} (1-t)^{[\Sigma_{s \in I} 1/\beta_{s}] + \theta} t^{1-m} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}}$$

$$= \lim_{t \to 0} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} \sum_{n=0}^{[\Sigma_{s \in I} 1/\beta_{s}]} (\sum_{s \in I} 1/\beta_{s}] (-t)^{n} t^{1-m} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}}$$

$$= \lim_{t \to 0} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} ((-1)^{|I|} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}}$$

$$\times \sum_{n=0}^{m-1} (\sum_{s \in I} 1/\beta_{s}] (-1)^{n} t^{n-m+1}$$

$$= \lim_{t \to 0} \sum_{n=0}^{m-1} (-1)^{n} \left(\sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} (\sum_{s \in I} 1/\beta_{s}] e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}} \right) t^{n-m+1}.$$

In view of Lemma 3, (7) holds for every n = 0, 1, ..., m - 1. Therefore part (c) follows.

(c) $\Rightarrow$ (d). Fix  $\theta \in S$ . For each n = 0, 1, ..., m - 1,

$$x^{n} = \sum_{j=0}^{n} S(n,j)x(x-1)...(x-j+1)$$

where S(n,j) ( $0 \le j \le n$ ) are Stirling numbers of the second kind, so by (c) we have

$$\sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_s\} = \theta}} (-1)^{|I|} \left[ \sum_{s \in I} 1/\beta_s \right]^n e^{2\pi i \Sigma_{s \in I} \alpha_s/\beta_s}$$

$$= \sum_{j=0}^n j! S(n, j) \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_s\} = \theta}} (-1)^{|I|} {\left[ \sum_{s \in I} 1/\beta_s \right] \choose j} e^{2\pi i \Sigma_{s \in I} \alpha_s/\beta_s} = 0,$$

i.e.

$$\sum_{\substack{v \in V(\theta) \\ \Sigma_{s \in I} 1/\beta_s = v}} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \Sigma_{s \in I} 1/\beta_s = v}} (-1)^{|I|} e^{2\pi i \Sigma_{s \in I} \alpha_s/\beta_s} [v]^n = 0.$$

Case 1:  $|V(\theta)| \leq m$ . In this case

$$\sum_{v \in V(\theta)} [v]^n f(v) = 0 \quad \text{for every } n = 0, 1, \dots, |V(\theta)| - 1.$$

Hence (8) holds since f(v) = 0 for all  $v \in V(\theta)$  (Vandermonde).

Case 2:  $|V(\theta)| > m$ . In this case,  $U(\theta) \subset V(\theta)$  and

$$\sum_{v \in U(\theta)} [v]^n f(v) + \sum_{v \in V(\theta) \setminus U(\theta)} [v]^n f(v) = 0$$

for each n = 0, 1, ..., m - 1. According to Lemma 4,

$$\sum_{v \in V(\theta)} a_{uv} f(v) = \sum_{v \in V(\theta)} \left( \prod_{\substack{x \in U(\theta) \\ x \neq u}} \frac{[x] - [v]}{[x] - [u]} \right) f(v) = 0 \quad \text{for all } u \in U(\theta).$$

So in either case we have (8).

 $(d)\Rightarrow(a)$ . Assume that (d) holds. Let  $\theta \in S$ . For  $u,v \in U(\theta)$ ,

$$a_{uv} = \prod_{\substack{x \in U(\theta) \\ x \neq u}} \frac{x - v}{x - u} = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

Case 1:  $|V(\theta)| \le m$ . In this case  $V(\theta) \subseteq U(\theta)$ . As

$$f(u) = \sum_{v \in V(\theta)} a_{uv} f(v) = 0$$
 for each  $u \in V(\theta)$ ,

we get

$$\sum_{v \in V(\theta)} f(v)[v]^n = 0 \quad \text{for all } n = 0, 1, 2, \dots$$

Case 2:  $|V(\theta)| > m$ . In this case  $U(\theta) \subset V(\theta)$ , so for any  $u \in U(\theta)$  and  $v \in V(\theta)$  we have  $\{u\} = \{v\} = \theta$  and hence [u] - [v] = u - v. Since

$$\sum_{v \in V(\theta)} \left( \prod_{\substack{x \in U(\theta) \\ x \neq u}} \frac{[x] - [v]}{[x] - [u]} \right) f(v) = \sum_{v \in V(\theta)} a_{uv} f(v) = 0$$

for every  $u \in U(\theta)$ , it follows from Lemma 4 that

$$\sum_{v \in V(\theta)} f(v)[v]^n = \sum_{v \in U(\theta)} [v]^n f(v) + \sum_{v \in V(\theta) \setminus U(\theta)} [v]^n f(v) = 0$$

for all n = 0, 1, ..., m - 1.

In both cases,

$$\sum_{v \in V(\theta)} f(v)[v]^n = 0 \quad \text{for } n = 0, 1, \dots, m - 1.$$

Thus for each nonnegative integer n < m,

$$\sum_{v \in V(\theta)} f(v) \binom{[v]}{n} = \sum_{v \in V(\theta)} f(v) \sum_{j=0}^{n} (-1)^{n-j} s(n,j) [v]^{j} / n!$$

$$= \frac{1}{n!} \sum_{j=0}^{n} (-1)^{n-j} s(n,j) \sum_{v \in V(\theta)} f(v) [v]^{j} = 0,$$

where s(n,j)  $(0 \le j \le n)$  are Stirling numbers of the first kind, i.e.

$$\sum_{\substack{I\subseteq\{1,\ldots,k\}\\ \{\Sigma_{s\in I}1/\beta_{s}\}=\theta}} (-1)^{|I|} {[\sum_{s\in I}1/\beta_{s}]\choose n} e^{2\pi i \Sigma_{s\in I}\alpha_{s}/\beta_{s}}$$

$$= \sum_{v\in V(\theta)} \sum_{\substack{I\subseteq\{1,\ldots,k\}\\ \Sigma_{s\in I}1/\beta_{s}=v}} {[v]\choose n} (-1)^{|I|} e^{2\pi i \Sigma_{s\in I}\alpha_{s}/\beta_{s}} = 0.$$

Therefore by the proof of  $(b) \Rightarrow (c)$ ,

$$\lim_{r \to 1} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} r^{\Sigma_{s \in I} 1/\beta_{s}} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}} / (1-r)^{m-1}$$

$$= \lim_{t \to 0} \sum_{n=0}^{m-1} (-1)^{n} \left( \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\Sigma_{s \in I} 1/\beta_{s}\} = \theta}} (-1)^{|I|} {[\Sigma_{s \in I} 1/\beta_{s}] \choose n} e^{2\pi i \Sigma_{s \in I} \alpha_{s}/\beta_{s}} \right) t^{n-m+1}$$

$$= 0$$

Now for every integer x,

$$\begin{split} \prod_{s=1}^{k} (1 - r^{1/\beta_s} e^{2\pi i (\alpha_s - x)/\beta_s}) \\ &= \sum_{I \subseteq \{1, \dots, k\}} (-1)^{|I|} r^{\sum_{s \in I} 1/\beta_s} e^{2\pi i \sum_{s \in I} (\alpha_s - x)/\beta_s} \\ &= \sum_{\theta \in S} e^{-2\pi i x \theta} \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \{\sum_{s \in I} 1/\beta_s\} = \theta}} (-1)^{|I|} r^{\sum_{s \in I} 1/\beta_s} e^{2\pi i \sum_{s \in I} \alpha_s/\beta_s} \\ &= \sum_{\theta \in S} e^{-2\pi i x \theta} o((1 - r)^{m-1}) = o((1 - r)^{m-1}) \quad (r \to 1). \end{split}$$

Applying Lemma 1 we then obtain part (a).

The proof of Theorem 1 is now complete.

3. Reciprocals of common differences. In 1989 M. Z. Zhang [19] showed the following surprising result analytically: Provided that (2) is a cover of  $\mathbb{Z}$ ,  $\sum_{s\in I} 1/n_s \in \mathbb{Z}^+$  for some  $I \subseteq \{1, \ldots, k\}$ . Here we give

THEOREM 2. Let (1) be a cover of  $\mathbb{Z}$ . Then for any  $J \subseteq \{1, \ldots, k\}$  there is an  $I \subseteq \{1, \ldots, k\}$  with  $I \neq J$  such that

(9) 
$$\sum_{s \in I} \frac{1}{\beta_s} - \sum_{s \in J} \frac{1}{\beta_s} \in \mathbb{Z}.$$

Proof. Set  $\theta = \{ \sum_{s \in J} 1/\beta_s \}$ . By Theorem 1,

$$\sum_{\substack{I\subseteq\{1,\ldots,k\}\\\{\Sigma_{s\in I}1/\beta_{s}\}=\theta}} (-1)^{|I|} \binom{\left[\sum_{s\in I}1/\beta_{s}\right]}{0} e^{2\pi i \sum_{s\in I}\alpha_{s}/\beta_{s}} = 0,$$

that is,

$$\sum_{\substack{J\neq I\subseteq\{1,\ldots,k\}\\\{\Sigma_{s\in I}1/\beta_s\}=\theta}} (-1)^{|I|} e^{2\pi i \Sigma_{s\in I}\alpha_s/\beta_s} = -(-1)^{|J|} e^{2\pi i \Sigma_{s\in J}\alpha_s/\beta_s}.$$

Therefore

$$\left\{I\subseteq\{1,\ldots,k\}:I\neq J\text{ and }\left\{\sum_{s\in I}\frac{1}{\beta_s}\right\}=\theta\right\}\neq\emptyset.$$

We are done.

In the case  $J=\emptyset$ , Theorem 2 yields a generalization of Zhang's result ([19]).

Provided that (1) is an m-cover of  $\mathbb{Z}$  with  $m \in \mathbb{Z}^+$ , Theorem 2 asserts that for any  $J \subseteq \{1, \ldots, k\}$ ,

(10) 
$$S(J) = \left\{ I \subseteq \{1, \dots, k\} : I \neq J \text{ and } \sum_{s \in I} \frac{1}{\beta_s} - \sum_{s \in J} \frac{1}{\beta_s} \in \mathbb{Z} \right\}$$

is nonempty. This becomes trivial if

(11) 
$$\sum_{s \in I} \frac{1}{\beta_s} = \sum_{s \in J} \frac{1}{\beta_s} \quad \text{for some } I \subseteq \{1, \dots, k\} \text{ with } I \neq J.$$

What can we say about

(12) 
$$Z(J) = \left\{ \sum_{s \in I} \frac{1}{\beta_s} - \sum_{s \in J} \frac{1}{\beta_s} : I \in S(J) \right\}$$

if it does not contain zero? The following theorem gives us more information.

THEOREM 3. Assume that (1) is an m-cover of  $\mathbb{Z}$ . Let J be a subset of  $\{1,\ldots,k\}$  such that (11) fails, i.e.  $0 \notin Z(J)$  where S(J) and Z(J) are given by (10) and (12). Then

(i)  $|Z(J)| \ge m$  and hence

(13) 
$$\sum_{s=1}^{k} \frac{1}{\beta_s} \ge md(J) + \left\{ \sum_{s \in J} \frac{1}{\beta_s} \right\} \ge m,$$

where d(J) is the least positive integer that can be written as the difference of two (distinct) numbers of the form

$$\sum_{s \in I} \frac{1}{\beta_s} \in \mathbb{Z} + \sum_{s \in J} \frac{1}{\beta_s} \quad \text{where } I \subseteq \{1, \dots, k\}.$$

(ii) When  $d(J) \ge \left[\sum_{s=1}^k 1/\beta_s\right]/m$ , d(J) equals  $\left[\sum_{s=1}^k 1/\beta_s\right]/m$  and divides  $\left[\sum_{s\in J} 1/\beta_s\right]$ , and for every  $n=0,1,\ldots,m$  there exist at least

$$\binom{m}{n} / \binom{m}{m \left[\sum_{s \in J} 1/\beta_s\right] / \left[\sum_{s=1}^{k} 1/\beta_s\right]}$$

subsets I of  $\{1, \ldots, k\}$  such that

(14) 
$$\sum_{s \in I} \frac{1}{\beta_s} = \frac{n}{m} \left[ \sum_{s=1}^k \frac{1}{\beta_s} \right] + \left\{ \sum_{s \in I} \frac{1}{\beta_s} \right\},$$

hence

$$|S(J)| \ge 2^m / \binom{m}{m[\sum_{s \in J} 1/\beta_s]/[\sum_{s=1}^k 1/\beta_s]} - 1$$
 and  $|Z(J)| = m$ .

Proof. Let  $\theta = \{\sum_{s \in J} 1/\beta_s\}$ ,  $V(\theta)$ ,  $U(\theta)$  and f(x) be as in Theorem 1. If  $|V(\theta)| \leq m$ , then  $V(\theta) \subseteq U(\theta)$ , hence by Theorem 1 for all  $u \in V(\theta) \subseteq U(\theta)$ ,

$$f(u) = \sum_{v \in V(\theta)} \left( \prod_{\substack{x \in U(\theta) \\ x \neq v}} \frac{x - v}{x - u} \right) f(v) = 0,$$

which is impossible since  $0 \not\in Z(J)$  and

$$f\left(\sum_{s\in J}\frac{1}{\beta_s}\right) = (-1)^{|J|}e^{2\pi i\sum_{s\in J}\alpha_s/\beta_s} \neq 0.$$

Thus  $|V(\theta)| > m$ .

(i) Let  $v_0 < v_1 < \ldots < v_m$  be the first m+1 elements of  $V(\theta)$  in ascending order. Clearly

$$1 + |Z(J)| = |Z(J) \cup \{0\}| = \left| \left\{ v - \sum_{s \in J} \frac{1}{\beta_s} : v \in V(\theta) \right\} \right| = |V(\theta)| \ge m + 1$$

and

$$\sum_{s=1}^{k} \frac{1}{\beta_s} \ge \max_{v \in V(\theta)} v \ge v_m = \sum_{i=0}^{m-1} (v_{i+1} - v_i) + v_0 \ge md(J) + \theta.$$

(ii) If  $|V(\theta)| > m+1$  then

$$\sum_{s=1}^{k} \frac{1}{\beta_s} \ge \max_{v \in V(\theta)} v \ge v_m + 1 \ge 1 + md(J) + \theta.$$

Now suppose that  $d(J) \ge \left[\sum_{s=1}^k 1/\beta_s\right]/m$ . Then we must have  $|V(\theta)| = m+1$ , thus  $V(\theta) = \{v_0, v_1, \dots, v_m\}$  and  $|Z(J)| = |V(\theta)| - 1 = m$ . As

$$md(J) \ge \left[\sum_{s=1}^{k} \frac{1}{\beta_s}\right] \ge [v_m] = v_0 - \theta + \sum_{i=0}^{m-1} (v_{i+1} - v_i) \ge [v_0] + md(J),$$

$$md(J) = \left[\sum_{s=1}^{k} \frac{1}{\beta_s}\right], \quad [v_0] = 0$$

and

$$[v_n] = v_0 - \theta + \sum_{i=0}^{n-1} (v_{i+1} - v_i) = 0 + \sum_{i=0}^{n-1} d(J) = nd(J)$$

for n = 1, ..., m.

Choose  $0 \le j \le m$  such that  $v_j = \sum_{s \in J} 1/\beta_s$ . Then

$$j = \frac{[v_j]}{d(J)} = m \left[ \sum_{s \in J} \frac{1}{\beta_s} \right] / \left[ \sum_{s=1}^k \frac{1}{\beta_s} \right].$$

Set

$$U'(\theta) = \{v_i : 0 \le i \le m, i \ne j\}.$$

By Theorem 1, for any n = 0, 1, ..., m with  $n \neq j$ ,

$$0 = \sum_{v \in V(\theta)} \left( \prod_{\substack{x \in U'(\theta) \\ x \neq v_n}} \frac{x - v}{x - v_n} \right) f(v) = \sum_{t=0}^m \left( \prod_{\substack{i=0 \\ i \neq j, n}}^m \frac{v_i - v_t}{v_i - v_n} \right) f(v_t)$$

$$= \sum_{t=0}^m \left( \prod_{\substack{i=0 \\ i \neq j, n}}^m \frac{id(J) + \theta - (td(J) + \theta)}{id(J) + \theta - (nd(J) + \theta)} \right) f(v_t)$$

$$= \sum_{t=0}^m \left( \prod_{\substack{i=0 \\ i \neq j, n}}^m \frac{i - t}{i - n} \right) f(v_t)$$

$$= f(v_n) + \left( \prod_{\substack{i=0 \\ i \neq j, n}}^m \frac{i - j}{i - n} \right) f(v_j).$$

Since

$$\prod_{\substack{i=0\\i\neq j,n}}^{m} \frac{i-j}{i-n} = \frac{\prod_{i=0,\,i\neq j}^{m}(i-j)}{n-j} \bigg/ \frac{\prod_{i=0,\,i\neq n}^{m}(i-n)}{j-n} \\
= -\frac{\prod_{i=0}^{j-1}(i-j) \cdot \prod_{i=j+1}^{m}(i-j)}{\prod_{i=0}^{n-1}(i-n) \cdot \prod_{i=n+1}^{m}(i-n)} \\
= -\frac{(-1)^{j}j!(m-j)!}{(-1)^{n}n!(m-n)!} = (-1)^{j-n+1} \binom{m}{n} \bigg/ \binom{m}{j},$$

we have

$$\sum_{\substack{I\subseteq\{1,\ldots,k\}\\\Sigma_{s\in I}1/\beta_s=nd(J)+\theta}} (-1)^{|I|} e^{2\pi i \Sigma_{s\in I}\alpha_s/\beta_s}$$

$$= f(v_n) = -(-1)^{j-n+1} \binom{m}{n} \binom{m}{j}^{-1} f\left(\sum_{s\in J} \frac{1}{\beta_s}\right)$$

$$= (-1)^{j-n} \binom{m}{n} \binom{m}{j}^{-1} (-1)^{|J|} e^{2\pi i \Sigma_{s\in J}\alpha_s/\beta_s}$$

and hence

$$\left| \left\{ I \subseteq \{1, \dots, k\} : \sum_{s \in I} \frac{1}{\beta_s} = \frac{n}{m} \left[ \sum_{s=1}^k \frac{1}{\beta_s} \right] + \left\{ \sum_{s \in J} \frac{1}{\beta_s} \right\} \right\} \right|$$

$$= \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \Sigma_{s \in I} 1/\beta_s = nd(J) + \theta}} 1$$

$$\geq \left| \sum_{\substack{I \subseteq \{1, \dots, k\} \\ \Sigma_{s \in I} 1/\beta_s = nd(J) + \theta}} (-1)^{|I|} e^{2\pi i \Sigma_{s \in I} \alpha_s/\beta_s} \right| = \binom{m}{n} / \binom{m}{j};$$

therefore

$$1 + |S(J)| = \left| \left\{ I \subseteq \{1, \dots, k\} : \sum_{s \in I} \frac{1}{\beta_s} \in V(\theta) \right\} \right|$$

$$= \sum_{n=0}^m \left| \left\{ I \subseteq \{1, \dots, k\} : \sum_{s \in I} \frac{1}{\beta_s} = v_n = nd(J) + \theta \right\} \right|$$

$$\geq \sum_{n=0}^m {m \choose n} / {m \choose j} = 2^m / {m \choose j}.$$

This ends the proof.

Now let us apply Theorem 3 to those m-covers (1) with  $\sum_{s=1}^{k} 1/\beta_s = m$ .

Theorem 4. Let (1) be an m-cover of  $\mathbb{Z}$  with  $\sum_{s=1}^{k} 1/\beta_s = m \in \mathbb{Z}^+$ , which happens if (1) is an exact m-cover of  $\mathbb{Z}$  by residue classes. Then

(i) For every l = 1, ..., k-1 we have

(15) 
$$\sum_{s=l+1}^{k} \frac{1}{\beta_s} \ge \frac{1}{\max\{\beta_1, \dots, \beta_l\}}.$$

(ii) For any  $\emptyset \neq J \subset \{1, \ldots, k\}$  there exists an  $I \subseteq \{1, \ldots, k\}$  with  $I \neq J$  such that

(16) 
$$\sum_{s \in I} \frac{1}{\beta_s} = \sum_{s \in J} \frac{1}{\beta_s},$$

furthermore when  $\sum_{s\in J} 1/\beta_s \in \mathbb{Z}$  there are at least

$$\binom{m}{\sum_{s \in J} 1/\beta_s} \ge m > 1$$

subsets I of  $\{1, \ldots, k\}$  satisfying (16).

Proof. (i) For l = 1, ..., k - 1 (15) follows from part (ii) in the case  $J = \{l+1, ..., k\}$ , so we proceed to the proof of part (ii).

(ii) If (11) fails then by part (i) of Theorem 3 and the equality  $\sum_{s=1}^{k} 1/\beta_s$  = m we must have

$$\left\{\sum_{s\in J}\frac{1}{\beta_s}\right\}=0, \quad \text{i.e.} \quad \sum_{s\in J}\frac{1}{\beta_s}\in\mathbb{Z}.$$

Observe that

$$0 < \sum_{s \in J} \frac{1}{\beta_s} < \sum_{s=1}^k \frac{1}{\beta_s} = m.$$

If  $\sum_{s \in J} 1/\beta_s \in \mathbb{Z}$ , then m > 1 and  $\sum_{s \in J} 1/\beta_s = n$  for some  $n = 1, \ldots, m-1$ , by part (ii) of Theorem 3 there are at least  $\binom{m}{n}/\binom{m}{m} = \binom{m}{n} \geq m$  subsets I of  $\{1, \ldots, k\}$  such that

$$\sum_{s \in I} \frac{1}{\beta_s} = \frac{n}{m} \left[ \sum_{s=1}^k \frac{1}{\beta_s} \right] + \left\{ \sum_{1 \le s \le k} \frac{1}{\beta_s} \right\} = n = \sum_{s \in J} \frac{1}{\beta_s}.$$

We are done.

Remark. In 1992 Z. W. Sun ([17]) proved that if (2) is an exact m-cover of  $\mathbb{Z}$  then for each  $n = 1, \ldots, m$  there exist at least  $\binom{m}{n}$  subsets I of  $\{1, \ldots, k\}$  such that  $\sum_{s \in I} 1/n_s$  equals n. The lower bounds  $\binom{m}{n}$   $(1 \le n \le m)$  are best possible, and the Riemann zeta function was used in the proof.

From Theorem 3 we can also deduce the following theorem which extends Zhang's result ([19]) and the theorem of Sun [17] even in the case l = k.

Theorem 5. Let (1) be an m-cover of  $\mathbb Z$  and l a positive integer not exceeding k such that

(17) 
$$\min\left\{1, \frac{1}{\beta_1}, \dots, \frac{1}{\beta_l}\right\} > \sum_{l < t \le k} \frac{1}{\beta_t},$$

where  $\sum_{l < t < k} 1/\beta_t$  is considered to be zero for l = k. Then

(i) There are at least m positive integers representable by

(18) 
$$\sum_{s \in I} \frac{1}{\beta_s} - \sum_{l < t < k} \frac{1}{\beta_t}, \quad \text{where } I \subseteq \{1, \dots, k\},$$

thus we have

(19) 
$$\sum_{s=1}^{l} \frac{1}{\beta_s} = \sum_{s=1}^{k} \frac{1}{\beta_s} - \sum_{l < t \le k} \frac{1}{\beta_t} \ge m.$$

(ii) Provided that any positive integer less than  $\left[\sum_{s=1}^{k} 1/\beta_{s}\right]/m$  cannot be expressed as the difference of two integers of the form (18),  $\left[\sum_{s=1}^{k} 1/\beta_{s}\right]$  is divisible by m and for each  $n=0,1,\ldots,m$  there are at least  $\binom{m}{n}$  subsets I of  $\{1,\ldots,k\}$  such that

(20) 
$$\sum_{s \in I} \frac{1}{\beta_s} = \frac{n}{m} \left[ \sum_{s=1}^k \frac{1}{\beta_s} \right] + \sum_{l < t \le k} \frac{1}{\beta_t},$$

hence there exist at least  $2^m - 1$  subsets I of  $\{1, \ldots, k\}$  with

$$\sum_{s \in I} \frac{1}{\beta_s} \in \mathbb{Z}^+ + \sum_{l < t \le k} \frac{1}{\beta_t}.$$

Proof. Let  $J = \{1 \le t \le k : t > l\}$ . By (17),

$$\left[\sum_{t \in J} \frac{1}{\beta_t}\right] = 0 \quad \text{and} \quad \left\{\sum_{t \in J} \frac{1}{\beta_t}\right\} = \sum_{t < t \le k} \frac{1}{\beta_t}.$$

For any  $I \subseteq \{1, \ldots, k\}$ , if  $I \subset J$  then

$$0 < \sum_{t \in J} \frac{1}{\beta_t} - \sum_{s \in I} \frac{1}{\beta_s} < 1,$$

and if  $I \not\subseteq J$  then

$$\sum_{s \in I} \frac{1}{\beta_s} - \sum_{t \in J} \frac{1}{\beta_t} \ge \min \left\{ \frac{1}{\beta_s} : 1 \le s \le l \right\} - \sum_{l < t \le k} \frac{1}{\beta_t} > 0.$$

So (11) fails, moreover Z(J) given by (12) contains only positive integers. Applying Theorem 3 we obtain the desired results.

Erdős conjectured (before 1950) that if (2) is a cover of  $\mathbb{Z}$  with  $1 < n_1 < n_2 < \ldots < n_k$  then  $\sum_{s=1}^k 1/n_s > 1$ . H. Davenport, L. Mirsky, D. Newman and R. Radó confirmed this conjecture (independently) by proving that if (2) is an exact cover of  $\mathbb{Z}$  with  $1 < n_1 \le \ldots \le n_{k-1} \le n_k$  then  $n_{k-1} = n_k$ . For further improvements see Znám [20], M. Newman [10], Pořubský [11, 12], M. A. Berger, A. Felzenbaum and A. S. Fraenkel [1]. The best record in this direction is the following result due to the author which is partially announced in [15] and completely proved in [16]: Let  $\lambda_1, \ldots, \lambda_k$  be complex numbers and  $n_0 \in \mathbb{Z}^+$  a period of the function

$$\sigma(x) = \sum_{\substack{s = 1 \\ x \equiv a_s \pmod{n_s}}}^{k} \lambda_s.$$

If  $d \in \mathbb{Z}^+$  does not divide  $n_0$  and

$$\sum_{\substack{s \equiv 1 \\ d \mid n_s, a_s \equiv a \pmod{d}}} \frac{\lambda_s}{n_s} \neq 0 \quad \text{for some integer } a,$$

then

$$|\{a_s \bmod d: 1 \leq s \leq k, \ d \mid n_s\}| \geq \min_{\substack{0 \leq s \leq k \\ d \nmid n_s}} \frac{d}{\gcd(d, n_s)} \geq p(d),$$

where p(d) is the least prime divisor of d. Here we have

THEOREM 6. Let (1) be an m-cover of  $\mathbb{Z}$  with  $\beta_1 \leq \ldots \leq \beta_{k-l} < \beta_{k-l+1} = \ldots = \beta_k$  where  $1 \leq l < k$ . Then either

(21) 
$$l \ge \beta_k / \max\{1, \beta_{k-l}\} \quad (>1 \text{ if } \beta_k > 1),$$

or there are at least m positive integers in the form

(22) 
$$\sum_{s \in I} \frac{1}{\beta_s} - \frac{l}{\beta_k}, \quad \text{where } I \subseteq \{1, \dots, k\},$$

and hence

(23) 
$$\sum_{s=1}^{k} \frac{1}{\beta_s} > \sum_{s=1}^{k-l} \frac{1}{\beta_s} = \sum_{s=1}^{k} \frac{1}{\beta_s} - \frac{l}{\beta_s} \ge m.$$

$$(Also, \sum_{s=1}^{k} 1/\beta_s > \sum_{s=1}^{k} 1/\beta_k \ge k \ge m \text{ if } \beta_k \le 1.)$$

Proof. Clearly  $l < \beta_k / \max\{1, \beta_{k-l}\}$  if and only if

$$\min \left\{ 1, \frac{1}{\beta_1}, \dots, \frac{1}{\beta_{k-l}} \right\} > \sum_{k-l < t < k} \frac{1}{\beta_t} \ (= l/\beta_k).$$

Therefore Theorem 6 follows from part (i) of Theorem 5.

126 Z. W. Sun

Note that when  $\beta_{k-l} \ge 1$  and  $\beta_k/\beta_{k-l} \in \mathbb{Z}$  $\beta_k/\max\{1, \beta_{k-l}\} = \beta_k/\beta_{k-l} \ge p(\beta_k/\beta_{k-l}) \quad (\ge p(\beta_k) \text{ if } \beta_{k-l}, \beta_k \in \mathbb{Z}).$ 

4. Some local-global results. In 1958 S. K. Stein [14] conjectured that whenever the residue classes in (2) are pairwise disjoint and the moduli  $n_1, \ldots, n_k > 1$  are distinct there exists an integer x with  $1 \le x \le 2^k$  such that x is not covered by (2). Erdős [6] confirmed this conjecture with  $k \cdot 2^k$  instead of  $2^k$ . Since the Davenport-Mirsky-Newman-Radó result indicates that an exact cover of  $\mathbb{Z}$  by (finitely many) residue classes cannot have its moduli distinct and greater than one, Erdős proposed the stronger conjecture that any system of k residue classes not covering all the integers omits a positive integer not exceeding  $2^k$ . Both conjectures have some local-global character. In 1969 R. B. Crittenden and C. L. Vanden Eynden [2] claimed their positive answer to the stronger conjecture. Later in [3] a long indirect and awkward proof was given for  $k \ge 20$ , the authors concluded the paper with the statements: "Of course it remains to show the conjecture is true for k < 20. This may be checked by more special arguments."

In 1970 Crittenden and Vanden Eynden [4] conjectured further that if all the moduli  $n_s$  in (2) are greater than an integer  $0 \le l < k$  then (2) is a cover of  $\mathbb{Z}$  if it covers all the integers in the interval  $[1, 2^{k-l}(l+1)]$ . In contrast with the Crittenden-Vanden Eynden conjecture we give

THEOREM 7. For any  $m \in \mathbb{Z}^+$ , (1) is an m-cover of  $\mathbb{Z}$  if it covers  $2^{k-M}(M+1)$  consecutive integers at least m times, where

(24) 
$$M = \max_{1 \le t \le k} |\{1 \le s \le k : \beta_s = \beta_t\}|.$$

Proof. Let  $\beta > 0$  be a number such that  $J = \{1 \le s \le k : \beta_s = \beta\}$  has cardinality M. As

$$\left| \left\{ \left\{ \sum_{s \in I} \frac{1}{\beta_s} \right\} : I \subseteq \{1, \dots, k\} \right\} \right|$$

$$\leq \left| \left\{ \sum_{s \in I \cap J} \frac{1}{\beta_s} + \sum_{s \in I \setminus J} \frac{1}{\beta_s} : I \subseteq \{1, \dots, k\} \right\} \right|$$

$$\leq \left| \left\{ \sum_{s \in I} \frac{1}{\beta} : I \subseteq J \right\} \right| \cdot \left| \left\{ \sum_{s \in I} \frac{1}{\beta_s} : I \subseteq \{1, \dots, k\} \setminus J \right\} \right|$$

$$\leq \left| \left\{ \frac{|I|}{\beta} : I \subseteq J \right\} \right| \cdot \left| \left\{ I : I \subseteq \{1, \dots, k\} \setminus J \right\} \right|$$

$$= (|J| + 1) \cdot 2^{k - |J|} = 2^{k - M} (M + 1),$$

Theorem 1 implies Theorem 7.

The following example noted by Crittenden and Vanden Eynden [4] shows that the number  $g(k, M) = 2^{k-M}(M+1)$  in Theorem 7 is best possible.

EXAMPLE. Let  $M = n - 1 \in \mathbb{Z}^+$ . Consider the system A consisting of the following  $k \geq M$  residue classes:

$$1+n\mathbb{Z}, \quad 2+n\mathbb{Z}, \quad \dots, \quad M+n\mathbb{Z},$$
  
 $n+2n\mathbb{Z}, \quad 2n+2^2n\mathbb{Z}, \quad \dots, \quad 2^{k-M-1}n+2^{k-M}n\mathbb{Z}.$ 

Observe that A together with  $2^{k-M}n\mathbb{Z}$  forms an exact cover of  $\mathbb{Z}$ . So A covers positive integers from 1 to  $2^{k-M}(M+1)-1$ , but it does not cover all the integers.

Result (II) stated in Section 1 follows from Theorem 7 and Example, since (1) covers  $\alpha + \beta x$  (where  $\alpha \in \mathbb{R}$ ,  $\beta \in \mathbb{R}^+$  and  $x \in \mathbb{Z}$ ) at least m times if and only if  $\left\{\frac{\alpha_s - \alpha}{\beta} + \frac{\beta_s}{\beta}\mathbb{Z}\right\}_{s=1}^k$  covers x at least m times, and  $2^{k-l}(l+1) \ge 2^{k-M}(M+1)$  if  $k \ge M \ge l > 0$ . (The case l = 0 can be reduced to the case l = 1.)

5. Several open problems. Theorem 1 tells us that (2) is a cover of  $\mathbb{Z}$  if it covers integers from 1 to

$$\left| \left\{ \left\{ \sum_{s \in I} \frac{1}{n_s} \right\} : I \subseteq \{1, \dots, k\} \right\} \right| \le 2^k \le 2^{n_1 + \dots + n_k}.$$

This suggests

PROBLEM 1. Can we find a polynomial P with integer coefficients such that a finite system (2) of residue classes forms a cover of  $\mathbb{Z}$  whenever it covers all positive integers not exceeding  $P(n_1 + \ldots + n_k)$ ?

In 1973 L. J. Stockmeyer and A. R. Meyer proved that the problem whether there exists an integer not covered by a given (2) is NP-complete. In 1991 S. P. Tung [18] extended this result to algebraic integer rings. If the required P in Problem 1 exists, then there is a polynomial time algorithm to decide whether (2) covers all the integers or not. So a positive answer to Problem 1 would imply that NP = P.

By appearances Theorems 2–7 involve no roots of unity. Perhaps vast generalizations of them could be made.

PROBLEM 2. Let  $A_1, \ldots, A_k$  be sets of natural numbers having positive densities  $d(A_1), \ldots, d(A_k)$  respectively. If no  $A_s$  contains  $m_s \in \mathbb{Z}^+$  consecutive integers, does  $\bigcup_{s=1}^k A_s$  have density 1 when it covers  $m_1 \ldots m_k$  arbitrarily large consecutive integers? Suppose that  $\{A_s\}_{s=1}^k$  covers all the natural numbers; does there exist, for any  $J \subseteq \{1, \ldots, k\}$ , an  $I \subseteq \{1, \ldots, k\}$ 

with  $I \neq J$  such that

$$\sum_{s \in I} d(A_s) - \sum_{s \in J} d(A_s) \in \mathbb{Z}?$$

PROBLEM 3. Let K be an algebraic number field and  $O_K$  the ring of algebraic integers in K. Let  $a_1, \ldots, a_k \in O_K$  and  $A_1, \ldots, A_k$  be ideals of  $O_K$  with norms  $N(A_1), \ldots, N(A_k)$  respectively. If  $\{a_s + A_s\}_{s=1}^k$  forms an exact m-cover of  $O_K$  for some  $m \in \mathbb{Z}^+$ , is it true that for any  $\emptyset \neq J \subseteq \{1, \ldots, k\}$  there exists a subset I of  $\{1, \ldots, k\}$  with  $I \neq J$  such that

$$\sum_{s \in I} \frac{1}{N(A_s)} = \sum_{s \in J} \frac{1}{N(A_s)}?$$

Acknowledgements. The author is indebted to the referee for his help-ful suggestions.

## References

- [1] M. A. Berger, A. Felzenbaum and A. S. Fraenkel, Improvements to the Newman-Znám result for disjoint covering systems, Acta Arith. 50 (1988), 1-13.
- [2] R. B. Crittenden and C. L. Vanden Eynden, A proof of a conjecture of Erdős, Bull. Amer. Math. Soc. 75 (1969), 1326-1329.
- [3] —, —, Any n arithmetic progressions covering the first 2<sup>n</sup> integers cover all integers, Proc. Amer. Math. Soc. 24 (1970), 475–481.
- [4] -, -, The union of arithmetic progressions with differences not less than k, Amer. Math. Monthly 79 (1972), 630.
- [5] P. Erdős, On integers of the form  $2^k + p$  and some related problems, Summa Brasil. Math. 2 (1950), 113-123.
- [6] —, Remarks on number theory IV: Extremal problems in number theory I, Mat. Lapok 13 (1962), 228-255.
- [7] -, Problems and results on combinatorial number theory III, in: Number Theory Day, M. B. Nathanson (ed.), Lecture Notes in Math. 626, Springer, New York, 1977, 43-72.
- [8] —, Problems and results in number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, London, 1981, 1–14.
- [9] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.
- [10] M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279-282.
- [11] S. Porubský, Covering systems and generating functions, Acta Arith. 26 (1974/75), 223-231.
- [12] ---, On m times covering systems of congruences, ibid. 29 (1976), 159-169.
- [13] —, Results and problems on covering systems of residue classes, Mitt. Math. Sem. Giessen 1981, no. 150, 1-85.
- [14] S. K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289-294.
- [15] Z. W. Sun, Several results on systems of residue classes, Adv. in Math. (Beijing) 18 (1989), 251-252.
- [16] —, An improvement to the Znám Newman result, Chinese Quart. J. Math. 6 (3) (1991), 90-96.

- [17] Z. W. Sun, On exactly m times covers, Israel. J. Math. 77 (1992), 345-348.
- [18] S. P. Tung, Complexity of sentences over number rings, SIAM J. Comp. 20 (1991), 126-143.
- [19] M. Z. Zhang, A note on covering systems of residue classes, J. Sichuan Univ. (Nat. Sci. Ed.) 26 (1989), Special Issue, 185-188.
- [20] Š. Znám, On exactly covering systems of arithmetic sequences, Math. Ann. 180 (1969), 227-232.
- [21] —, A survey of covering systems of congruences, Acta Math. Univ. Comenian. 40/41 (1982), 59-79.

DEPARTMENT OF MATHEMATICS
NANJING UNIVERSITY
NANJING 210093
PEOPLE'S REPUBLIC OF CHINA

Received on 18.11.1993 and in revised form on 23.8.1994 (2521)