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Abstract. A residue class a+nZ with weight λ is denoted by 〈λ, a, n〉. For a finite
system A = {〈λs, as, ns〉}k

s=1 of such triples, the periodic map wA(x) =
∑

ns|x−as
λs

is called the covering map of A. Some interesting identities for those A with a fixed

covering map have been known, in this paper we mainly determine out all those

functions f : Ω → C such that
∑k

s=1 λsf(as + nsZ) depends only on wA where Ω
denotes the family of all residue classes. We also study algebraic structures related

to such maps f , and periods of arithmetical functions ψ(x) =
∑k

s=1 λse2πiasx/ns

and ω(x) = |{1 6 s 6 k : (x+ as, ns) = 1}|.

1. Introduction and Preliminaries

Let S be a set. For an arithmetical map ψ : Z → S, if for some n ∈ Z+ =
{1, 2, 3, · · · } we have ψ(x+ n) = ψ(x) for all x ∈ Z, then we say that ψ is periodic
modulo n and n is a period of ψ. Let P(S) denote the set of all periodic maps
ψ : Z → S. If m,n ∈ Z+ are periods of a map ψ ∈ P(S), then the greatest common
divisor (m,n) is also a period of ψ, for we can write (m,n) in the form am + bn
with a, b ∈ Z. Thus, any period of ψ ∈ P(S) is a multiple of the smallest (positive)
period n(ψ) of ψ.

A monoid is a semigroup with identity. Let M be a commutative monoid (con-
sidered as an additive one). If ψ1, ψ2 ∈ P(M), then the map ψ1 + ψ2 : x 7→
ψ1(x) +ψ2(x) also lies in P(M) because ψ1 +ψ2 is periodic modulo the least com-
mon multiple [n(ψ1), n(ψ2)]. In 1989 the author [S1] introduced triples of the form
〈λ, a, n〉 where λ ∈ M, n ∈ Z+ and a ∈ R(n) = {0, 1, · · · , n − 1}. We can view
〈λ, a, n〉 as the residue class (or arithmetic sequence)

(1) a(n) = a+ nZ = {a+ nx : x ∈ Z}
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associated with weight (or multiplier) λ. Let S(M) denote the family of all finite
systems of such triples. For

(2) A = {〈λs, as, ns〉}ks=1 ∈ S(M),

the covering map wA : Z →M is given by

(3) wA(x) =
k∑
s=1

x∈as(ns)

λs for x ∈ Z

(w∅ refers to the zero map), clearly wA is periodic modulo the least common mul-
tiple [n1, · · · , nk] of all the moduli n1, · · · , nk. Observe that any ψ ∈ P(M) pe-
riodic mod n is the covering map of the system {〈ψ(r), r, n〉}n−1

r=0 ∈ S(M). For
A,B ∈ S(M) we define their formal union A t B by putting triples in A and B
altogether. Then w : A 7→ wA gives an epimorphism of the commutative monoid
S(M) (with respect to the formal union) onto the commutative monoid P(M). Two
systems A and B in S(M) are said to be equivalent if they have the same covering
map. We use ∼ to denote this congruence relation on S(M). Note that the quotient
monoid S(M)/ ∼ is isomorphic to P(M).

When the additive monoid M is an abelian group, for system (2) we let −A be
the system {〈−λs, as, ns〉}ks=1 and for ψ ∈ P(M) we let −ψ be given by −ψ(x) =
−(ψ(x)). Notice that A and B in S(M) are equivalent if and only if At−B ∼ ∅. By
the fundamental theorem of homomorphisms the group S(M)/K(M) is isomorphic
to the abelian group P(M) where

(4) K(M) = {A ∈ S(M) : A ∼ ∅ (i.e. wA = 0)}.

If M is an R-module where R is a ring with identity, then we can make P(M)
and S(M) be R-modules by letting aψ(x) = a(ψ(x)) and aA = {〈aλs, as, ns〉}ks=1

for a ∈ R, ψ ∈ P(M) and system (2). Observe that the R-module S(M)/K(M) is
isomorphic to the R-module P(M). The so-called vector-covers of Z studied by Š.
Znám [Z1, Z2] are those A ∈ S(R) with A ∼ {〈1, 0, 1〉} where R is the field of real
numbers.

For any m,n ∈ Z+ and a ∈ R(n), apparently {〈0, a, n〉} ∼ ∅, also

{〈m,a, n〉} ∼ {〈1, a, n〉, · · · , 〈1, a, n〉︸ ︷︷ ︸
m times

} and {〈−m,a, n〉} ∼ −{〈1, a, n〉, · · · , 〈1, a, n〉︸ ︷︷ ︸
m times

}.

So each A ∈ S(Z) can be written as A1 t −A2 where A1 and A2 are in the form
{(1, as, ns)}ks=1(k > 0) which may be identified with

(5) A = {as(ns)}ks=1.
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For system (5) of residue classes, if wA(x) = |{1 6 s 6 k : x ∈ as(ns)}| equals
m for each x ∈ Z, then as in [S5, S6] we call (5) an exact m-cover of Z. (The study
of covers of Z by residue classes was initiated by P. Erdös [E1], for problems and
results in this area one may see R.K. Guy [G] and the introduction of the author
[S5].) Notice that (5) is an exact m-cover of Z if and only if

{as(ns)}ks=1 ∼ {0(1), · · · , 0(1)︸ ︷︷ ︸
m times

}
(
i.e. {〈1, as, ns〉}ks=1 t {〈−m, 0, 1〉} ∼ ∅

)
.

Many known results concerning finite systems of residue classes with number
weights can be expressed in the following form:

(6) {〈λs, as, ns〉}ks=1 ∼ {〈µt, bt,mt〉}lt=1 ⇒
k∑
s=1

λsf(as+nsZ) =
l∑
t=1

µtf(bt+mtZ).

Here are some examples of such results:
(a) (Erdös [E2]) {as(ns)}ks=1 ∼ {0(1)} =⇒

∑k
s=1

1
ns

= 1.

(b) (B. Novák and Znám [NZ]) {as(ns)}ks=1 ∼ {0(1)} =⇒
∑k
s=1

zas

1−zns = 1
1−z

where z is any complex number with |z| 6= 1.
(c) (Porubský [P]) {〈1, as, ns〉}ks=1 ∼ {〈m, 0, 1〉} =⇒

∑k
s=1 n

n−1
s Bn( as

ns
) = mBn

where Bn(x) denotes the nth Bernoulli polynomial and Bn = Bn(0).
(d) (Z. W. Sun [S3]) {〈λs, as, ns〉}ks=1 ∼ ∅ =⇒

∑
16s6k
αns∈Z

λs

ns
e2πiαas = 0 where α is

an arbitrary real number.
Let Ω be the family of all residue classes (i.e. Ω =

⋃
n∈Z+ Z/nZ). Then Ω forms

a monoid with respect to the multiplication � defined below:

(a+ dZ)� (r + nZ) = a+ rd+ ndZ (a, r ∈ Z and d, n ∈ Z+).

For a ∈ Z and d, n ∈ Z+, clearly

n−1⋃
j=0

a+ jd+ ndZ = a+ dZ and {a+ jd(nd)}n−1
j=0 ∼ {a(d)}.

Let M be an additive commutative monoid. The set of all maps f : Ω → M is
denoted by F(M), it can be viewed as a commutative monoid under the functional
addition. A map f : Ω →M is said to be equivalent if

(7)
n−1∑
j=0

f(a+ jd+ ndZ) = f(a+ dZ) for any a ∈ Z and d, n ∈ Z+.

(We may not have (7) even if
∑n−1
r=0 f(r + nZ) = f(Z) for all n ∈ Z+, for example∑n−1

r=0
2r+1
2n2 = 2·0+1

2·12 but 2·1+1
2·42 + 2·3+1

2·42 6= 2·1+1
2·22 .) Those equivalent maps f : Ω →M

form a submonoid E(M) of F(M).
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For any map ψ defined on Z we let Emψ(x) = ψ(x+m) for any m,x ∈ Z and call
E = E1 the shift operator. Let S1 and S2 be sets. An operator T : P (S1) → P(S2)
is said to be commutable with E if T (E(ψ)) = E(T (ψ)) for all ψ ∈ P(S1). When
T is commutable with E, if ψ ∈ P(S1) is periodic mod n then so is T (ψ) because
En(T (ψ)) = T (Enψ) = T (ψ).

For any commutative monoids M and N , the set of all homomorphisms of M
into N forms a commutative monoid naturally and we denote it by Hom(M,N);
the set of those T ∈ Hom(P(M),P(N)) commutable with E forms a submonoid
of Hom(P(M),P(N)) and we denote it by Hom′(P(M),P(N)). If M and N are
R-modules where R is a ring with identity, then the set of all R-module homo-
morphisms of M into N forms an R-module in a natural way and we denote it by
HomR(M,N); the set of those T ∈ HomR(P(M),P(N)) commutable with E forms
a submodule of HomR(P(M),P(N)) and we denote it by Hom′

R(P(M),P(N)).
Let M and N be commutative monoids (or R-modules). In this paper we aim

to determine all those T ∈ Hom′(P(M),P(N)) (or T ∈ Hom′
R(P(M),P(N))). For

such an operator T and ψ1, ψ2 ∈ P(M), T (ψ1 +ψ2) should depend on the smallest
period of ψ1 +ψ2, but usually we don’t know the exact value of n(ψ1 +ψ2) even if
n(ψ1) and n(ψ2) are given. This difficulty makes our goal more interesting and the
task very challenging. As we will show in the next section, the problem is connected
with E(N) closely. If R is a ring with identity and M is an R-module, then we can
make E(R) form a ring with identity and P(M) form an E(R)-module.

In Section 3 we are going to investigate E(C) thoroughly where C is the complex
field, as an application we show the following central result which was announced
by the author in [S2].

Theorem. For f ∈ F(C), (6) holds if and only if f has the following form:

f(a+ nZ) =
1
n

n−1∑
m=0

ψ
(m
n

)
e2πi

m
n a (a ∈ Z and n ∈ Z+).

Now we state two more results in this paper:
I. Let λ1, · · · , λk ∈ C∗ = C \ {0}, and ξ1, · · · , ξk be distinct roots of unity.

Then the smallest (positive) period of the arithmetical function ψ(x) =
∑k
s=1 λsξ

x
s ,

coincides with [n1, · · · , nk] where ns is the least n ∈ Z+ with ξns = 1 (i.e., ξs is a
primitive nsth root of unity).

II. Let (5) be a system of residue classes with n1, · · · , nk squarefree and n1 6
· · · 6 nk−l < nk−l+1 = · · · = nk (0 < l < k). If |{1 6 s 6 k : (x+as, ns) = 1}| = m
for all x ∈ Z, then l > min16s6k−l nk/(ns, nk), furthermore

l

nk
=

k−l∑
s=1

xs
(ns, nk)

for some x1, · · · , xk−l ∈ N = {0, 1, 2, · · · }.
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2. Algebraic structures concerning periodic arithmetical maps

Let us first look at
Example 1. Let M be a commutative monoid M considered as an additive one.

Fix λ ∈M . If a, x ∈ Z and n ∈ Z+ then we let

(8) λa+nZ(x) = (λ)x(a+ nZ) =
{
λ if x ∈ a+ nZ,
0 otherwise.

Evidently λa+nZ : Z → M belongs to P(M) for any a ∈ Z and n ∈ Z+, and
(λ)x : Ω →M lies in E(M) for each x ∈ Z.

This example suggests that periodic arithmetical maps might be related to equiv-
alent maps.

Lemma 1. Let M and N be additive commutative monoids. Let τ be a map of M
into E(N) and define the operator Sτ : P(M) → P(N) as follows:

Sτ (ψ)(x) =
n(ψ)−1∑
r=0

τ(ψ(x− r))(r + n(ψ)Z) for ψ ∈ P(M) and x ∈ Z.

Then
(i) For any period n ∈ Z+ of ψ ∈ P(M) we have

(9) Sτ (ψ)(x) =
n−1∑
r=0

τ(ψ(x− r))(r + nZ) for all x ∈ Z.

(ii) The operator Sτ is commutable with E.
(iii) Sτ ∈ Hom(P(M),P(N)) if τ ∈ Hom(M,E(N)).

Proof. Let us first prove (i) and (ii). Suppose that ψ ∈ P (M) is periodic mod n.
Then n0 = n(ψ) divides n. For any x ∈ Z we have

n−1∑
r=0

τ(ψ(x− r))(r + nZ) =
n0−1∑
u=0

n/n0−1∑
v=0

τ(ψ(x− (u+ vn0)))(u+ vn0 + nZ)

=
n0−1∑
u=0

n/n0−1∑
v=0

τ(ψ(x− u))
(
u+ vn0 +

n

n0
n0Z

)

=
n0−1∑
u=0

τ(ψ(x− u))(u+ n0Z) = Sτ (ψ)(x)

and

Sτ (Eψ)(x) =
n−1∑
r=0

τ(Eψ(x− r))(r + nZ) =
n−1∑
r=0

τ(ψ(x+ 1− r))(r + nZ)

= Sτ (ψ)(x+ 1) = E(Sτ (ψ))(x).
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Now let τ ∈ Hom(M,E(N)). We come to show that Sτ ∈ Hom(P(M),P(N)).
Apparently

Sτ (0)(x) = τ(0)(0 + 1Z) = 0 for all x ∈ Z.

If ψ1, ψ2 ∈ P(M) have periods n1, n2 ∈ Z+ respectively, then ψ1, ψ2 and ψ1 + ψ2

are periodic mod n where n = [n1, n2] and so

Sτ (ψ1 + ψ2)(x) =
n−1∑
r=0

τ((ψ1 + ψ2)(x− r))(r + nZ)

=
n−1∑
r=0

(τ(ψ1(x− r)) + τ(ψ2(x− r)))(r + nZ)

=
n−1∑
r=0

τ(ψ1(x− r))(r + nZ) +
n−1∑
r=0

τ(ψ2(x− r))(r + nZ)

= Sτ (ψ1)(x) + Sτ (ψ2)(x)

for every integer x. Thus Sτ ∈ Hom(P(M),P(N)). �
Now we give

Theorem 1. Let M and N be additive commutative monoids. For any λ ∈M and
T ∈ Hom′(P(M),P(N)) we let

(10) σT (λ)(a+ nZ) = T (λnZ)(a) for a ∈ Z and n ∈ Z+.

Then σ : T 7→ σT gives an isomorphism of the monoid Hom′(P(M),P(N)) onto
Hom(M,E(N)).

Proof. Fix T ∈ Hom′(P(M),P(N)). Let λ ∈ M . For each n ∈ Z+, λnZ ∈ P(M) is
periodic mod n and hence so is T (λnZ) ∈ P(N). Clearly

T (λnZ)(m) = Em(T (λnZ))(0) = T (EmλnZ)(0) = T (λ−m+nZ)(0)

for all m ∈ Z and n ∈ Z+. For any d, n ∈ Z+ and a ∈ Z we have

n−1∑
j=0

σT (λ)(a+ jd+ ndZ) =
n−1∑
j=0

T (λndZ)(a+ jd)

=
n−1∑
j=0

T (λ−(a+jd)+ndZ)(0) = T

( n−1∑
j=0

λ−(a+jd)+ndZ

)
(0)

= T (λ−a+dZ)(0) = T (λdZ)(a) = σT (λ)(a+ dZ).

Therefore σT : λ 7→ σT (λ) is a map from M into E(N).
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Let a ∈ Z and n ∈ Z+. Clearly σT (0)(a + nZ) = T (0nZ)(a) = 0. If λ, µ ∈ M
then

σT (λ+ µ)(a+ nZ) = T ((λ+ µ)nZ)(a) = T (λnZ + µnZ)(a)

= T (λnZ)(a) + T (µnZ)(a) = σT (λ)(a+ nZ) + σT (µ)(a+ nZ).

Thus σT ∈ Hom(M,E(N)).
We assert that SσT

= T . Let ψ ∈ P(M) be periodic mod n and x be an integer.
Then

n−1∑
r=0

ψ(x− r)−r+nZ(a) =
n−1∑
r=0
n|a+r

ψ(x− r) = ψ(x+ a) = Exψ(a) for all a ∈ Z

and hence

SσT
(ψ)(x) =

n−1∑
r=0

σT (ψ(x− r))(r + nZ) =
n−1∑
r=0

T (ψ(x− r)nZ)(r)

=
n−1∑
r=0

T (ψ(x− r)−r+nZ)(0) = T

( n−1∑
r=0

ψ(x− r)−r+nZ

)
(0)

= T (Exψ)(0) = Ex(T (ψ))(0) = T (ψ)(x).

Let τ ∈ Hom(M,E(N)). Then Sτ ∈ Hom′(P(M),P(N)) by Lemma 1. For any
λ ∈M , a ∈ Z and n ∈ Z+ we have

σSτ
(λ)(a+ nZ) = Sτ (λnZ)(a) =

n−1∑
r=0

τ(λnZ(a− r))(r + nZ)

=
n−1∑
r=0
n|a−r

τ(λ)(r + nZ) +
n−1∑
r=0
n-a−r

τ(0)(r + nZ) = τ(λ)(a+ nZ).

So σSτ = τ .
In view of the above, map σ : T 7→ σT of Hom′(P(M),P(N)) into Hom(M,E(N))

is bijective and its inverse is the map S : τ 7→ Sτ from Hom(M,E(N)) into
Hom′(P(M),P(N)).

It is easy to see that σ : Hom′(P(M),P(N)) → Hom(M,E(N)) is a monoid
homomorphism. So the two monoids Hom′(P(M),P(N)) and Hom(M,E(N)) are
isomorphic via the map σ. �

With the help of Theorem 1 we can present

Theorem 2. Let M be an R-module where R is a ring with identity. For any
f ∈ E(M) we define Tf : P(R) → P(M) by letting

(11) Tf (ψ)(x) =
n−1∑
r=0

ψ(x− r)f(r + nZ) for x ∈ Z and ψ ∈ P(R) with period n.
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Then T : f 7→ Tf gives an isomorphism of the additive abelian group E(M)
onto Hom′

R(P(R),P(M)). If R is commutative then the R-modules E(M) and
Hom′

R(P(R),P(M)) are module isomorphic via the map T .

Proof. Let f ∈ E(M) and set τf (λ) = λf for λ ∈ R. Then τf ∈ HomR(R,E(M))
and Tf = Sτf

∈ Hom′
R(P(R),P(M)).

Evidently map τ : f 7→ τf gives a homomorphism of abelian group E(M) into
HomR(R,E(M)) and

Kerτ = {f ∈ E(M) : τf = 0} ⊆ {f ∈ E(M) : τf (1) = 0} = {0}.

If h ∈ HomR(R,E(M)) and λ ∈ R, then h(λ) = h(λ · 1) = λ(h(1)) = τh(1)(λ). So
the additive groups E(M) and HomR(R,E(M)) are isomorphic via the map τ .

For any H ∈ Hom′
R(P(R),P(M)), we have f = σH(1) ∈ E(M), also σH =

τf ∈ HomR(R,E(M)) and H = SσH
= Sτf

. It follows that the abelian group
HomR(R,E(M)) is isomorphic to Hom′

R(P(R),P(M)).
Combining the above we obtain that T : f 7→ Tf = Sτf

gives an isomorphism of
the additive group E(M) onto Hom′

R(P(R),P(M)).
When R is commutative, if λ ∈ R, f ∈ E(M) and ψ ∈ P(R) then Tλf (ψ) =

λTf (ψ), therefore the map T : f 7→ Tf is an R-module isomorphism of E(M) onto
Hom′

R(P(R),P(M)). �
Example 2. Let M be a commutative monoid. For any integer m operator Em :

P(M) → P(M) is in End′(P(M)) = Hom′(P(M),P(M)) and the corresponding
σEm ∈ Hom(M,E(M)) is given by σEm(λ) = (λ)−m where λ ∈M . Let R be a ring
with identity 1. We can view R as an R-module. When M forms an R-module, for
any λ ∈ M and m ∈ Z we have T(λ)m

(ψ)(x) = (E−mψ(x))λ where ψ ∈ P(R) and
x ∈ Z. Clearly em = (1)m ∈ E(R) and Tem

= E−m for all m ∈ Z, in particular Te
is the identical map of P(R) onto itself where e = e0 lies in E(R).

Let R be a ring. For f, g ∈ F(R), we define the convolution f ∗ g ∈ F(R) by

(12) f ∗ g(a+ nZ) =
n−1∑
r=0

f(r + nZ)g(a− r + nZ) (a ∈ Z and n ∈ Z+).

Example 3. Let R be a ring. If λ, µ ∈ R and m,n ∈ Z, then (λ)m, (µ)n ∈ E(R)
by Example 1, we can easily verify that (λ)m ∗ (µ)n = (λµ)m+n ∈ E(R). Thus,
when R has identity 1, em ∗ en = em+n for all m,n ∈ Z.

Example 4. For α ∈ Q ∩ [0, 1) we define ρα ∈ F(R) by

(13) ρα(a+ nZ) =
1
n

n−1∑
m=0
m/n=α

e2πi
m
n a =

{ 1
ne

2πiαa if αn ∈ Z,
0 otherwise.
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When α, β ∈ Q ∩ [0, 1), a ∈ Z and d, n ∈ Z+, we have

n−1∑
j=0

ρα(a+ jd+ ndZ) =
1
nd

nd−1∑
m=0

m/(nd)=α

n−1∑
j=0

e2πi
m
nd (a+jd)

=
1
nd

nd−1∑
m=0

m/(nd)=α

e2πi
ma
nd

n−1∑
j=0

e2πi
m
n j =

1
d

nd−1∑
m=0

m/(nd)=α
n|m

e2πi
ma
nd

=
1
d

d−1∑
r=0
r/d=α

e2πi
r
da = ρα(a+ dZ),

and

ρα ∗ ρβ(a+ nZ) =
n−1∑
r=0

αn,βn∈Z

1
n
e2πiαr · 1

n
e2πiβ(a−r)

=
1
n2
e2πiβa

n−1∑
r=0

αn,βn∈Z

e2πi(α−β)r =
{
ρα(a+ nZ) if α = β,

0 otherwise.

So {ρα}α∈Q∩[0,1) is an orthogonal system of functions in E(C) with respect to
convolution ∗.
Lemma 2. Let R be a ring, and f, g, h ∈ F(R). Then (f ∗ g) ∗ h = f ∗ (g ∗ h), also
f ∗ g ∈ E(R) if f, g ∈ E(R).

Proof. Let a ∈ Z and n ∈ Z+. It is easy to check that

(f ∗ g) ∗ h(a+ nZ) = f ∗ (g ∗ h)(a+ nZ).

If f, g ∈ E(R) and d ∈ Z+, then

n−1∑
j=0

f ∗ g(a+ jd+ ndZ) =
n−1∑
j=0

nd−1∑
m=0

f(m+ ndZ)g(a+ jd−m+ ndZ)

=
nd−1∑
m=0

f(m+ ndZ)
n−1∑
j=0

g(a−m+ jd+ ndZ)

=
d−1∑
r=0

n−1∑
s=0

f(r + sd+ ndZ)g(a− (r + sd) + dZ)

=
d−1∑
r=0

f(r + dZ)g(a− r + dZ) = f ∗ g(a+ dZ).

This ends the proof. �
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Lemma 3. Let M be an additive commutative monoid and {fα}α∈S a family of
maps in F(M) such that {α ∈ S : fα(a+ nZ) 6= 0} is finite for any a ∈ Z and n ∈
Z+. Define the map

∑
α∈S fα ∈ F(M) by (

∑
α∈S fα)(a+nZ) =

∑
α∈S fα(a+nZ).

(i) If fα ∈ E(M) for all α ∈ S, then
∑
α∈S fα ∈ E(M).

(ii) If M is a ring R and g is in F(R), then

{α ∈ S : fα ∗ g(a+ nZ) 6= 0} and {α ∈ S : g ∗ fα(a+ nZ) 6= 0}

are finite for all a ∈ Z and n ∈ Z+, moreover( ∑
α∈S

fα

)
∗ g =

∑
α∈S

(fα ∗ g) and g ∗
∑
α∈S

fα =
∑
α∈S

(g ∗ fα) .

Proof. i) Let a ∈ Z and d, n ∈ Z+. Then the set

S′ = {α ∈ S : fα(a+ jd+ ndZ) 6= 0 for some j ∈ R(n)}

is finite. As fα ∈ E(M) for all α ∈ S, S′ contains {α ∈ S : fα(a+ dZ) 6= 0}. Thus

n−1∑
j=0

∑
α∈S

fα(a+ jd+ ndZ) =
n−1∑
j=0

∑
α∈S′

fα(a+ jd+ ndZ)

=
∑
α∈S′

n−1∑
j=0

fα(a+ jd+ ndZ) =
∑
α∈S′

fα(a+ dZ) =
∑
α∈S

fα(a+ dZ).

ii) Let a ∈ Z, n ∈ Z+ and

S∗ = {α ∈ S : fα(r + nZ) 6= 0 for some r ∈ R(n)}.

Then S∗ is finite, and for α ∈ S \ S∗ we have fα ∗ g(a+ nZ) = 0 = g ∗ fα(a+ nZ).
Thus both {α ∈ S : fα ∗ g(a + nZ) 6= 0} and {α ∈ S : g ∗ fα(a + nZ) 6= 0} are
subsets of the finite set S∗. Observe that( ∑

α∈S
fα

)
∗ g(a+ nZ) =

n−1∑
r=0

∑
α∈S∗

fα(r + nZ)g(a− r + nZ)

=
∑
α∈S∗

fα ∗ g(a+ nZ) =
∑
α∈S

fα ∗ g(a+ nZ).

Similarly(
g ∗

∑
α∈S

fα

)
(a+ nZ) =

∑
α∈S∗

g ∗ fα(a+ nZ) =
∑
α∈S

g ∗ fα(a+ nZ).
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We are done. �
Example 5. For a ∈ Z and n ∈ Z+, clearly

{α ∈ Q ∩ [0, 1) : ρα(a+ nZ) 6= 0} = {α ∈ Q ∩ [0, 1) : αn ∈ Z} =
{m
n

: m ∈ R(n)
}
.

Since ρα ∈ E(C) for all α ∈ Q ∩ [0, 1), ψ̌ =
∑
α∈Q∩[0,1) ψ(α)ρα ∈ E(C) where ψ is

any map from Q ∩ [0, 1) into C. Note that

(14) ψ̌(a+ nZ) =
1
n

n−1∑
m=0

ψ
(m
n

)
e2πi

m
n a for a ∈ Z and n ∈ Z+.

Clearly e = Ǐ where I(x) = 1 for all x ∈ Q ∩ [0, 1). For any functions ψ, χ :
Q ∩ [0, 1) → C, by Lemma 3 and Example 4 we have

(15) ψ̌ ∗ χ̌ =
∑

α∈Q∩[0,1)

ψ(α)
∑

β∈Q∩[0,1)

χ(β)(ρα ∗ ρβ) =
∑

α∈Q∩[0,1)

ψ(α)χ(α)ρα.

Let M be an R-module where R is a ring with identity. For f ∈ E(R) and
ψ ∈ P(M) we define f ◦ ψ ∈ P(M) by

(16) f ◦ ψ(x) =
n−1∑
r=0

f(r + nZ)ψ(x− r) where n ∈ Z+ is a period of ψ.

(Note that f◦ψ = Sτ (ψ) where τ = τf ∈ Hom(M,E(M)) is given by τf (x)(a+nZ) =
f(a+ nZ)x (x ∈M, a ∈ Z and n ∈ Z+) and Sτ is as in Lemma 1.)

Theorem 3. Let R be a ring. Then
(i) F(R) forms a ring with subring E(R) under the natural addition + and the

convolution ∗. When R is commutative, so is F(R); if E(R) is commutative then
so is R.

(ii) Suppose that R has identity 1. Then F(R) has identity e ∈ E(R). Fur-
thermore, for any R-module M , P(M) forms an E(R)-module with respect to the
natural addition + and the scalar multiplication ◦.

Proof. i) Since R is an additive abelian group, so is F(R). By Lemmas 2 and 3
we have the associative law and the distributive laws. Thus F(R) forms a ring. In
view of Lemma 2, E(R) is a subring of F(R).

If R is commutative, then for any f, g ∈ F(R), a ∈ Z and n ∈ Z+ we have

f∗g(a+nZ) =
n−1∑
r=0

f(r+nZ)g(a−r+nZ) =
n−1∑
s=0

g(s+nZ)f(a−s+nZ) = g∗f(a+nZ),
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therefore F(R) is commutative. On the other hand, if E(R) is commutative, then
so is R because by Example 3 for each λ, µ ∈ R, m1,m2 ∈ Z and n ∈ Z+ we have

λµ =(λµ)m1+m2(m1 +m2 + nZ) = (λ)m1 ∗ (µ)m2(m1 +m2 + nZ)

=(µ)m2 ∗ (λ)m1(m1 +m2 + nZ) = µλ.

ii) Suppose that R has identity 1. By Examples 1 and 2, e = e0 = (1)0 ∈ E(R) ⊆
F(R). It is clear that e ∗ f = f = f ∗ e for all f ∈ F(R).

Let M be arbitrary R-module. Then P(M) forms an additive abelian group. Let
f, g ∈ E(R) and ψ, χ ∈ P(M). Obviously (f +g)◦ψ = f ◦ψ+g ◦ψ. For any x ∈M
the map τf (x) : a+ nZ 7→ f(a+ nZ)x lies in E(M). Clearly τf ∈ Hom(M,E(M))
and hence Sτf

∈ End′(P(M)) = Hom′(P(M),P(M)) by Lemma 1. Thus

f ◦ (ψ + χ) = Sτf
(ψ + χ) = Sτf

(ψ) + Sτf
(χ) = f ◦ ψ + f ◦ χ.

Let n ∈ Z+ be a period of ψ, then for each x ∈ Z we have

e ◦ ψ(x) =
n−1∑
r=0

e(r + nZ)ψ(x− r) = ψ(x)

and

(f ∗ g) ◦ ψ(x) =
n−1∑
r=0

f ∗ g(r + nZ)ψ(x− r)

=
n−1∑
r=0

n−1∑
s=0

f(s+ nZ)g(r − s+ nZ)ψ(x− r)

=
n−1∑
s=0

f(s+ nZ)
n−1∑
r=0

g(r − s+ nZ)ψ(x− r)

=
n−1∑
s=0

f(s+ nZ)
n−1∑
t=0

g(t+ nZ)ψ(x− s− t) = f ◦ (g ◦ ψ)(x).

Thus P(M) forms an E(R)-module. The proof is ended. �

3. Equivalent maps and their applications

A subset D of Z+ is said to be divisor-closed if any (positive) divisor of an
element of D belongs to D. We set

[0, 1)D = {0 6 α < 1 : αn ∈ Z for some n ∈ D}.
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Theorem 4. Let D ⊆ Z+ be divisor-closed. For a function f :
⋃
n∈D Z/nZ → C

the following statements are equivalent:
(a) For all a ∈ Z and d, n ∈ Z+ with nd ∈ D,

n−1∑
j=0

f(a+ jd+ ndZ) = f(a+ dZ).

(b) There exists a function ψ : [0, 1)D → C such that

(17) f(a+ nZ) =
1
n

n−1∑
m=0

ψ
(m
n

)
e2πi

m
n a for any a ∈ Z and n ∈ D.

(c) There is a function g :
⋃
n∈D Z/nZ → C such that

(18) f(a+ nZ) =
1
n

∑
m|n

∑
d|m

µ
(m
d

) d−1∑
r=0

g
(m
d
r +mZ

)
e2πi

r
da

holds for all a ∈ Z and n ∈ D where µ denotes the Möbius function.

Proof. (a)⇒(b). For any n ∈ D we set

g(m+ nZ) =
n−1∑
r=0

f(r + nZ)e−2πim
n r for each m = 0, 1, · · · , n− 1.

It is well-known that

f(a+ nZ) =
1
n

n−1∑
m=0

g(m+ nZ)e2πi
m
n a for all a = 0, 1, · · · , n− 1.

Now we show that g(m + nZ) (m ∈ R(n)) only depends on the rational m/n ∈
[0, 1)D, i.e. g(m+nZ) = g(md + n

dZ) where d = (m,n) and hence m/d
n/d is the reduced

form of m
n . In fact, for each a ∈ Z we have

d

n

n
d −1∑
k=0

g
(
k +

n

d
Z

)
e2πi

k
n/d

a = f
(
a+

n

d
Z

)
=
d−1∑
j=0

f
(
a+ j

n

d
+
n

d
dZ

)

=
n−1∑
r=0

r∈a+ n
d Z

1
n

n−1∑
k=0

g(k + nZ)e2πi
k
n r =

1
n

n−1∑
k=0

g(k + nZ)
d−1∑
j=0

e2πi
k
n (a+j n

d )

=
1
n

n−1∑
k=0

g(k + nZ)e2πi
k
na

d−1∑
j=0

e2πi
k
d j =

d

n

n−1∑
k=0
d|k

g(k + nZ)e2πi
k
na

=
d

n

n
d −1∑
l=0

g(dl + nZ)e2πi
l

n/d
a,
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so g(k+ n
dZ) = g(dk+nZ) for any k ∈ R(nd ), in particular g(md + n

dZ) = g(m+nZ)
for all m ∈ R(n).

(b)⇔(c). Let g be any function of
⋃
n∈D Z/nZ into C. Let a ∈ Z and n ∈ D. If

m ∈ Z+ divides n, then
n−1∑
k=0

(k,n)= n
m

g

(
k

n/m
+

n

n/m
Z

)
e2πi

k
na =

m−1∑
u=0

( n
mu,n)= n

m

g

(
nu/m

n/m
+mZ

)
e2πi

nu/m
n a

=
m−1∑
u=0

∑
d|(u,m)

µ(d)g(u+mZ)e2πi
u
ma =

∑
d|m

µ(d)
m−1∑
u=0
d|u

g(u+mZ)e2πi
u
ma

=
∑
d|m

µ(d)
m/d−1∑
v=0

g(dv +mZ)e2πi
dv
m a =

∑
d|m

µ
(m
d

) d−1∑
r=0

g
(m
d
r +mZ

)
e2πi

r
da.

Thus
n−1∑
k=0

g

(
k

(k, n)
+

n

(k, n)
Z

)
e2πi

k
na =

∑
m|n

∑
d|m

µ
(m
d

) d−1∑
r=0

g
(m
d
r +mZ

)
e2πi

r
da.

From this we see that (b) and (c) are equivalent.
(b)⇒(a). Let ψ : [0, 1)D → C be a function satisfying (17). Then f is the

restriction of
∑
α∈[0,1)D

ψ(α)ρα on
⋃
n∈D Z/nZ. So (a) holds by Example 5.

The proof of Theorem 4 is now complete. �
Remark. In the case D = Z+, Theorem 4 was announced by the author [S2] in
1989.

Let D be a divisor-closed subset of Z+, and f :
⋃
n∈D Z/nZ → C a function

satisfying part (a) of Theorem 4. Then there exists a function ψ : [0, 1)D → C for
which (17) holds and hence

ψ
(m
n

)
=

n−1∑
k=0
n|k−m

ψ

(
k

n

)
=

1
n

n−1∑
k=0

ψ

(
k

n

) n−1∑
r=0

e2πi
k−m

n r =
n−1∑
r=0

f(r + nZ)e−2πim
n r

for all n ∈ D and m ∈ R(n), this unique ψ will be denoted by f̂ . Note that f can
be extended to the equivalent function

∑
α∈[0,1)D

f̂(α)ρα.
All those functions ψ : Q ∩ [0, 1) → C form a commutative ring under the

functional addition and the functional multiplication, we denote this ring by Q(C).

Corollary 1. The ring E(C) is isomorphic to Q(C) via the map f 7→ f̂ whose
inverse is the map ψ 7→ ψ̌.

Proof. For ψ ∈ Q(C) and f ∈ E(C), clearly ψ̌ = f if and only if f̂ = ψ. Thus the
map T : Q(C) → E(C) given by T (ψ) = ψ̌ is bijective and its inverse is the map
f 7→ f̂ . For ψ, χ ∈ Q(C), apparently (ψ+ χ)ˇ= ψ̌+ χ̌, also Ǐ = e and (ψχ)ˇ= ψ̌ ∗ χ̌
by Example 5. So the rings Q(C) and E(C) are isomorphic via the map T . �

Now we give some applications of equivalent maps.
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Theorem 5. Let M be an R-module where R is a ring with identity.
(i) For ψ1, · · · , ψk ∈ P(R),

(19) ψ1(x) + · · ·+ ψk(x) ∈ Ann(M) for all x ∈ Z
if and only if

(20)
k∑
s=1

Tf (ψs) = 0 for each f ∈ E(M)

where Ann(M) denotes the annihilator⋂
x∈M

Ann(x) = {a ∈ R : ax = 0 for every x ∈M}.

(ii) A map f ∈ F(M) is equivalent, if and only if

(21)
k∑
s=1

λsf(as + nsZ) = 0 for all {〈λs, as, ns〉}ks=1 ∈ K(R)

(i.e., we have
∑k
s=1 λsf(as+nsZ) =

∑l
t=1 µtf(bt+mtZ) whenever {〈λs, as, ns〉}ks=1

and {〈µt, bt,mt〉}lt=1 are equivalent systems in S(R)).

Proof. i) When (19) is valid, by Theorem 2 for any f ∈ E(M) and x ∈ Z we have
k∑
s=1

Tf (ψs)(x) = Tf

( k∑
s=1

ψs

)
(x) =

n−1∑
r=0

( k∑
s=1

ψs(x− r)
)
f(r + nZ) = 0

where n ∈ Z+ is any period of ψ1 + · · ·+ψk. If (20) holds, x ∈ Z and λ ∈M , then
(λ)0 ∈ E(M) by Example 1, and hence

k∑
s=1

ψs(x)λ =
k∑
s=1

ns−1∑
r=0

ψs(x− r)(λ)0(r + nsZ) =
k∑
s=1

T(λ)0(ψs)(x) = 0

where n1, · · · , nk are periods of ψ1, · · · , ψk respectively. Therefore (20) also implies
(19). This proves part (i).

ii) If A1,A2 ∈ S(R), then A1 ∼ A2 ⇔ A1 t −A2 ∼ ∅ ⇔ A1 t −A2 ∈ K(R). As
{〈1, a+ jd, nd〉}n−1

j=0 ∼ {〈1, a, d〉} for any d, n ∈ Z+ and a ∈ R(d), (21) implies that
f ∈ E(M).

Now let A = {〈λs, as, ns〉}ks=1 ∈ K(R). For s = 1, · · · , k let ψs ∈ P(R) be given
by ψs(x) = λse−x(as + nsZ). Then ψ1 + · · · + ψk = 0 since A ∼ ∅. If f ∈ E(M),
then by part (i) we have

k∑
s=1

λsf(as + nsZ) =
k∑
s=1

ns−1∑
r=0

ψs(−r)f(r + nsZ) =
k∑
s=1

Tf (ψs)(0) = 0.

This concludes the proof. �
Remark. Part (ii) of Theorem 5 was announced by the author [S2] in the case
M = R = C. It implies the following result obtained by the author [S1] in a quite
different way.
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Corollary 2. Let M be an R-module and F a map of two complex variables into M
such that {〈x+rn , ny〉 : r ∈ R(n)} ⊆ Dom(F ) for all 〈x, y〉 ∈ Dom(F ) and n ∈ Z+.
Then

(22)
n−1∑
r=0

F

(
x+ r

n
, ny

)
= F (x, y) for any 〈x, y〉 ∈ Dom(F ) and n ∈ Z+,

if and only if we have

(23)
k∑
s=1

λsF

(
x+ as
ns

, nsy

)
=

l∑
t=1

µtF

(
x+ bt
mt

,mty

)
for all 〈x, y〉 ∈ Dom(F )

whenever two systems A = {〈λs, as, ns〉}ks=1 and B = {〈µt, bt,mt〉}lt=1 in S(R) are
equivalent.

Proof. Since {〈1, r, n〉}n−1
r=0 ∼ {〈1, 0, 1〉} for n = 1, 2, 3, · · · , the sufficiency is appar-

ent.
Now we assume (22) and let 〈x, y〉 ∈ Dom(F ). Set f(a+ nZ) = F (x+an , ny) for

n ∈ Z+ and a ∈ R(n). Then for any d, n ∈ Z+ and a ∈ R(d) we have

n−1∑
j=0

f(a+jd+ndZ) =
n−1∑
j=0

F

(
(x+ a)/d+ j

n
, n(dy)

)
= F

(
x+ a

d
, dy

)
= f(a+dZ).

So f ∈ E(M). Applying Theorem 5(ii) we get the desired result. �
Remark. The recent paper [S7] contains a slight generalization of Corollary 2. The
functional equation (22) is satisfied by lots of maps in terms of well-known special
functions (see [S8]).

Notice that the Theorem stated in Section 1 follows from Theorem 4 and Theo-
rem 5(ii).

Theorem 6. Let n1, · · · , nk ∈ Z+ and f ∈ E(C). Then

(24)
ns−1∑
r=0

f(r + nsZ)e2πi
a

ns
r 6= 0 for all a ∈ Z and s = 1, · · · , k,

if and only if for any ψ1 ∈ P(C) periodic mod n1, · · · , ψk ∈ P(C) periodic mod nk
we have

(25) ψ1 + · · ·+ ψk = 0 ⇐⇒ f ◦ ψ1 + · · ·+ f ◦ ψk = 0.

Proof. Let s be among 1, · · · , k and ws be an nsth root of unity. For each t =
1, · · · , k define ψst ∈ P(C) by ψst(x) = δstw

−x
s where δst = 1 if s = t, and 0

otherwise. If
∑k
t=1 ψst = 0 ⇐⇒

∑k
t=1 f ◦ ψst = 0, then

ns−1∑
r=0

f(r + nsZ)wrs = wxs

ns−1∑
r=0

f(r + nsZ)w−(x−r)
s = wxs

k∑
t=1

f ◦ ψst(x) 6= 0
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for some x ∈ Z because
∑k
t=1 ψst = ψss 6= 0. This proves the sufficiency.

Let ψ1, · · · , ψk ∈ P(C) have periods n1, · · · , nk respectively. If ψ1 + · · ·+ψk = 0,
then

k∑
s=1

f ◦ ψs = f ◦
k∑
s=1

ψs = f ◦ 0 = 0.

Now assume that ψ1 + · · ·+ψk 6= 0. By Theorem 5(i),
∑k
s=1 g ◦ψs 6= 0 for some

g ∈ E(C). If N = [n1, · · · , nk] and x ∈ Z, then

k∑
s=1

g ◦ ψs(x) =
k∑
s=1

ns−1∑
a=0

∑
α∈Q∩[0,1)

ĝ(α)ρα(a+ nsZ)ψs(x− a)

=
k∑
s=1

∑
α∈[0,1)
αns∈Z

ĝ(α)
ns

ns−1∑
a=0

e2πiαaψs(x− a)

=
∑

α∈[0,1)
αN∈Z

ĝ(α)
k∑
s=1
αns∈Z

1
ns

ns−1∑
r=0

ψs(r)e2πiα(x−r).

So there exists an α ∈ Q ∩ [0, 1) such that

c =
∑
s∈I

1
ns

ns−1∑
r=0

ψs(r)e−2πiαr 6= 0 where I = {1 6 s 6 k : αns ∈ Z}.

For any s ∈ I we have
∑ns−1
r=0 f(r + nsZ)e−2πiαr = f̂(α). Therefore

c̄ =
∑
s∈I

1
ns

ns−1∑
r=0

f ◦ ψs(r)e−2πiαr =
∑
s∈I

1
ns

ns−1∑
r=0

ns−1∑
a=0

f(a+ nsZ)ψs(r − a)e−2πiαr

=
∑
s∈I

1
ns

ns−1∑
a=0

f(a+ nsZ)e−2πiαa
ns−1∑
r′=0

ψs(r′)e−2πiαr′ = cf̂(α).

On the other hand, if x ∈ Z then

c̄e2πiαx =
k∑
s=1

ns−1∑
r=0

f ◦ ψs(r)ρα(x− r + nsZ) = ρα ◦
k∑
s=1

f ◦ ψs(x).

Suppose (24) and choose a j ∈ I. Then f̂(α) =
∑nj−1
r=0 f(r + njZ)e−2πiαr 6= 0.

By the above, c̄ 6= 0 and hence
∑k
s=1 f ◦ ψs 6= 0. This ends the proof. �

Let ψs(x) = λse
2πiαsx for s = 1, · · · , k where λ1, · · · , λk ∈ C∗, and α1 =

a1/n1, · · · , αk = ak/nk are distinct reduced rationals in [0, 1). Suppose that
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ψ0 = −(ψ1 + · · · + ψk) has a period n0 ∈ Z+ not divisible by N = [n1, · · · , nk].
Then nt - n0 (i.e. αtn0 6∈ Z) for some 1 6 t 6 k. For any s = 1, · · · , k with
αtns ∈ Z, clearly

1
ns

ns−1∑
r=0

ψs(r)e−2πiαtr =
λs
ns

ns−1∑
r=0

e2πi(αs−αt)r = λsδst.

Since ψ0 + ψ1 + · · ·+ ψk = 0, we have

0 =
k∑
s=0

ραt
◦ ψs(0) =

k∑
s=0

αtns∈Z

1
ns

ns−1∑
r=0

ψs(r)e−2πiαtr =
k∑
s=1

αtns∈Z

λsδst = λt 6= 0.

The contradiction shows that N must be the least (positive) period of ψ1 + · · ·+ψk.
(When n1 < · · · < nk, this result was observed by the author [S4] in 1991.)

Corollary 3. Let A = {〈λs, as, ns〉}ks=1 ∈ S(C). Then for any f ∈ E(C) satisfying
(24), A ∼ ∅ if and only if

(26)
k∑
s=1

λsf(x+ as + nsZ) = 0 for all x ∈ Z.

Proof. Let x ∈ Z and ψs(x) = λse(x + as + nsZ) for s = 1, · · · , k. Clearly
wA(−x) =

∑k
s=1 ψs(x) and λsf(x + as + nsZ) = f ◦ ψs(x). So the desired result

follows from Theorem 6. �
Remark. In 1989 the author announced Corollary 3 as Theorem 4 of [S2].
Example 6. Let h ∈ Z and define ϕh : Ω → C in the following way:

(27) ϕh(a+ nZ) =
{ 1

ϕ(n) if (h+ a, n) = 1,

0 otherwise,

where ϕ is Euler’s totient function. For a ∈ Z and n ∈ Z+, using the Ramanujan
sum (cf. [HW]) we find that

n−1∑
r=0

ϕh(r + nZ)e−2πi a
n r =

1
ϕ(n)

n−1∑
j=0

(j,n)=1

e−2πi a
n (j−h) = e2πih

a
n
µ(n/(a, n))
ϕ(n/(a, n))

,

which only depends on the rational a/n. So ϕh = ψ̌ ∈ E(C) where ψ(α) =
e2πiαh µ(d(α))

ϕ(d(α)) for α ∈ Q∩[0, 1), and d(α) denotes the denominator of α (which is the
least l ∈ Z+ such that lα ∈ Z). If n ∈ Z+ is squarefree, then ϕ̂h(a/n) = ψ(a/n) 6= 0
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for all a ∈ R(n). Let n1, · · · , nk ∈ Z+ be all squarefree, and A = {〈λs, as, ns〉}ks=1 ∈
S(C). Then by Corollary 3 we have

A ∼ ∅ ⇐⇒
k∑
s=1

λsϕh(x+ as + nsZ) = 0 for any x ∈ Z

⇐⇒
k∑
s=1

(y+as,ns)=1

λs
ϕ(ns)

= 0 for all y ∈ Z.

This result was also announced by the author in [S2]. Suppose that

|{1 6 s 6 k : (x+ as, ns) = 1}| = m for any x ∈ Z.

Then
∑k
s=1 ϕ(ns)ϕ0(x + as + nsZ) −mϕ0(x + Z) = 0 for all x ∈ Z, hence A′ =

{〈ϕ(ns), as, ns〉}ks=1 ∼ {〈m, 0, 1〉} and wA′ has period n0 = 1. Thus, by Theorem 1
of [S3], for any integer d > 1 dividing one of n1, · · · , nk, we have

(28) |{as + dZ : 1 6 s 6 k & ns ≡ 0 (mod ns)}| > min
06s6k
d-ns

d

(d, ns)

and so |{1 6 s 6 k : d | ns}| is not less than the least prime divisor p(d) of d.
Assume that n1 6 · · · 6 nk−l < nk−l+1 = · · · = nk where 1 6 l < k. Then
l > min16s6k−l nk/(ns, nk) > p(nk). For any r ∈ R(nk) divisible by none of
nk

(n1,nk) , · · · ,
nk

(nk−l,nk) , clearly r
nk
ns ∈ Z ⇐⇒ k − l < s 6 k, thus

0 =mρr/nk
(Z) =

k∑
s=1

ϕ(ns)ρr/nk
(as + nsZ)

=
∑

k−l<s6k

ϕ(ns)
ns

e
2πi r

nk
as =

ϕ(nk)
nk

∑
k−l<s6k

e
2πi as

nk
r
.

In view of Lemma 9 of [S5], there are x1, · · · , xk−l ∈ N such that l =
∑
k−l<s6k 1 =∑k−l

s=1
nk

(ns,nk)xs.
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