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ABSTRACT. A residue class a + nZ with weight A is denoted by (X, a,n). For a finite
system A = {(\s, as,ns) }¥_, of such triples, the periodic map w4 (x) = D onglz—as As
is called the covering map of A. Some interesting identities for those A with a fixed
covering map have been known, in this paper we mainly determine out all those
functions f : Q — C such that Z’;Zl Asf(as + nsZ) depends only on w4 where Q
denotes the family of all residue classes. We also study algebraic structures related
to such maps f, and periods of arithmetical functions (z) = Z?:l Ase2miasz/ns
and w(z) = {1 <s<k: (z+as,ns) =1}

1. INTRODUCTION AND PRELIMINARIES

Let S be a set. For an arithmetical map ¥ : Z — S, if for some n € ZT =
{1,2,3,---} we have ¢¥)(x +n) = ¢(x) for all z € Z, then we say that i is periodic
modulo n and n is a period of 1. Let P(S) denote the set of all periodic maps
Y :7Z — S. If m,n € Z* are periods of a map ¢ € P(S), then the greatest common
divisor (m,n) is also a period of 1, for we can write (m,n) in the form am + bn
with a,b € Z. Thus, any period of 1) € P(S) is a multiple of the smallest (positive)
period n () of .

A monoid is a semigroup with identity. Let M be a commutative monoid (con-
sidered as an additive one). If 11,12 € P(M), then the map ¢ + ¥9 : = +—
1(x) + o (z) also lies in P(M) because 11 + 15 is periodic modulo the least com-
mon multiple [n(v1),n(¢2)]. In 1989 the author [S1] introduced triples of the form
(A\,a,n) where A € M, n € Z* and a € R(n) = {0,1,--- ,n — 1}. We can view
(A, a,n) as the residue class (or arithmetic sequence)

(1) an)=a+nZ={a+nx:x €7}
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associated with weight (or multiplier) A. Let S(M) denote the family of all finite
systems of such triples. For

(2) A= {()\S,as,n5>}ls€:1 € S(M),

the covering map w4 : Z — M is given by

k
(3) walz)= Y A forzel
s=1

ans_(ns)

(wg refers to the zero map), clearly w4 is periodic modulo the least common mul-
tiple [nq,---,ng] of all the moduli ny,--- ,ng. Observe that any ¢ € P(M) pe-
riodic mod n is the covering map of the system {(1(r),r,n)}"=} € S(M). For
A, B € S(M) we define their formal union A U B by putting triples in A and B
altogether. Then w : A — w4 gives an epimorphism of the commutative monoid
S(M) (with respect to the formal union) onto the commutative monoid P(M). Two
systems A and B in S(M) are said to be equivalent if they have the same covering
map. We use ~ to denote this congruence relation on S(M). Note that the quotient
monoid S(M)/ ~ is isomorphic to P(M).

When the additive monoid M is an abelian group, for system (2) we let —A be
the system {(—\s,as,ns)}*_; and for ¢ € P(M) we let —1) be given by —¢(z) =
—(¢(x)). Notice that A and B in S(M) are equivalent if and only if ALI—B ~ (). By
the fundamental theorem of homomorphisms the group S(M)/K(M) is isomorphic
to the abelian group P(M) where

(4) K(M)={AeS(M): A~ (ie. wa=0)}

If M is an R-module where R is a ring with identity, then we can make P(M)
and S(M) be R-modules by letting a(z) = a(y(x)) and ad = {{a),, as,ns) e,
for a € R, ¢ € P(M) and system (2). Observe that the R-module S(M)/K(M) is
isomorphic to the R-module P(M). The so-called vector-covers of Z studied by S.
Znédm [Z1, Z2] are those A € S(R) with A ~ {(1,0,1)} where R is the field of real
numbers.

For any m,n € Z* and a € R(n), apparently {(0,a,n)} ~ ), also

{{(m,a,n)} ~{(1,a,n),--- ,(1,a,n)} and {{(—m,a,n)} ~ —{(1,a,n), - ,(1,a,n)}.

(. J (.
~~ ~~

m times m times

So each A € S(Z) can be written as A; U — Ay where A; and Aj are in the form
{(1,as,ns)}%_; (k > 0) which may be identified with

(5) A= {CLS(HSH’E:l'
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For system (5) of residue classes, if wa(x) = |[{1 < s < k: z € as(ns)}| equals
m for each x € Z, then as in [S5, S6] we call (5) an exzact m-cover of Z. (The study
of covers of Z by residue classes was initiated by P. Erdés [E1], for problems and
results in this area one may see R.K. Guy [G] and the introduction of the author
[S5].) Notice that (5) is an exact m-cover of Z if and only if

{as(na) Yoo ~{0(1), -+ 0} (e {{1,as, na) ooy U{(=m,0,1)} ~ 0).
—_———

m times

Many known results concerning finite systems of residue classes with number
weights can be expressed in the following form:

l

k
(6) {<)\S,a5,n5>}§:1 ~ {<Nt7bt7mt>}é:1 = ZASJC(@S +nsZ) = Zﬂtf(bt+mtz)-

s=1 t=1

Here are some examples of such results:

(a) (Exdds [E2)) {a(n,)}i, ~ {0(1)} = Z’; L=

(b) (B. Novik and Zndm [NZ]) {as(ns) ¥, ~ {o(1 )} — Y =L
where z is any complex number with |z| # 1

(c) (Porubsky [P]) {(1,as,ns)}*_q ~ {(m,0,1)} = Zs ,n 1B, (“S) =mB,
where B,,(z) denotes the nth Bernoulh polynomial and Bn = B,(0).

(d) (Z. W. Sun [S3]) {(As, a5, n) oy ~ 0 = D 1cocn 2= 627”0‘“3 = 0 where « is

ans€Z

an arbitrary real number.
Let Q be the family of all residue classes (i.e. Q= J,cy+ Z/nZ). Then Q forms
a monoid with respect to the multiplication ® defined below:

(a+dZ)® (r+nZ)=a+rd+ndZ (a,r €Z and d,n € Z").

For a € Z and d,n € Z*, clearly

n—1
U a+jd+ndZ =a+dZ and {a +jd(nd)}?:_01 ~ {a(d)}.
j=0

Let M be an additive commutative monoid. The set of all maps f : Q@ — M is
denoted by F(M), it can be viewed as a commutative monoid under the functional
addition. A map f: Q) — M is said to be equivalent if

n—1
(7) Zf(a—l—jd—i—ndZ):f(a—i—dZ) for any a € Z and d,n € Z*.
j=0

(We may not have (7) even if ZZ_S f(r+nZ) = f(Z) for all n € Z*, for example

n—1 2741 _ 2041 2141 | 2341 4 2141
D or—0 gz = 4z but S5 517 7 307
form a submonoid E(M) of F(M)

.) Those equivalent maps f: Q — M
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For any map v defined on Z we let E™(x) = ¥ (x+m) for any m,z € Z and call
E = E* the shift operator. Let S; and Sy be sets. An operator T': P(S1) — P(S3)
is said to be commutable with E if T(E(y)) = E(T(¢)) for all ¢» € P(S1). When
T is commutable with E, if ¢» € P(S}) is periodic mod n then so is T'()) because
E™MT(y)) =T(E"Y) = T(¢).

For any commutative monoids M and N, the set of all homomorphisms of M
into N forms a commutative monoid naturally and we denote it by Hom(M, N);
the set of those T € Hom(P(M),P(N)) commutable with E forms a submonoid
of Hom(P(M),P(N)) and we denote it by Hom'(P(M),P(N)). If M and N are
R-modules where R is a ring with identity, then the set of all R-module homo-
morphisms of M into N forms an R-module in a natural way and we denote it by
Hompg (M, N); the set of those T' € Homg(P(M),P(N)) commutable with E forms
a submodule of Homp(P(M),P(N)) and we denote it by Hom',(P(M), P(N)).

Let M and N be commutative monoids (or R-modules). In this paper we aim
to determine all those T' € Hom'(P(M),P(N)) (or T' € Hom’,(P(M),P(N))). For
such an operator T and 1,2 € P(M), T'(1 + 12) should depend on the smallest
period of 11 + 12, but usually we don’t know the exact value of n(¢; + 12) even if
n(11) and n(1s) are given. This difficulty makes our goal more interesting and the
task very challenging. As we will show in the next section, the problem is connected
with E(N) closely. If R is a ring with identity and M is an R-module, then we can
make E(R) form a ring with identity and P(M) form an E(R)-module.

In Section 3 we are going to investigate E(C) thoroughly where C is the complex
field, as an application we show the following central result which was announced
by the author in [S2].

Theorem. For f € F(C), (6) holds if and only if f has the following form:

Z ( )eQﬂi%“ (a €Z and n € 7).

m=0

3I'—‘

fla+nZ) =

Now we state two more results in this paper:

I. Let Ay, , A\ € C* = C\ {0}, and &, ,& be distinct roots of unity.
Then the smallest (positive) period of the arithmetical function 1 (x) = 2521 A&7,
coincides with [ny,--- ,ny| where ng is the least n € Z1 with ¥ =1 (i.e., & is a
primitive ngth root of unity).

I1. Let (5) be a system of residue classes with ny,--- ,ny squarefree and ny <

<My < Np—jg1 = =ng (0<I<k). If{1<s<k:(x+as,ns) =1} =
for all x € Z, then | > minj¢s<k—1 nk/(ns, ng), furthermore

for some x1,--+ ;x5 € N={0,1,2,---}.
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2. ALGEBRAIC STRUCTURES CONCERNING PERIODIC ARITHMETICAL MAPS

Let us first look at
Ezample 1. Let M be a commutative monoid M considered as an additive one.
Fix \€ M. If a,x € Z and n € Z* then we let

A ifrea+nZ,

0 otherwise.

(8) Aat+nz(T) = (N)z(a +nZ) = {

Evidently A\yynz : Z — M belongs to P(M) for any a € Z and n € Z", and
(N : Q@ — M lies in E(M) for each z € Z.

This example suggests that periodic arithmetical maps might be related to equiv-
alent maps.

Lemma 1. Let M and N be additive commutative monoids. Let T be a map of M
into E(N) and define the operator S; : P(M) — P(N) as follows:

n(y)—1
S-()(z) = Z T(Y(x —7))(r+n()Z) forp € P(M) and x € Z.

r=0

Then
(i) For any period n € Z* of ¢ € P(M) we have

|
—

n

9) Sr()(x) = T(Y(x — 7)) (r+nZ) forall x € Z.

\3
I
=

(ii) The operator S, is commutable with E.

(iii) S; € Hom(P(M),P(N)) if 7 € Hom(M,E(N)).
Proof. Let us first prove (i) and (ii). Suppose that » € P(M) is periodic mod n.
Then ng = n(y) divides n. For any x € Z we have

ng— 1n/n0 1

T(Y(x —71))(r+nZ) = Z Z (x — (u+vng)))(u+ vng + nZ)
0

i
!

1
Il

no— 1n/n0 1
n
g g (x —u) (u+vn0+—n0Z>
n

0

'nol

Y(x —u))(u+noZ) = S;(¢)(x)

HM

and
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Now let 7 € Hom(M,E(N)). We come to show that S; € Hom(P(M),P(N)).
Apparently
S-(0)(x) =7(0)(04+1Z) =0 for all z € Z.

If 11,79 € P(M) have periods ny,ny € ZT respectively, then 1,1y and 91 + 1o
are periodic mod n where n = [n,ns| and so

i
)

Sr(1r +p2)(w) =y 7((1 +2)(x — 1)) (r + nZ)

Il
[

3 3
|

(T(1(z = 7)) + 7(P2(x — 7)) (r + nZ)

I
(]

r=0
= i T(Y1(x —r))(r +nZ) + i T(Y2(x — 1)) (r + nZ)
r— r=0

—~ QO

1) (x) + Sr(v2) ()

T

for every integer x. Thus S, € Hom(P(M),P(N)). O
Now we give

Theorem 1. Let M and N be additive commutative monoids. For any A € M and
T € Hom'(P(M),P(N)) we let

(10) or(N)(a+nZ) =T(Muz)(a) fora€Z andn € Z™.

Then o : T +— o7 gives an isomorphism of the monoid Hom'(P(M),P(N)) onto
Hom (M, E(N)).

Proof. Fix T € Hom'(P(M),P(N)). Let A € M. For each n € Z*, \,z € P(M) is
periodic mod n and hence so is T'(A,z) € P(N). Clearly

T(Anz)(m) = E™(T(Anz))(0) = T(E™Az)(0) = T(A—m1nz)(0)

for all m € Z and n € Z*. For any d,n € Z* and a € Z we have

iaT()\)(a+jd+ndZ) iT()\ndz)(a—i—jd)
= : T(A (a+jd)+ndZ = (Z (a+jd)+ndZ) (0)
= T(A-at4z)(0) = T(Aaz)(a) = or(A)(a + dZ).

Therefore o : A — or(A) is a map from M into E(N).



ALGEBRAIC APPROACHES TO PERIODIC ARITHMETICAL MAPS 7

Let a € Z and n € Z". Clearly o7 (0)(a +nZ) = T(0,z)(a) = 0. If \,p € M

hen
t or(A+ p)(a+nZ) = T((A+ p)nz)(a) = T(Anz + pnz)(a)
= T(2)(0) + T(pnz) (@) = (N (@ + nZ) + o7(1) (a + nZ).
Thus or € Hom(M, E(N)).

We assert that S,,. = T. Let 1» € P(M) be periodic mod n and x be an integer.
Then

n—1 n—1
> vz —1)_rinzla) = Y(x—71) =z +a) = E*Y(a) for all a € Z
r=0 nT;—i(—)r

and hence

ZO’T x—r))(r+nZ)= ZT (x = 7)nz) (1)

- ZT e )0 =T( e z) 0
~ (B )0) = BT)0) = T(0) ).

Let 7 € Hom(M,E(N)). Then S, € Hom'(P(M),P(N)) by Lemma 1. For any
ANEM,acZandncZ" we have

s, (M)(a+nZ) = 5-(Anz)(a) = S 7(Anz(a — ) (r + nZ)
r=0
i T(A)(r+nZ) + i 7(0)(r +nZ) = 7(\)(a + nZ).
r= r=0
n| 7" nfa—r

Soos. =T.

In view of the above, map o : T' +— o of Hom'(P(M), P(NV)) into Hom (M, E(N))
is bijective and its inverse is the map S : 7 — S; from Hom(M,E(N)) into
Hom'(P(M),P(N)).

It is easy to see that o : Hom'(P(M),P(N)) — Hom(M,E(N)) is a monoid
homomorphism. So the two monoids Hom'(P(M),P(N)) and Hom(M,E(N)) are
isomorphic via the map o. [

With the help of Theorem 1 we can present

Theorem 2. Let M be an R-module where R is a ring with identity. For any
f € E(M) we define Ty : P(R) — P(M) by letting

n—1

(11) T¢(Y)(x) = Z Y(x—71)f(r+nZ) forx €Z and i) € P(R) with period n.
r=0
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Then T : f w— Ty gives an isomorphism of the additive abelian group E(M)
onto Hom’p(P(R),P(M)). If R is commutative then the R-modules E(M) and
Hom', (P(R),P(M)) are module isomorphic via the map T.

Proof. Let f € E(M) and set 74(\) = Af for A € R. Then 74 € Homg(R,E(M))
and Ty = S;, € Homz(P(R),P(M)).

Evidently map 7 : f +— 77 gives a homomorphism of abelian group E(M) into
Hompg(R,E(M)) and

Kerr ={f e EM): 74 =0} C{f e E(M): 74(1) =0} = {0}.

If h € Homg(R,E(M)) and A € R, then h(\) = h(X-1) = A(h(1)) = T(1)(A). So
the additive groups E(M) and Hompg(R, E(M)) are isomorphic via the map 7.

For any H € Hom/,(P(R),P(M)), we have f = on(1) € E(M), also oy =
7y € Homgp(R,E(M)) and H = S,,, = S;,. It follows that the abelian group
Homp(R,E(M)) is isomorphic to Hom’, (P(R), P(M)).

Combining the above we obtain that T": f + Ty = S;, gives an isomorphism of
the additive group E(M) onto Hom';(P(R), P(M)).

When R is commutative, if A € R, f € E(M) and ¢ € P(R) then Th¢(¢)) =
ATt (1), therefore the map T : f — T is an R-module isomorphism of E(M) onto
Hom/’,(P(R),P(M)). O

Ezxample 2. Let M be a commutative monoid. For any integer m operator K™ :
P(M) — P(M) is in End'(P(M)) = Hom'(P(M),P(M)) and the corresponding
opm € Hom(M,E(M)) is given by ogm (\) = (A\)_,, where A € M. Let R be a ring
with identity 1. We can view R as an R-module. When M forms an R-module, for
any A € M and m € Z we have Ty, (¢)(z) = (E~™¢(x))A where ¢ € P(R) and
x € Z. Clearly e, = (1), € E(R) and T,,,, = E~™ for all m € Z, in particular T,
is the identical map of P(R) onto itself where e = eq lies in E(R).

Let R be a ring. For f,g € F(R), we define the convolution f x g € F(R) by

n—1

(12)  fxgla+nZ)= Z f(r+nZ)gla—r+nZ) (a €Z and n € Z").
r=0

Example 3. Let R be aring. If A\, p € R and m,n € Z, then (A\),,, (1), € E(R)
by Example 1, we can easily verify that (A\),, * (t)n = (At)men € E(R). Thus,
when R has identity 1, e, * e, = €+, for all m,n € Z.

Ezample 4. For a € QN [0,1) we define p, € F(R) by

n—
n

1 Le2miaa if an € Z,
13 ol@+nZ) = —
(13) pal ) no = { 0 otherwise.

m/n

1
eQTri%a
a

Il o
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When a,8€ QN[0,1), a € Z and d,n € Z*, we have

n—1 1 nd—1 n—1
Z pala+jd+ndZ) = — Z Z p2mis (atjd)
m/(nd)=a

1 nd—1 n—1 1 nd—1
Loy pmm Y emmi i ma
—_ (& nd e n — e Y

nd = J=0 d m=0

m/(nd)=a m/(nd)=a
nlm

1 d—1

=5 2 = pala+d2),
r=0
r/d=«a
and
n—1 1 1
Pa * pﬁ(a + nZ) — ;} ﬁe2mar ) E627715(a_7~)
anﬁhez
1 .
=L erisa nZ e2mila—p)r _ { pala+nZ) if a=p,
n? =0 0 otherwise.
an,BneZ

So {pa}tacono,1) is an orthogonal system of functions in E(C) with respect to
convolution .

Lemma 2. Let R be a ring, and f,g,h € F(R). Then (fxg)xh = fx(gxh), also

fxg€E(R) if f.g € E(R).

Proof. Let a € Z and n € Z*. It is easy to check that
(f*g)*xh(a+nZ)=fx*x(gxh)(a+nZ).

If f,g € E(R) and d € Z™, then

n—1 n—1nd—1
Zf*g(a+jd+ndZ) = f(m +ndZ)g(a + jd — m + ndZ)
j=0 j=0 m=0
nd—1 n—1
= Z f(m+ndZ)Zg(a—m+jd+ndZ)
m=0 §=0
d—1n—1

tI|1

fr+ sd+ndZ)g(a — (r + sd) + dZ)

QU o3
[
=
»
I
o

fr+dZ)g(a—r+dZ) = f x gla+ dZ).

ﬁ
Il
=

This ends the proof. [
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Lemma 3. Let M be an additive commutative monoid and {fo}acs a family of
maps in F(M) such that {o € S : fo(a+ nZ) # 0} is finite for any a € Z and n €
Z*. Define the map Y cg fa € F(M) by (3 cq fa)(a+nZ) =3 oo fala+nZ).

(i) If fa € E(M) for all a € S, then ) g fo € E(M).
(ii) If M is a ring R and g is in F(R), then
{ae€eS: foxgla+nZ)#0} and {a€S: g* fola+nZ)+#0}

are finite for all a € Z and n € Z*, moreover

(Zfa)*g=2(fa*g) and g+ fo=> (g% fa)

aesS acsS aEeS aEeS

Proof. i) Let a € Z and d,n € Z*. Then the set
S'"={a€S: fala+ jd+ndZ) # 0 for some j € R(n)}

is finite. As f, € E(M) for all « € S, S’ contains {« € S : f,(a + dZ) # 0}. Thus

n—1 n—1
SN fala+jd+ndZ) =Y "> fola+ jd + ndZ)

j=0 a€es j=0 aes’
n—1
=3 Y fala+id+ndz) = Y fala+dZ) =Y fala+d2).
aeS’ j=0 aEeSs’ acs

ii) Let a € Z, n € Z" and
Sy ={ae€S: fo(r+nZ)#0 for some r € R(n)}.

Then S, is finite, and for a € S\ S, we have f, xg(a +nZ) =0 = g* fo(a + nZ).
Thus both {a € S : fo xgla+nZ) # 0} and {a € S : g * fo(a + nZ) # 0} are
subsets of the finite set S,. Observe that

(Zfa) vgatnZ) =3 Y fulr +ngla—r + n)

a€eS r=0 a€S,

= Z fa*g(a+nZ):Zfa*g(a+nZ).

OLGS* aeS

Similarly

(g*Zfa)(a—l—nZ): Z g*fa(a+nZ)=Zg*fa(a+nZ).

aeS a€S, a€ES
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We are done. [
Ezample 5. For a € Z and n € ZT, clearly

{ae@ﬂ[O,l):pa(a—l—nZ);«éO}:{aEQﬂ[O,l):aneZ}:{%:mER(n)}.

Since po € E(C) for all « € QN [0,1), ¥ = 2 acono,1) ¥(@)pa € E(C) where ¢ is
any map from QN [0, 1) into C. Note that

Z ( > 2mitta fora € Z and n € ZT.

m=0

(14) Y(a+nZ) =

3I+~

Clearly e = I where I(z) = 1 for all z € QN [0,1). For any functions 1, x
QnN[0,1) — C, by Lemma 3 and Example 4 we have

(15)  dxx= > @) > x(B)paxps)= Y, wla)x(@)pa.

a€eQn(o,1) BeEQN[0,1) aeQn(o0,1)

Let M be an R-module where R is a ring with identity. For f € E(R) and
1 € P(M) we define f o1 € P(M) by

(16) fou(x)= Z f(r +nZ)yY(x —r) where n € Z" is a period of 1.

(Note that foi) = S;(v) where 7 = 74 € Hom(M, E(M)) is given by 7¢(x)(a+nZ) =
fla+nZ)x (x € M, a € Z and n € Z*) and S, is as in Lemma 1.)

Theorem 3. Let R be a ring. Then

(i) F(R) forms a ring with subring E(R) under the natural addition + and the
convolution x. When R is commutative, so is F(R); if E(R) is commutative then
s0 is RR.

(ii) Suppose that R has identity 1. Then F(R) has identity e € E(R). Fur-
thermore, for any R-module M, P(M) forms an E(R)-module with respect to the
natural addition + and the scalar multiplication o.

Proof. i) Since R is an additive abelian group, so is F(R). By Lemmas 2 and 3
we have the associative law and the distributive laws. Thus F(R) forms a ring. In
view of Lemma 2, E(R) is a subring of F(R).

If R is commutative, then for any f,g € F(R), a € Z and n € Z* we have

n—1

n—1
fxgla+nZ) = Z f(r+nZ)g(a—r+nZ) = Zg(s+nZ)f(a—s+nZ) = gxf(a+nZ),
r=0 s=0
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therefore F(R) is commutative. On the other hand, if E(R) is commutative, then
so is R because by Example 3 for each \,u € R, mi,mg € Z and n € Z" we have

/\M :</\M)m1—|—m2 (ml +ma + HZ) - (A)ml * (,u)mQ (ml +ma + ’I?,Z)
(1) ms * (N, (M1 +ma +nZ) = pA.

ii) Suppose that R has identity 1. By Examples 1 and 2, e = eg = (1)g € E(R) C
F(R). It is clear that ex f = f = f x e for all f € F(R).

Let M be arbitrary R-module. Then P(M) forms an additive abelian group. Let
f,9 € E(R) and ¥, x € P(M). Obviously (f+g)oty = foi+gotp. For any x € M
the map 7¢(x) : a + nZ — f(a + nZ)x lies in E(M). Clearly 7; € Hom(M, E(M))
and hence S, € End'(P(M)) = Hom'(P(M),P(M)) by Lemma 1. Thus

fo(l/}‘f’X):STf(¢+X):STf(¢)+STf(X):fO¢+fOX-

Let n € Z™ be a period of v, then for each x € Z we have

I
_

n

cop(z) = ) e(r+nL)p(z—r) =)

0

ﬁ
I

and

n—1

(f*g)ot(x) = Zf*g<r+nZ>w<:c —r)

fls+nZ)g(r —s+nZ)p(x —r)
5=0

Hér”ﬂl

3 3
3

|

—_

f(s+nZ) g(r —s+nZ)p(x —r)

I
S ®»
i M
- o
3 S
Ll
)

fs+nZ) Y gt+nZ)(x—s—1t)=fol(goy)(r).

V)
Il
=
o
I
=

Thus P(M) forms an E(R)-module. The proof is ended. [

3. EQUIVALENT MAPS AND THEIR APPLICATIONS

A subset D of Z™ is said to be divisor-closed if any (positive) divisor of an
element of D belongs to D. We set

0,1)p ={0<a<1: an € Z for some n € D}.
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Theorem 4. Let D C Z* be divisor-closed. For a function f :\J,cpZ/nZ — C
the following statements are equivalent:
(a) For alla € Z and d,n € Z* with nd € D,

n—1

> fla+ jd+ndZ) = f(a+ dZ).
j=0

(b) There exists a function ¥ :[0,1)p — C such that
1 a+n e?™%w e for any a € Z and n € D.
7 f( 7) zp mia f Z and D

(c) There is a functz’on g: UneD Z/nZ — C such that

(18) fla+nzZ) = ZZN( )29(—T+m2) 2mita

holds for all a € Z and n € D where p denotes the Mobius function.
Proof. (a)=-(b). For any n € D we set

g(m +nZ) = Zf?"+nZ T for each m=0,1,--- ,n — 1.

It is well-known that
1

g(m + nZ)e* e foralla=0,1,--- ,n— 1.
0

n

SRS

fla+nZ) =

3
I

Now we show that g(m + nZ) (m € R(n)) only depends on the rational m/n €

0,1)p, i.e. glm+nZ) = g(= +27Z) where d = and hence ™/2 is the reduced
d " d n/d

form of 7. In fact, for each a € Z we have

d fink n 9 !
=X g (k+zz) T = f(a+22) =D f (at 5 + 2d)
n k=0 7=0
n—1 1 n—1 . 1 n—1 d—1 . .
= — Y g(k+nZ)e*™nT = = Zg(k+nZ)Zezmﬁ(“+33)
reZiOgZ [y =0 j=0
1 n—1 . d—1 N d n—1
:ﬁ (k -l—nZ) 2mga2627maj _ E g(k: + nZ)62mna
k=0 §=0 k=0
d|k
n_g
:g (dl + nZ)e*™nra®
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so g(k+5Z) = g(dk+nZ) for any k € R(%), in particular g(% + 5Z) = g(m +n’Z)
for all m € R(n).

(b)&(c). Let g be any function of |J,, ., Z/nZ into C. Let a € Z and n € D. If
m € ZT divides n, then

n—1 m—1
Z g ko 4 " ) e2rika _ g nu/m T mZ o2 a
n/m  n/m n/m

kZOn 0
(k,n):m (%u,n):%
i m—1
=3 Y wd)g(u+mZ)er R =N u(d) Y glu+mz)e
u=0 d|(u,m) djm =0
d|u
m/d—1 . d1 .
- dv .
:Zﬂ(d) Z g(dv +mZ)e*™ m® = M(E) g(ErerZ) Arifa
d|m v=0 d|m —o
Thus
— k n m d—1 m
Z QWi%a = <_> (_ Z) 2771%(1'
,;)g<<k,n>+ (ko) )6 %%M ; gg L

From this we see that (b) and (c) are equivalent.

(b)=(a). Let ¢ : [0,1)p — C be a function satisfying (17). Then f is the
restriction of - 1 1y, ¥(@)pa on U, cp Z/nZ. So (a) holds by Example 5.

The proof of Theorem 4 is now complete. [J
Remark. In the case D = Z*, Theorem 4 was announced by the author [S2] in
1989.

Let D be a divisor-closed subset of Z*, and f : |U,cp Z/nZ — C a function
satisfying part (a) of Theorem 4. Then there exists a function 1 : [0,1)p — C for
which (17) holds and hence

n—1 L 1 n—1 k n—1 ok n-t _omim
w<%>: kz_o w(ﬁ)zﬁgw<ﬁ);ez n :;f(T—FnZ)e 2
nlk—m

for all n € D and m € R(n), this unique ¢ will be denoted by f. Note that f can

be extended to the equivalent function }° 1 1y, f(@)pa-

All those functions ¢ : Q N [0,1) — C form a commutative ring under the
functional addition and the functional multiplication, we denote this ring by Q(C).

Corollary 1. The ring E(C) is isomorphic to Q(C) via the map f — f whose

inverse is the map ¥ — .

Proof. For 1) € Q(C) and f € E(C), clearly ¢) = f if and only if f = 1. Thus the

map T : Q(C) — E(C) given by T'(¢)) = ¥ is bijective and its inverse is the map

f— f. For ¢, x € Q(C), apparently (1 +x) = ¢+ ¥, also [ = e and (x] = ¢ # ¥

by Example 5. So the rings Q(C) and E(C) are isomorphic via the map 7. O
Now we give some applications of equivalent maps.
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Theorem 5. Let M be an R-module where R is a ring with identity.
(i) For ¢y, i € P(R),

(19) Yr(z) + -+ Up(2z) € Ann(M) for allz € Z

iof and only if

k
(20) > Ti(1hs) =0  for each f € E(M)
s=1

where Ann(M) denotes the annihilator

ﬂ Amn(z) ={a € R: ax =0 for every x € M}.
reM

(ii) A map f € F(M) is equivalent, if and only if

k
(21) Z Nof(as +nsZ) =0 for all {(\s,as,n5)}_, € K(R)

s=1

(i.e., we have Zi:l Asflas+n,Z) = Zf&:l pe f (be+miZ) whenever {(Xs, as, ns>}];:1
and {{us,br,m¢)}_, are equivalent systems in S(R)).

Proof. i) When (19) is valid, by Theorem 2 for any f € E(M) and = € Z we have

<§;¢S(x—r)>f(r+n2) =0

where n € Z* is any period of ¥ + -+ + 9. If (20) holds, z € Z and A\ € M, then
(Ao € E(M) by Example 1, and hence

n

éwsxx) - Tf(i%) @) =3

—1
r=0

k k ng—1 k
D (@A =D (=) (Nolr +1sZ) =Y Tiny, (1) () = 0
s=1 s=1 r=0 s=1
where nq, -+ ,ng are periods of ¥y, - - - , 1, respectively. Therefore (20) also implies

(19). This proves part (i).

ii) If A, Ay € S(R), then Ay ~ Ay & A U-As~ D A U—-A, € K(R) As
{(1,a + jd,nd) ;L:_Ol ~{(1,a,d)} for any d,n € Z* and a € R(d), (21) implies that
f e E(M).

Now let A = {(\;,as,ns)}r_; € K(R). For s = 1,--- , k let ¥s € P(R) be given
by ¥s(x) = Ase_z(as + nsZ). Then 91 + -+ + 1, = 0 since A ~ (. If f € E(M),
then by part (i) we have

Z )\sf(as + nsZ) = Z i ws(_r)f(r + nsZ) = ZTf(¢s)(O) =0.

This concludes the proof. [

Remark. Part (ii) of Theorem 5 was announced by the author [S2] in the case
M = R = C. Tt implies the following result obtained by the author [S1] in a quite
different way.
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Corollary 2. Let M be an R-module and F' a map of two complex variables into M
such that {(Z= ny) : r € R(n)} € Dom(F) for all (x,y) € Dom(F) and n € Z*.
Then

n—1
(22) ZF(x Z r,ny) = F(z,y) for any (x,y) € Dom(F) and n € Z™,
r=0

if and only if we have

k !
T+ ag z+b
(23) g /\SF( - ,nsy) = E utF( - t,mw) for all (x,y) € Dom(F)

$ t=1

s=1

whenever two systems A = {(\s, as,ns)}_y and B = {{us, by, ms) Yoy in S(R) are
equivalent.
Proof. Since {(1,r, n>}:f:_01 ~ {(1,0,1)} for n = 1,2,3,- -, the sufficiency is appar-
ent.

Now we assume (22) and let (z,y) € Dom(F). Set f(a + nZ) = F(%£:% ny) for
n € Z* and a € R(n). Then for any d,n € Z' and a € R(d) we have

n—1

S fla+jd+ndZ) = :i:F (M,n(d@ —F (”3 :; a,dy) — f(a+dZ).

- n
Jj=0

So f € E(M). Applying Theorem 5(ii) we get the desired result. [
Remark. The recent paper [S7] contains a slight generalization of Corollary 2. The
functional equation (22) is satisfied by lots of maps in terms of well-known special
functions (see [S§]).

Notice that the Theorem stated in Section 1 follows from Theorem 4 and Theo-
rem 5(ii).

Theorem 6. Let ny,- - ,np € ZT and f € E(C). Then

ns—1

(24) Z flr+ nSZ)egmﬁr %0 foralla€Z ands=1,--- k,
r=0

if and only if for any 1 € P(C) periodic mod nq, ---, ¢ € P(C) periodic mod ny
we have

(25) P14+ Y =0 <= foryy+-+ forhp=0.

Proof. Let s be among 1,--- ,k and ws be an nsth root of unity. For each ¢ =
1,---,k define 1y € P(C) by ¢g(x) = dgpw,® where ds; = 1 if s = ¢, and 0
otherwise. If Zle P =0 <= Zle fows =0, then

ng—1 ns—1

k
3 fr ot ml =0l Y frnZhuyC ) =i 3 fothule) £ 0
r=0 r=0 t=1
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for some x € Z because Zle st = 1ss # 0. This proves the sufficiency.
Let 1, -+, € P(C) have periods ny, - - -, ng respectively. If 1 +-- -+ =0,

then i i
Y fovs=fo) hi=fo0=0.
s=1 s=1

Now assume that ¥; + - - - + 1 # 0. By Theorem 5(i), Z’;Zl gos # 0 for some
g€ E(C). f N=[ny, - ,ng] and x € Z, then

k k ns—1
dogots(@) =) > > g@)pala+nL)s(z—a)
s=1 s=1 a=0 «cQnl0,1)

s=1 a€0,1) a=0
ans€Z
k 1 ns—1
= O = 2mia(xz—r)
> i ¥ LS
a€l0,1) s=1 r=0
aN€EZ ons €EZ
So there exists an a € QN [0, 1) such that
1 ns—1
c= — Z zps(r)e_Qm‘” #0 where [ ={1 <s<k:ans; € Z}.
sel S r=0

For any s € I we have Z:igl (r + nsZ)e~ 27" = f(q). Therefore

ns—1 ns—1lng—1
XS rente e =S LSS oz
r= s r=0 a=0
ng—1 ns—l
. .y ~
_Z Z f CL—|—TL8 —27moza Z ¢S<r/)e—27rzar — Cf(Oé).
sel a=0 r’'=0

On the other hand, if x € Z then

k ng—1 k
27mocm_ZZf Vs (r)pa(x — 1+ nsZ :pQOZfows(:C)
s=1 r=0 s=1

Suppose (24) and choose a j € I. Then f(a) = Zf;gl (r 4+ njZ)e 2mar £ (.
By the above, ¢ # 0 and hence 2521 fows #0. This ends the proof. [

Let s(z) = Ase?™%2 for s = 1,---,k where \j,---, A\ € C*, and oy =
ai/ny, - ,a = ap/ng are distinct reduced rationals in [0,1). Suppose that
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Yo = —(¥1 + -+ + ) has a period ng € Z* not divisible by N = [nq,---,ng].

Then ny 1 ng (i.e. ayng € Z) for some 1 < t < k. For any s = 1,--- , k with
ang € 7, clearly

ns—1 ns—1

LS (e = 20 37 it e — g,

Since g + Y1 + - + Y = 0, we have

st—)\t%o

=}

I
e

N

o
<
»
N
=)
N—
I
(]~
3|r—
<
»
~
=
N—
ﬁ)I
N
3
g
3
Mw

atnsEL n_

The contradiction shows that N must be the least (positive) period of 11 +- -+ 4+ 1.
(When ny < --- < ny, this result was observed by the author [S4] in 1991.)

Corollary 3. Let A= {(\s,as,n5)}¢_; € S(C). Then for any f € E(C) satisfying
(24), A ~ 0 if and only if

k
(26) Z Asfx+as+nsZ) =0 forall x € Z.

s=1

Proof. Let x € Z and v¢s(x) = Ase(x + as + nsZ) for s = 1,--- k. Clearly
wa(—x) = Zle Ys(x) and A\sf(z + as + nsZ) = f o s(x). So the desired result

follows from Theorem 6. [

Remark. In 1989 the author announced Corollary 3 as Theorem 4 of [S2].
Example 6. Let h € Z and define ¢y, : 2 — C in the following way:

%n) if (h+a,n) =1,

0 otherwise,

(27) on(a+nZ) = {

where ¢ is Euler’s totient function. For a € Z and n € Z™, using the Ramanujan
sum (cf. [HW]) we find that

n—1 n—1

ran 6—2771'%7“: — o 2mig(j—h) _ 2mih % p(n/(a,n))
2 enlr ) g o/ )
( n)=1

which only depends on the rational a/n. So ¢, = @ € E(C) where (a) =

62”"“’1% for a € QNJ0,1), and d(a) denotes the denominator of o (which is the

least [ € Z such that la € Z). If n € Z* is squarefree, then pp,(a/n) = ¥(a/n) # 0
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for alla € R(n). Let ny,--- ,ni € Z* be all squarefree, and A = {(\,, as,ns)}_, €
S(C). Then by Corollary 3 we have
k
A~ Z)\sgoh(x—l—as+nsZ) =0 forany z € Z
s=1

k
As
— =0 for all y € Z.
; @(ns)
(y+as,ns)=1

This result was also announced by the author in [S2]. Suppose that
Hl1<s<k:(x+as,ns) =1} =m for any = € Z.

Then Zle o(ns)po(x + as + nsZ) — mpg(z + Z) = 0 for all x € Z, hence A’ =
{{o(ns),as,ns)}_; ~ {{(m,0,1)} and w4 has period ng = 1. Thus, by Theorem 1

of [S3], for any integer d > 1 dividing one of nq,--- ,ng, we have
(28) {a+dZ:1<s<k&n =0 (mod ny)}| > min —2
ag 1<s< ns = 0 (mod ng /01%12k(d7n8)
dins

and so [{1 < s < k :d | ng}| is not less than the least prime divisor p(d) of d.

Assume that ny < -+ < ng—y < Ng—y41 = -+ = ng where 1 < [ < k. Then

I > minjcscp—ini/(ns,ni) = p(ng). For any r € R(ny) divisible by none of
Dk clearly n—Tkns €7l < k—1<s<k, thus

. Nk
(n1,mg)’ P (ng—i,mp)?

W

0 =mpr/m, (Z) = ©(ns)prjny. (a5 + ns)

—_

s=

n A n ;s
_ SO( 5)627mnka$ _ @( k) Z 627rznk7“'
Ng ng
k—l<s<k k—Il<s<k
In view of Lemma 9 of [S5], there are x1, -+ ,2x_; € Nsuchthat [ =%, , ., 1=
k=l ny
2s=1 Ty s
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