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PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p2

Zhi-Wei SUN

1. Introduction

As usual Z, Q, R and C denote the ring of integers, the rational field, the
real field and the complex field respectively. We also let Z+ = {1, 2, 3, · · · }
and C∗ = C \ {0}. For a ∈ Z and n ∈ Z+, by (a, n) we mean th greatest
common divisor of a and n, if n is odd then the Jacobi symbol ( a

n ) is
defined in terms of Legendre symbols (see, e.g. [IR]). For x ∈ R, [x] and
{x} stand for the integral and the fractional parts of x respectively. For
a prime p and an integer a prime to p, the Fermat quotient (ap−1 − 1)/p
is denoted by qp(a). For an odd prime p and a ∈ Z, we define the Euler
quotient

(1.1) eqp(a) =
a(p−1)/2 − (a

p )

p
.

The Gauss lemma used to prove the law of quadratic reciprocity is as
follows:

Gauss’ Lemma. Let n > 0 be an odd integer and a an integer prime to
n. Then

(1.2)
(a

n

)
= (−1)|Sn(a)| where Sn(a) =

{
k ∈ Z+ :

k

n
<

1
2

<

{
ka

n

}}
.

Almost every textbook on number theory only contains Gauss’ Lemma
with n = p being an odd prime. The general version of Gauss’ Lemma
was first published by M. Jenkins [J] in 1867 with an elementary proof, in
the textbook [R] H. Rademacher supplied a proof using subtle properties
of quadratic Gauss sums.

For x ∈ R let
(
x
0

)
= 1 and

(
x
n

)
= 1

n!

∏n−1
j=0 (x− j) for n = 1, 2, 3, · · · . Re-

cently A. Granville [G] obtained a congruence for
∏

0<k<n

(
p−1

[pk/n]

)
mod p2

where p is an odd prime not dividing n ∈ Z+. With the help of Gauss’
Lemma, we are able to get the following more general result.
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Theorem 1.1. Let m ∈ Z and n ∈ Z+. Let p be an odd prime not dividing
n.

(i) If δ ∈ {0, 1} then
(1.3)

(−1)
p−1
2 [ n−δ

2 ]
∏

0<k6[(n−δ)/2]

(
pm− 1
[pk/n]

)

≡

{
(n

p ) + pmneqp(n) (mod p2) if 2 - n,

( 2n
p ) + pm((−1)δ(n

p )2eqp(2) + ( 2
p )neqp(n)) (mod p2) if 2 | n.

(ii) We have
(1.4)

n−1∑
k=0

(−1)k+(n−1)[ pk
n ]

(
pm− 1
[pk/n]

)
≡

{
mn(1− 2p−1) (mod p2) if 2 | n,

1 (mod p2) if 2 - n.

Remark 1.1. In (1.3) we use Euler quotients instead of Fermat quotients,
this makes the congruence somewhat symmetric in the case 2 | n.

Now we deduce Granville’s result from our Theorem 1.1.

Corollary 1.1 (Granville [G]). Let n be a positive integer and p an odd
prime not dividing n. Then

(1.5)
∏

0<k<n

(
p− 1
[pk/n]

)
≡ (−1)

p−1
2 (n−1)(np − n + 1) (mod p2).

Proof. Observe that

(−1)
p−1
2 (n−1)

∏
0<k<n

(
p− 1
[pk/n]

)
=(−1)

p−1
2 ([ n−1

2 ]+[ n
2 ])

∏
0<k6[(n−1)/2]

(
p− 1
[pk/n]

)
×

∏
0<k6[n/2]

(
p− 1

[p(n− k)/n]

)

=(−1)
p−1
2 [ n−1

2 ]
∏

0<k6[(n−1)/2]

(
p− 1
[pk/n]

)
× (−1)

p−1
2 [ n

2 ]
∏

0<k6[n/2]

(
p− 1
[pk/n]

)
.

Applying part (i) of Theorem 1.1 with m = 1 and δ = 0, 1, we then obtain
that

(−1)
p−1
2 (n−1)

∏
0<k<n

(
p− 1
[pk/n]

)
≡ 1 + 2pn

(
n

p

)
eqp(n) (mod p2).
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For any integer a prime to p, clearly

ap−1 − 1 =
(

a
p−1
2 +

(
a

p

))(
a

p−1
2 −

(
a

p

))
≡ 2

(
a

p

)
peqp(a) (mod p2).

So (1.5) follows. �
For a, n ∈ Z with 0 6 a < n, we let

a(n) = a mod n = a + nZ = {a + nx : x ∈ Z}.

For a finite system A = {as(ns)}k
s=1 of such residue classes, we define the

covering function wA : Z → {0, 1, 2, · · · } by

(1.6) wA(x) = |{1 6 s 6 k : x ∈ as(ns)}|.

When wA(x) = m for all x ∈ Z, A is said to be an exact m-cover (of Z).
We also use the term disjoint cover instead of exact 1-cover. (See [S3] and
[S4] for problems and results on covers of Z.) For two systems A and B
of residue classes, if wA = wB , then we say that A is covering equivalent
to B, and denote this by A ∼ B. For d, n ∈ Z+ and a ∈ {0, 1, · · · , d− 1},
clearly

(1.7) {a + jd(nd)}n−1
j=0 ∼ {(a(d)},

in particular {r(n)}n−1
r=0 ∼ {0(1)}.

In this paper we will also prove the following extension of Corollary 1.1.

Theorem 1.2. Let p be an odd prime. Let A = {as(ns)}k
s=1 (0 6 as < ns)

and B = {bt(mt)}l
t=1 (0 6 bt < mt) be covering equivalent systems with

the moduli ns and mt not divisible by p but dividing integer N . Then for
any x ∈ [0, p) we have

(1.8)

k∏
s=1

(
p N

ns
− 1

[x+pas

ns
]

)/ l∏
t=1

(
p N

mt
− 1

[x+pbt

mt
]

)

≡(−1)(k−l) p−1
2

(
1 + pN

( k∑
s=1

qp(ns)
ns

−
l∑

t=1

qp(mt)
mt

))
(mod p2).

Remark 1.2. Actually we may not require the integer N in Theorem 1.2
to be a common multiple of those moduli ns and mt. For example N = 1
is allowed if we don’t mind using x 6∈ Z in the notation

(
x
n

)
.
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Corollary 1.2. Let A = {as(ns)}k
s=1 (0 6 as < ns) be an exact m-cover

of Z. Let N be the least common multiple of n1, · · · , nk and p an odd
prime not dividing N . Then

(1.9)
k∏

s=1

(
p N

ns
− 1

[pas

ns
]

)
≡ (−1)(k−m) p−1

2

(
1 + pN

k∑
s=1

qp(ns)
ns

)
(mod p2).

Proof. Let B be the system consisting of m copies of 0(1). Then A ∼ B.
Since [p0

1 ] = qp(1)
1 = 0, Corollary 1.2 follows immediately from Theorem

1.2. �

Remark 1.3. Applying Corollary 1.2 to the trivial disjoint cover A =
{r(n)}n−1

r=0 we then get Corollary 1.1 again.
In the next section we will give some examples of uniform maps the

concept of which arose from our previous study of covering equivalence
(cf. [S1] and [S2]). On the basis of Section 2, we are going to prove
Theorems 1.1 and 1.2 in Section 3.

2. Some uniform maps

Definition 2.1. Let m be an integer and M an additive abelian group. Let
f be a map from a subset of C × C into M . If for any ordered pair 〈x, y〉
in the domain Dom(f) of f and each positive integer n prime to m, we
have

(2.1)
{〈

x + mr

n
, ny

〉
: r = 0, 1, · · · , n− 1

}
⊆ Dom(f)

and

(2.2)
n−1∑
r=0

f

(
x + mr

n
, ny

)
= f(x, y),

then we call f an m-uniform map (into M).
The functional equation (2.2) with m = 1 was first introduced by the

author in [S1] where he showed the following theorem in the case m = 1
by a complicated induction method.

Theorem 2.1. Let m be an integer and M a left R-module where R is a
ring with identity. Let f be a map into M with Dom(f) ⊆ C×C such that
(2.1) holds for any 〈x, y〉 ∈ Dom(f) and n ∈ Z+ with (m,n) = 1. Then
the following two statements are equivalent:

(a) f is an m-uniform map into M .
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(b) Whenever

(2.3)
∑

16s6k
x∈as(ns)

λs =
∑

16t6l
x∈bt(mt)

µt for all x ∈ Z

(with λs, µt ∈ R, as, ns, bt,mt ∈ Z, 0 6 as < ns, 0 6 bt < mt and
(nsmt,m) = 1), we have
(2.4)

k∑
s=1

λsf

(
x + mas

ns
, nsy

)
=

l∑
t=1

µtf

(
x + mbt

mt
,mty

)
for 〈x, y〉 ∈ Dom(f).

Proof. Since {r(n)}n−1
r=0 ∼ {0(1)} for all n ∈ Z+, (b) implies (a).

Now we show (b) under the condition (a). Suppose that (2.3) holds.
Let N be the least common multiple of those moduli ns and mt. If 〈x, y〉 ∈
Dom(f), then

k∑
s=1

λsf

(
x + mas

ns
, nsy

)
=

k∑
s=1

λs

N/ns−1∑
j=0

f

( x+mas

ns
+ jm

N/ns
,
N

ns
(nsy)

)

=
k∑

s=1

λs

N−1∑
r=0

r∈as(ns)

f

(
x + mr

N
,Ny

)
=

N−1∑
r=0

( ∑
16s6k

r∈as(ns)

λs

)
f

(
x + mr

N
,Ny

)

=
N−1∑
r=0

( ∑
16t6l

r∈bt(mt)

µt

)
f

(
x + mr

N
,Ny

)
=

l∑
t=1

µtf

(
x + mbt

mt
,mty

)
.

This ends the proof. �

Proposition 2.1. (i) Let m ∈ Z. Then the function [ ]m : R × R → Q
given by

(2.5) [ ]m(x, y) = [x] +
1−m

2

is an m-uniform map into the rational field Q.
(ii) For each m = 0, 1, 2, · · · the functions bm : C × C∗ → C and em :

C× Z → C given by

(2.6) bm(x, y) = ym−1Bm(x)

and

(2.7) em(x, y) =
{

eπixyymEm(x) if y is odd,

− 2
m+1eπixyymBm+1(x) if y is even,
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are 1-uniform maps into the complex field C, where Bm(x) and Em(x) are
the mth Bernoulli polynomial and the mth Euler polynomial respectively.

Proof. Let n be any positive integer.
i) If (m,n) = 1 then

n−1∑
r=0

([
x + mr

n

]
+

1−m

2

)
=

n−1∑
r=0

(
x + mr

n
+

1−m

2
−

{
x + mr

n

})

=x + m
n−1∑
r=0

(
r

n
− 1

2

)
−

n−1∑
r=0

( {
{x}+ [x] + mr

n

}
− 1

2

)

=x− m

2
−

n−1∑
s=0

(
{x}+ s

n
− 1

2

)
= x− m

2
−

(
{x} − 1

2

)
= [x] +

1−m

2
.

This proves part (i).
ii) Let m be an arbitrary nonnegative integer. Raabe’s identity states

that

(2.8)
n−1∑
r=0

Bm

(
z +

r

n

)
= n1−mBm(nz).

Another known identity (cf. [B]) asserts that

(2.9) Em(nz) =

{
nm

∑n−1
r=0 (−1)rEm(z + r

n ) if 2 - n,

− 2nm

m+1

∑n−1
r=0 (−1)rBm+1(z + r

n ) if 2 | n.

By these two identities we can easily check that

n−1∑
r=0

bm

(
x + r

n
, ny

)
= bm(x, y) for x ∈ C and y ∈ C∗

and
n−1∑
r=0

em

(
x + r

n
, ny

)
= em(x, y) for x ∈ C and y ∈ Z.

The proof is now complete. �

Remark 2.1. In 1989 the author [S1] briefly mentioned the basic things
for Proposition 2.1. For more examples of 1-uniform maps, the reader is
referred to [S5].
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Corollary 2.1. Let p be an odd prime and n > 0 an even integer prime
to p. Then

(2.10)
n−1∑
r=0

(−1)rBp−1

(
r

n

)
≡ −nqp(2) (mod p).

Proof. By Proposition 2.1,

2np−2

1− p

n−1∑
r=0

(−1)rBp−1

( r

n

)
=

n−1∑
r=0

ep−2

( r

n
, n

)
= ep−2(0, 1)

doesn’t depend on the value of positive even integer n. So

np−2
n−1∑
r=0

(−1)rBp−1

( r

n

)
=2p−2

(
2Bp−1 −

2−1∑
r=0

Bp−1

(r

2

) )
=2p−1Bp−1 −Bp−1.

Since pBp−1 ≡
∑p−1

r=1 rp−1 ≡ −1 (mod p) (see, e.g. [IR]), (2.10) follows at
once. �

Proposition 2.2. Let p be an odd prime. For x > 0 and m ∈ Z \ pZ let

(2.11) q(x,m) =
qp(m)

m
+

∑
0<j6[x]

p-j

1
jm

Then the function q̄(x, m) = q(x,m) mod p is a p-uniform map into the
finite field Z/pZ.

Proof. Let m ∈ Z \ pZ and n ∈ Z+ \ pZ. Since

qp(mn) =
mp−1 − 1

p
+ mp−1 np−1 − 1

p
≡ qp(m) + qp(n) (mod p),

for x > 0 the congruence

n−1∑
k=0

q

(
x + pk

n
, nm

)
≡ q(x,m) (mod p)

is equivalent to the following

(2.12) qp(n) ≡
∑

0<j6[x]
p-j

1
j
− 1

n

n−1∑
k=0

∑
0<j6[ x+pk

n ]
p-j

1
j

(mod p).
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Now it suffices to show (2.12) for all x = 0, 1, 2, · · · .
By pp. 125–126 of [GS] we have

(2.13) Bp−1

( {
pk

n

} )
−Bp−1 ≡ −

∑
0<j6[pk/n]

1
j

(mod p)

for any k = 0, 1, · · · , n− 1. Observe that
n−1∑
k=0

(
Bp−1

( {
pk

n

} )
−Bp−1

)
=

n−1∑
r=0

Bp−1

( r

n

)
− nBp−1

=n2−pBp−1 − nBp−1 =
n

np−1
· 1− np−1

p
(pBp−1) ≡ nqp(n) (mod p).

Thus (2.12) holds for x = 0.
Let r ∈ Z+. Assume (2.12) for x = r − 1. Denote by k0 the unique

integer k ∈ [0, n) such that r + pk ≡ 0 (mod n). Clearly p | r if and only
if p divides j0 = (r + pk0)/n. For k ∈ {0, 1, · · · , n− 1}, we have[

r + pk

n

]
=

[
r − 1 + pk

n

]
+

{
1 if k = k0,

0 otherwise.
If p - r, then

1
r
− 1

n
· 1
j0

=
1
r
− 1

r + pk0
≡ 0 (mod p).

Thus ∑
0<j6r

p-j

1
j
− 1

n

n−1∑
k=0

∑
0<j6[ r+pk

n ]
p-j

1
j

≡
∑

0<j6r−1
p-j

1
j
− 1

n

n−1∑
k=0

∑
0<j6[ r−1+pk

n ]
p-j

1
j
≡ qp(n) (mod p).

This concludes the induction step. We are done. �

3. Proofs of Theorems 1.1 and 1.2

Lemma 3.1. (i) Let a ∈ Z, n ∈ Z+ and (2a, n) = 1. Then

(3.1) |Sn(a)| ≡
∑

0<k<n/2

[
ka

n

]
+

n2 − 1
8

(a− 1) (mod 2).

(ii) Let m,n ∈ Z+ and (m,n) = 1. Then for δ ∈ {0, 1} we have

(3.2)
∑

0<k6(n−δ)/2

[
km

n

]
+

∑
0<k6(m−δ)/2

[
kn

m

]
=

[
m− δ

2

] [
n− δ

2

]
.

The above lemma is well-known and usually stated in textbooks with
a,m, n being odd primes.
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Lemma 3.2. Let k, m, n ∈ Z and 0 6 k < n. Let p be an odd prime not
dividing n. Then

(3.3) (−1)[pk/n]

(
pm− 1
[pk/n]

)
≡ 1+pm

(
Bp−1

( {
pk

n

} )
−Bp−1

)
(mod p2).

Proof. For any l ∈ {0, 1, · · · , p− 1},

(3.4) (−1)l

(
pm− 1

l

)
=

∏
0<j6l

(
1− p

m

j

)
≡ 1− pm

∑
0<j6l

1
j

(mod p2).

Combining this with (2.13) we then obtain (3.3). �

Proof of Theorem 1.1. As p− 1 is even, we have Bp−1(1− x) = Bp−1(x).
i) Let l = [(n− δ)/2] and εn = (1 + (−1)n)/2. By Lemma 3.2,

∏
0<k6l

(−1)[
pk
n ]

(
pm− 1
[pk/n]

)

≡1 + pm
∑

0<k6l

(
Bp−1

( {
pk

n

} )
−Bp−1

)
(mod p2).

Observe that

2
∑

0<k6l

(
Bp−1

( {
pk

n

} )
−Bp−1

)
− εn(−1)δ

(
Bp−1

(
1
2

)
−Bp−1

)

=
∑

0<k6l

(
Bp−1

( {
pk

n

} )
+ Bp−1

( {
p(n− k)

n

} )
− 2Bp−1

)

− εn(−1)δ

(
Bp−1

({p

2

})
−Bp−1

)
=

n−1∑
k=0

(
Bp−1

( {
pk

n

} )
−Bp−1

)
≡ nqp(n) (mod p)

where the last step is taken as in the proof of Proposition 2.2. By Corollary
2.1, Bp−1( 1

2 ) − Bp−1 ≡ 2qp(2) (mod p). Recall that qp(a) ≡ 2(a
p )eqp(a)

(mod p) for any a ∈ Z with (a, p) = 1. So

∑
0<k6l

(
Bp−1

( {
pk

n

} )
−Bp−1

)

≡n

(
n

p

)
eqp(n) + εn(−1)δ2

(
2
p

)
eqp(2) (mod p).
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By Lemma 3.1 and Gauss’ Lemma,

(−1)
∑

0<k6l[
pk
n ] = (−1)

p−1
2 l−

∑
0<k<p/2[

nk
p ] = (−1)

p−1
2 l

(
n

p

) (
2
p

)n−1

.

Therefore

(−1)
p−1
2 l

(
n

p

) (
2
p

)n−1 ∏
0<k6l

(
pm− 1
[pk/n]

)
=

∏
0<k6l

(−1)[
pk
n ]

(
pm− 1
[pk/n]

)

≡1 + pm

(
n

(
n

p

)
eqp(n) + εn(−1)δ2

(
2
p

)
eqp(2)

)
(mod p2)

and hence (1.3) follows.
ii) Write S for the left hand side of (1.4) and S′ =

∑n−1
r=0 (−1)rBp−1( r

n ).
By Lemma 3.2,

S ≡
n−1∑
k=0

(−1){pk}n

(
1 + pm

(
Bp−1

(
{pk}n

n

)
−Bp−1

))
≡(1− pmBp−1)∆ + pmS′ (mod p2)

where

{pk}n = n

{
pk

n

}
= pk − n

[
pk

n

]
and ∆ =

n−1∑
r=0

(−1)r =
1− (−1)n

2
.

If 2 - n, then S′ = Bp−1 since (−1)n−rBp−1(n−r
n ) = −(−1)rBp−1( r

n ),
therefore S ≡ 1 (mod p2). When 2 | n we may apply Corollary 2.1. This
concludes the proof. �

Proof of Theorem 1.2. Since A ∼ B, by Theorem 2.1 and Proposition 2.1
we have

k∑
s=1

([
x + pas

ns

]
+

1− p

2

)
=

l∑
t=1

([
x + pbt

mt

]
+

1− p

2

)
.

So (1.8) is equivalent to the following

PA =
k∏

s=1

(−1)[
x+pas

ns
]

(
p N

ns
− 1

[x+pas

ns
]

)
×

(
1− pN

k∑
s=1

qp(ns)
ns

)

≡PB =
l∏

t=1

(−1)[
x+pbt

mt
]

(
p N

mt
− 1

[x+pbt

mt
]

)
×

(
1− pN

l∑
t=1

qp(mt)
mt

)
(mod p2).
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By (3.4) we have

PA ≡
k∏

s=1

(
1− p

N

ns

∑
0<j6[ x+pas

ns
]

1
j

) (
1− pN

qp(ns)
ns

)

≡
k∏

s=1

(
1− p

N

ns

(
qp(ns) +

∑
0<j6[ x+pas

ns
]

1
j

))

≡
k∏

s=1

(
1− pNq

(
x + pas

ns
, ns

) )

≡1− pN
k∑

s=1

q

(
x + pas

ns
, ns

)
(mod p2);

similarly

PB ≡ 1− pN
l∑

t=1

q

(
x + pbt

mt
,mt

)
(mod p2).

In view of Theorem 2.1 and Proposition 2.2, PA ≡ PB (mod p2). We are
done. �
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