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PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p?

ZH1-WEI SUN

1. INTRODUCTION

Asusual Z, Q, R and C denote the ring of integers, the rational field, the
real field and the complex field respectively. We also let Z* = {1,2,3,---}
and C* = C\ {0}. For a € Z and n € Z*, by (a,n) we mean th greatest
common divisor of a and n, if n is odd then the Jacobi symbol (%) is
defined in terms of Legendre symbols (see, e.g. [IR]). For x € R, [z] and
{z} stand for the integral and the fractional parts of = respectively. For
a prime p and an integer a prime to p, the Fermat quotient (a?~! —1)/p
is denoted by ¢,(a). For an odd prime p and a € Z, we define the Euler
quotient

a(p_]-)/2 — (Q)

(1.1) eqp(a) = 5 .

The Gauss lemma used to prove the law of quadratic reciprocity is as
follows:

Gauss’ Lemma. Let n > 0 be an odd integer and a an integer prime to
n. Then

(1.2) (9) = (=1)!@1 ywhere Sy (a) = {k: ezt % < % < {@}}

n n

Almost every textbook on number theory only contains Gauss’ Lemma
with n = p being an odd prime. The general version of Gauss’ Lemma
was first published by M. Jenkins [J] in 1867 with an elementary proof, in
the textbook [R] H. Rademacher supplied a proof using subtle properties
of quadratic Gauss sums.

Forz € Rlet (§) =1and (¥) = %H?:_Ol(x—]) forn=1,2,3,---. Re-
cently A. Granville [G] obtained a congruence for [],_, ., ([ 5]{:—/11]) mod p?
where p is an odd prime not dividing n € Z*. With the help of Gauss’
Lemma, we are able to get the following more general result.
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Theorem 1.1. Letm € Z andn € Z*. Let p be an odd prime not dividing

) IS € {0.1) then
(1.3)
(—1)"= ["2"] H pm —1
0<k<i(n—5)/2] ( [pk /7] )
:{ (%) + pmneq,,(n) (mod p?) if 21 n,
LB+ em((=1)°(3)2eq,(2) + (3)neq,(n)) (mod p?) if 2 | n.
(ii) We have
(1.4
— 1)k+(n—1)[2E] (P = 1\ _ mn(1 —2P~1) (mod p?) if2|n,
21 (i) =1 1 e 52 i 24n.

Remark 1.1. In (1.3) we use Euler quotients instead of Fermat quotients,
this makes the congruence somewhat symmetric in the case 2 | n.
Now we deduce Granville’s result from our Theorem 1.1.

Corollary 1.1 (Granville [G]). Let n be a positive integer and p an odd
prime not dividing n. Then

p—1 1
(1.5) (-1 V(P —n+1) (mod p?).
1;[ ([p /n]) !

Proof. Observe that

e T ()

0<k<n

R | N AV Y B CFRGPR)

0<k<[(n—1)/2] 0<k<[n/2]

=-n== ] ([pk_/i])x(_l)mg] Il ([Zk_/;])

0<k<[(n—1)/2] 0<k<[n/2]

Applying part (i) of Theorem 1.1 with m = 1 and § = 0, 1, we then obtain
that

(-1 0 ] (p - 1]> — 14 2pn<g>eqp(n) (mod p?).

0<k<n [pk/n



PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p? 3

For any integer a prime to p, clearly

= (6 ()6 () =g s

So (1.5) follows. [
For a,n € Z with 0 < a < n, we let

an)=amodn=a+nZ={a+nz:x €’}

For a finite system A = {as(n,)}*_, of such residue classes, we define the
covering function wy : Z — {0,1,2,---} by

(1.6) walx) ={1<s<k:z€as(ng)}.

When wa(z) = m for all x € Z, A is said to be an exact m-cover (of Z).
We also use the term disjoint cover instead of exact 1-cover. (See [S3] and
[S4] for problems and results on covers of Z.) For two systems A and B
of residue classes, if wq = wp, then we say that A is covering equivalent
to B, and denote this by A ~ B. For d,n € Z* and a € {0,1,--- ,d — 1},
clearly

(1.7) {a+jd(nd)};=y ~ {(a(d)},

in particular {r(n)}"=y ~ {0(1)}.
In this paper we will also prove the following extension of Corollary 1.1.

Theorem 1.2. Let p be an odd prime. Let A = {as(ns)}r_; (0 < as < ng)
and B = {b;(m¢)}_; (0 < by < my) be covering equivalent systems with
the moduli ng and my not divisible by p but dividing integer N. Then for
any x € [0,p) we have

p —1 l
w+pa3 33+pbt
s= 1

=(-1)bF (1 —|—pN(Z qu:s) -3 q?’g:t))) (mod p?).

s:]_ t:1

(1.8)

Remark 1.2. Actually we may not require the integer N in Theorem 1.2
to be a common multiple of those moduli ng and m;. For example N =1
is allowed if we don’t mind using z ¢ Z in the notation (¥).
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Corollary 1.2. Let A = {as(ns)}*_; (0 < as < ny) be an exact m-cover

of Z. Let N be the least common multiple of ny,--- ,n and p an odd
prime not dividing N. Then

(1.9) ﬁ(p?ﬂp__]>

s=1

(—1)k=—m) B (1 —I—pNZi: %) (mod p?).

Proof. Let B be the system consisting of m copies of 0(1). Then A ~ B.

Since [Z] = _qp1(1) =

1.2. O

0, Corollary 1.2 follows immediately from Theorem

Remark 1.3. Applying Corollary 1.2 to the trivial disjoint cover A =
{r(n)}"Z; we then get Corollary 1.1 again.

In the next section we will give some examples of uniform maps the
concept of which arose from our previous study of covering equivalence
(cf. [S1] and [S2]). On the basis of Section 2, we are going to prove
Theorems 1.1 and 1.2 in Section 3.

2. SOME UNIFORM MAPS

Definition 2.1. Let m be an integer and M an additive abelian group. Let
f be a map from a subset of C x C into M. If for any ordered pair (z,y)
in the domain Dom(f) of f and each positive integer n prime to m, we
have

(2.1) {<x+mr,ny>:r:(),l,---,n—l}gDom(f)

n

and

(2.) S (5 ) = s,

then we call f an m-uniform map (into M).

The functional equation (2.2) with m = 1 was first introduced by the
author in [S1] where he showed the following theorem in the case m = 1
by a complicated induction method.

Theorem 2.1. Let m be an integer and M a left R-module where R is a
ring with identity. Let f be a map into M with Dom(f) C Cx C such that
(2.1) holds for any (z,y) € Dom(f) and n € Z* with (m,n) = 1. Then
the following two statements are equivalent:

(a) f is an m-uniform map into M.
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(b) Whenever

(2.3) Z As = Z pe  forallx € Z

1<s<k 1<t<l
x€as(ns) x€bs(me)

(with Ag,ut € R, as,ns,byp,my € Z, 0 < a5 < ng, 0 < by < my and
(nsm¢,m) = 1), we have
(2 4)

ZA f(% nsy) Zut (a: + mby mty) for (z,y) € Dom(f).

Proof. Since {r(n)}"Z3 ~ {0(1)} for all n € Z*, (b) implies (a).
Now we show (b) under the condition (a). Suppose that (2.3) holds.

Let N be the least common multiple of those moduli ns and m;. If (x,y) €
Dom(f), then

k k N/ns—1 x+ma
a:—l—mas The - Him N
)\s , Mg = )\s ) s
s=1 s=1 J=0
k N—-1 T+ mr gy x +mr
SRS f( ) =3 (X )y (SR )
—1 —o r=0 “ 1<s<k
r€as(ns) rcas(ns)
N !
T+ mr T + mby
zz( S )f( ¥ ,Ny) :Z,utf( - 7mty)~
1<t<l t=1
rebt(mt)

This ends the proof. [

Proposition 2.1. (i) Let m € Z. Then the function [ |, : Rx R — Q
given by

1—m

(2.5) [m(z,y) = 2] + ——

1s an m-uniform map into the rational field Q.
(ii) For each m = 0,1,2,--- the functions b,, : C x C* — C and e,, :
C x Z — C given by

(2.6) bn(2,9) =y ' By ()
and
em Yy B, (z) if y is odd,
(27) (.’L’,y) = { 2 mizy m B . .
—ag e YY" By () if y is even,
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are 1-uniform maps into the complex field C, where B,,(x) and E,(x) are
the mth Bernoullt polynomial and the mth Fuler polynomial respectively.

Proof. Let n be any positive integer.
i) If (m,n) =1 then

"Zl([x+nmr] N 1—2m> :”Zl<x+nmr+ 1—2m_{a:+nmr})

r=0

This proves part (i).
ii) Let m be an arbitrary nonnegative integer. Raabe’s identity states
that

(2.8) nzl By (z + %) = =™ B, (nz).

r=0

Another known identity (cf. [B]) asserts that

n—1 .
n'" ZT:O (=1)"Ep(z + %) if 2 1 n,

(29) Em(nZ) = { 2n™ n—1 r r .
— a1 2or—0 (1) Bmyi(z + 1) if 2| n.

By these two identities we can easily check that

n—1
me (x+r,ny) =bp(z,y) forx e C and y e C*
n

r=0

and

n—1
Zem (:E—Hn,ny) =em(r,y) forz € Candy € Z.
n
r=0

The proof is now complete. [

Remark 2.1. In 1989 the author [S1] briefly mentioned the basic things
for Proposition 2.1. For more examples of 1-uniform maps, the reader is
referred to [S5].
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Corollary 2.1. Let p be an odd prime and n > 0 an even integer prime
top. Then

(2.10) i(—l)er_l <ﬁ) = —ngp(2) (mod p).

Proof. By Proposition 2.1,

2mP—2 T2 . r — r
T B () = X ez (n) = er2(0.1)
r=0

r=

doesn’t depend on the value of positive even integer n. So

-
WZ i () Qm(ngl ZBP1(2>)
=2"'B, | — B, 1.
Since pB,—1 = > *_; 1P~ = 1 (mod p) (see, e.g. [IR]), (2.10) follows at
once. [

Proposition 2.2. Let p be an odd prime. For x > 0 and m € Z\ pZ let

(2.11) q(z,m) = wm) | > o —

0<j<[x ]
plj

Then the function G(x,m) = q(x,m) mod p is a p-uniform map into the

finite field 7./ pZ.
Proof. Let m € Z\ pZ and n € Z* \ pZ. Since

mpP~1 —1 Pt -1
gp(mn) = Y +mP 1T = gp(m) + gp(n) (mod p),

for x > 0 the congruence

n—1

k

Ezq(x+p,nm)zqwnw (mod p)

k=0 "
is equivalent to the following

n—1

(2.12) gp(n) = Z 1 1 Z % (mod p).

0<j<] ]j M 20 g icratpk
VN 0< <[]
pti plj
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Now it suffices to show (2.12) for all z =0,1,2,--- .
By pp. 125-126 of [GS] we have

pk _
(213) Bp_l({?}) _Bp—l = — Z - (rnod p)
0<j<[pk/n]
for any K =0,1,--- ,n — 1. Observe that
n—1 pk‘ n—1 r
5 ({2 ) £ ) -

-1
n 1—nP
27

=n“"PB, 1 —nB,_1 = .

e » (pBp—1) = ngp(n) (mod p).

Thus (2.12) holds for z = 0.

Let r € Z*. Assume (2.12) for x = r — 1. Denote by ko the unique
integer k € [0,n) such that r 4+ pk = 0 (mod n). Clearly p | r if and only
if p divides jo = (r + pko)/n. For k € {0,1,--- ,n — 1}, we have
{r—f—pk} B [r—l—f—pk} +{ 1 if k = ko,

n n 0 otherwise.

If pfr, then

1 1 1 1 1
—-——— === — =0 d p).
r n Jo r r—+ pko (mod p)

Thus

11 1
)SEEED D VI
O<j<7‘] k:00<]‘<[%]

Pl plJ

n—1
ISEEEED DS
O<j<‘T‘—I J n k=0 0<j<[7’—1n+pk]
ptJ oti

This concludes the induction step. We are done. [

S| =

= ¢p(n) (mod p).

3. PROOFS OF THEOREMS 1.1 AND 1.2
Lemma 3.1. (i) Let a € Z, n € Z" and (2a,n) = 1. Then
ka n?—1
(3.1) 1Su(a)l = ) [—1 + (a—1) (mod 2).

n 8
0<k<n/2
(i) Let m,n € Z" and (m,n) = 1. Then for 6 € {0,1} we have

LI v RPN b el L e

0<k<(n—35)/2 0<k<(m—35)/2

The above lemma is well-known and usually stated in textbooks with
a, m,n being odd primes.
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Lemma 3.2. Let k,m,n € Z and 0 < k <n. Let p be an odd prime not
dividing n. Then

e R () R T

Proof. For any [ € {0,1,--- ,p— 1},

(3.4 (—1)l(pm[1):O<H<l(1—pj)—1—pmZ (mod p?)

O<]<l

Combining this with (2.13) we then obtain (3.3). O

Proof of Theorem 1.1. As p — 1 is even, we have B,_1(1 — z) = Bp_1(z).
i) Let { =[(n —0)/2] and &,, = (1 + (—1)")/2. By Lemma 3.2,

IT o(50)

} ) - Bp_l) —en(-1)° (Bp_l (%) - Bp—1>
) {258)) )

where the last step is taken as in the proof of Proposition 2.2. By Corollary
2.1, By—1(3) — Bp—1 = 2¢,(2) (mod p). Recall that g,(a) = 2(% 5)ed,(a)
(mod p) for any a € Z with (a,p) = 1. So

> ({5} =)

—n <g) eq, () + en(~1)2 (%) eq, (2) (mod p).
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By Lemma 3.1 and Gauss’ Lemma,

n—1
(_1)Zo<k<1[%] — (_1)p§1l—20<k<p/2[%} — (_1)%7% (E) (2) .

p p

Therefore

() )L ) - Lo ()
=1+ pm (n (g) eq,(n) + e, (—1)°2 (%) eqp(Q)) (mod p?)
and hence (1.3) follows.

ii) Write S for the left hand side of (1.4) and S” = Z::Ol(—l)r p—1(5).
By Lemma 3.2,

= om0 ().

(1 —pmB,_1)A +pmS’" (mod p*)

where
n—1
_ PR pk _ P_1=(=D"
{pk}n=n {;} =pk—n [7] and A= ;(—1) =
If 2 4 n, then S" = By_; since (—1)"""By_1(*=") = —(=1)"Bp-1(%),

therefore S = 1 (mod p?). When 2 | n we may apply Corollary 2.1. This
concludes the proof. [

Proof of Theorem 1.2. Since A ~ B, by Theorem 2.1 and Proposition 2.1

we have
S () ) s ()5

s=1 t=1

So (1.8) is equivalent to the following

Pa=T[-0 () < )

s=1 n

=Py — ﬁ(_n[mfﬂ“] (p[i]l) x (1 —pNzl: %’:‘”) (mod p?).

t=1 my t=1
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By (3.4) we have

PAEﬁ(l—pnﬁs > )(1 N ”S>)

s=1 0<j<[38+17as
k
N 1
(-5 )
N J
s=1 [x-tlpsae}
k
(-0
s=1 s
b T + pa
El—pNZ < ps,ns> (mod p?)
Ux
s=1
similarly
l
x + pb
Pg=1 —pNZq <%,mt) (mod p?).
t

t=1

In view of Theorem 2.1 and Proposition 2.2, P4 = Pg (mod p?). We are
done. [
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