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GENERALIZATIONS OF KNOPP’S IDENTITY

Beifang Chen and Zhi-Wei Sun

(Communicated by D. Goss)

Abstract. For integers a, b and n > 0 we define

SΓ(a, b, n) =

n−1∑
r=0
n-br

((ar

n

))
ln Γ

({
br

n

})

and

TΓ(a, b, n) =

n−1∑
r=0
n-br

((ar

n

)) Γ′({br/n})
Γ({br/n})

,

which are similar to the homogeneous Dedekind sum S(a, b, n). In this paper we

establish functional equations for SΓ and TΓ. Moreover, by means of uniform function

(introduced by Sun in 1989) we are able to extend Knopp’s identity on Dedekind sums
vastly.

1. Introduction

For a real number x, we use {x} to denote its fractional part, and define

(1.1) ((x)) =
{ {x} − 1/2 if x 6∈ Z,

0 otherwise.

Given m ∈ Z and n ∈ Z+ = {1, 2, 3, . . . }, in 1892 R. Dedekind introduced the
classical Dedekind sum

(1.2) S(m,n) =
n−1∑
r=0

(( r
n

))((mr
n

))
in his study of the functional equation of Dedekind’s eta function

η(τ) = eπiτ/12
∞∏

k=1

(1− e2πikτ ) (τ is in the upper half plane).
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When m,n ∈ Z+ are relatively prime, Dedekind determined S(m,n) + S(n,m)
explicitly. The result is now known as the reciprocity law for Dedekind sums. (See,
e.g. W. S. Anglin [A], Z. W. Sun [S5] and D. Zagier [Z].)

By means of η’s functional equation and Hecke operators, in 1980 M. I. Knopp
[K] established the following arithmetic identity:

(1.3)
∑

cd=m

d−1∑
r=0

S(ac+ rn, dn) = σ(m)S(a, n)

where a ∈ Z, m,n ∈ Z+ and σ(m) denotes the sum
∑

d|m d of (positive) divisors
of m. We can view this identity as a functional equation of Dedekind sums. For
a, b ∈ Z and n ∈ Z+, the sum

(1.4) S(a, b, n) =
n−1∑
r=0

((ar
n

))((
br

n

))

is called a homogeneous Dedekind sum. In 1996 Z. Y. Zheng [Zh] proved the fol-
lowing extension of Knopp’s identity:

(1.5)
∑

cd=m

∑
r1,r2∈d∗

S(ac+ r1n, bc+ r2n, dn) = mσ(m)S(a, b, n)

where a, b ∈ Z, m,n ∈ Z+ and

d∗ = {r ∈ Z: 0 6 r < d}.

In this paper we will make a further generalization.

Definition 1.1. For a function F of two complex variables into the complex field
C, if for any ordered pair 〈x, y〉 in the domain Dom(F ) of F we have

(1.6)
{〈

x+ r

n
, ny

〉
: r ∈ n∗

}
⊆ Dom(F ) and

n−1∑
r=0

F

(
x+ r

n
, ny

)
= F (x, y)

for every n = 1, 2, 3, . . . , then we call F a uniform function (into C).
The concept of uniform function was first introduced by the second author in

[S1] where he showed that, among functions F of two complex variables into C
with {〈x+r

n , ny〉: r ∈ n∗} ⊆ Dom(F ) for all 〈x, y〉 ∈ Dom(F ) and n ∈ Z+, uniform
functions are those F such that whenever∑

16s6k
x≡as (mod ns)

λs =
∑

16t6l
x≡bt (mod mt)

µt for all x ∈ Z
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(where 0 6 as < ns, 0 6 bt < mt and λs, µt ∈ C) we have

(1.7)
k∑

s=1

λsF

(
x+ as

ns
, nsy

)
=

l∑
t=1

µtF

(
x+ bt
mt

,mty

)
for all 〈x, y〉 ∈ Dom(F ).

See also Theorem 2.1 of [S3] and Corollary 2 of [S4].
A uniform function F is said to be periodic if

(1.8) 〈x, y〉 ∈ Dom(F ) ⇒ 〈x± 1, y〉 ∈ Dom(F ) & F (x± 1, y) = F (x, y).

We use PUF to denote the class of all periodic uniform functions. It is easy to see
that the function D on R× R given by

(1.9) D(x, y) = ((x))

belongs to PUF where R is the field of real numbers. Generalizing the homogeneous
Dedekind sums, we introduce the following definition.

Definition 1.2. Let F,G ∈ PUF, 〈x, y〉 ∈ Dom(F ) and 〈u, v〉 ∈ Dom(G). For
a, b ∈ Z and n ∈ Z+ we set

(1.10)
[
F ;x, y
G;u, v

]
(a, b, n) =

n−1∑
r=0

F

(
x+ ar

n
, ny

)
G

(
u+ br

n
, nv

)
.

Now we give our extension of Knopp’s identity.

Theorem 1.1. Let a, b ∈ Z, m,n ∈ Z+, F,G ∈ PUF, 〈x, y〉 ∈ Dom(F ) and
〈u, v〉 ∈ Dom(G). Then we have the identity

(1.11)
∑

cd=m

∑
r1,r2∈d∗

[
F ;x, y
G;u, v

]
(ac+r1n, bc+r2n, dn) = m

∑
d|m

d

[
F ;x/d, dy
G;u/d, dv

]
(a, b, n).

Definition 1.3. For a, b ∈ Z and n ∈ Z+ we define

(1.12) SΓ(a, b, n) =
n−1∑
r=0
n-br

((ar
n

))
ln Γ

({
br

n

})

and

(1.13) TΓ(a, b, n) =
n−1∑
r=0
n-br

((ar
n

)) Γ′({br/n})
Γ({br/n})

where Γ(x) is the well-known gamma function.
By applying Theorem 1.1 to certain periodic uniform functions involving Γ(x),

we can deduce the following result.
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Theorem 1.2. Let a, b ∈ Z and m,n ∈ Z+.
(i) For the function TΓ we have the following functional equation:

(1.14)
∑

cd=m

1
d

∑
r1,r2∈d∗

TΓ(ac+ r1n, bc+ r2n, dn) = md(m)TΓ(a, b, n)

where d(m) is the number of positive divisors of m.
(ii) For SΓ we have

(1.15)

∑
cd=m

∑
r1,r2∈d∗

SΓ(ac+ r1n, bc+ r2n, dn)−mσ(m)SΓ(a, b, n)

=m
∑
d|m

Λ(d)σ
(m
d

) (
S(a, b, n/(d, n))

d/(d, n)
− S(a, b, n)

)
,

where (d, n) is the greatest common divisor of d and n, and the Mangoldt function
Λ is given by

(1.16) Λ(d) =
{

ln p if d = pα for some prime p and α ∈ Z+,

0 otherwise.

Actually there are lots of examples of periodic uniform functions (see [S2,S3,S4]),
so we can apply Theorem 1.1 to obtain many other results.

2. Proof of Theorem 1.1

Lemma 2.1. Let a ∈ Z, n ∈ Z+, F ∈ PUF and 〈x, y〉 ∈ Dom(F ). Then

(2.1)
n−1∑
r=0

F

(
x+ ar

n
, ny

)
= (a, n)F

(
x

(a, n)
, (a, n)y

)
.

Proof. Let d = (a, n). Then a′ = a/d is relatively prime to n′ = n/d. Each r ∈ n∗
can be written uniquely in the form sn′ + t where s ∈ d∗ and t ∈ n′∗. Thus

n−1∑
r=0

F

(
x+ ar

n
, ny

)
=

d−1∑
s=0

n′−1∑
t=0

F

(
x

n
+
a′

n′
(sn′ + t), ny

)

=d
n′−1∑
t=0

F

(
x

n
+

{
a′t

n′

}
, ny

)
= d

n′−1∑
r=0

F

(
x

dn′
+

r

n′
, n′(dy)

)
= dF

(x
d
, dy

)
.

We are done. �
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Proof of Theorem 1.1. Suppose that c, d ∈ Z+ and cd = m. Then

W (c, d) :=
∑

r1,r2∈d∗

[
F ;x, y
G;u, v

]
(ac+ r1n, bc+ r2n, dn)

=
dn−1∑
r=0

∑
r1,r2∈d∗

F

(
x+ (ac+ r1n)r

dn
, dny

)
G

(
u+ (bc+ r2n)r

dn
, dnv

)

=
dn−1∑
r=0

d−1∑
r1=0

F

(
(x+ acr)/n+ rr1

d
, dny

) d−1∑
r2=0

F

(
(u+ bcr)/n+ rr2

d
, dnv

)

=
dn−1∑
r=0

(d, r)2F
(

(x+ acr)/n
(d, r)

, (d, r)ny
)
G

(
(u+ bcr)/n

(d, r)
, (d, r)nv

)
where we apply Lemma 2.1 in the last step. For the Möbius function µ, it is well
known that

∑
r|k µ(r) equals 1 for k = 1, and 0 for k = 2, 3, . . . . Thus

W (c, d) =
∑
t|d

t2
∑

06s<nd/t
(d,st)=t

F

(
x+ acst

nt
, nty

)
G

(
u+ bcst

nt
, ntv

)

=
∑
t|d

t2
∑

06s<nd/t

∑
r|(s,d/t)

µ(r)F
(
x+ acst

nt
, nty

)
G

(
u+ bcst

nt
, ntv

)

=
∑
t|d

t2
∑
r| d

t

µ(r)
∑

06s′<nd/(rt)

F

(
x+ acrs′t

nt
, nty

)
G

(
u+ bcrs′t

nt
, ntv

)
and hence

W (c, d) =
∑
rt|d

µ(r)t2
d
rt−1∑
k=0

n−1∑
l=0

F

(
x+ acrt(kn+ l)

nt
, nty

)
G

(
u+ bcrt(kn+ l)

nt
, ntv

)

=
∑
rt|d

µ(r)t2
d

rt

n−1∑
l=0

F

(
x/t+ acrl

n
, n(ty)

)
G

(
u/t+ bcrl

n
, n(tv)

)

=
∑

rst=d

µ(r)st2
[
F ;x/t, ty
G;u/t, tv

]
(acr, bcr, n).

In view of the above, we have∑
cd=m

W (c, d) =
∑

rst|m

µ(r)st2
[
F ;x/t, ty
G;u/t, tv

](
ar

m

rst
, br

m

rst
, n

)
=

∑
d|m

d
∑
st=d

t
∑
r|m

d

µ(r)
[
F ;x/t, ty
G;u/t, tv

](
a
m

d
, b
m

d
, n

)
=m

∑
st=m

t

[
F ;x/t, ty
G;u/t, tv

]
(a, b, n) = m

∑
d|m

d

[
F ;x/d, dy
G;u/d, dv

]
(a, b, n).
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This concludes the proof. �

3. Proof of Theorem 1.2

For a uniform function F with Dom(F ) ⊆ R×R, the function F̃ (x, y) = F ({x}, y)
obviously lies in PUF.

Let R+ = {x ∈ R: x > 0}. Define Γ∗: (R+ ∪ {0})× R+ → R+ as follows:

(3.1) Γ∗(x, y) =
{

Γ(x)yx/
√

2πy if x > 0,
√

2πy if x = 0.

By Example 2.2 of Sun [S2], the function ln Γ∗(x, y) is a uniform function. The
reader can verify this by means of the following famous multiplication formula of
Gauss (cf. [E]):

n−1∏
r=0

Γ
(
z +

r

n

)
= (2π)(n−1)/2n1/2−nzΓ(nz) (n ∈ Z+ and nz 6= 0,−1, . . . ).

So the function Γ∗(x, y) = lnΓ∗({x}, y) belongs to PUF.
Let f(0) = −γ (where γ is the Euler constant 0.577 . . . ), and f(x) = Γ′(x)/Γ(x)

for x > 0. By sections 1.7 and 1.7.1 of [E], we have

f(x) =
1
n

n−1∑
r=0

f

(
x+ r

n

)
+ lnn = −γ + (x− 1)

∞∑
k=0

1
(k + 1)(k + x)

for any x ∈ R+ and n ∈ Z+. Observe that

f(x)− f(0)− 1
n

(
f

(x
n

)
− f

(
0
n

))
=

∞∑
k=0

(
1

k + 1
− 1
k + x

)
− 1
n

∞∑
k=0

(
1

k + 1
− 1
k + x/n

)

=1− 1
n

+
∞∑

k=1

( (
1− 1

n

)
1

k + 1
+

1
kn+ x

− 1
k + x

)

tends to zero as x → 0. So f(x) = 1
n

∑n−1
r=0 f(x+r

n ) + lnn for all x > 0. For x > 0
and y > 0 let

(3.2) Ψ(x, y) =
{

(Γ′(x)/Γ(x) + ln y)/y if x > 0,
(−γ + ln y)/y if x = 0.

Then Ψ is a uniform function. (In fact, Ψ(x, y) + γ/y is just the uniform function
G(x, y) given in Example 2.3 of [S2].) Thus the function ψ(x, y) = Ψ̃(x, y) also lies
in PUF.
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Lemma 3.1. Let a, b ∈ Z and m,n ∈ Z+. Then

(3.3)
[
D; 0,m
Γ∗; 0,m

]
(a, b, n) = SΓ(a, b, n) + ln(mn)S(a, b, n)

and

(3.4)
[
D; 0,m
ψ; 0,m

]
(a, b, n) =

TΓ(a, b, n)
mn

.

Proof. We first claim that both

R1 =
∑
r∈n∗
n|br

((ar
n

))
and R2 =

∑
r∈n∗
n-br

((ar
n

))

vanish. In fact, by Lemma 2.1 we have

k−1∑
r=0

((ar
k

))
= (a, k)((0)) = 0 for every k = 1, 2, 3, . . . .

So R1 +R2 = 0. Let d = (b, n), b′ = b/d and n′ = n/d. Then

R1 =
∑

06r<n
n′|b′r

((ar
n

))
=

d−1∑
r′=0

((
ar′n′

n

))
=

d−1∑
r′=0

((
ar′

d

))
= 0.

In view of the above,

[
D; 0,m
Γ∗; 0,m

]
(a, b, n) =

n−1∑
r=0

((ar
n

))
Γ∗

(
br

n
, nm

)
=

∑
r∈n∗
n-br

((ar
n

))(
ln Γ

({
br

n

})
+

({
br

n

}
− 1

2

)
ln(mn)− ln(2π)

2

)

+
∑
r∈n∗
n|br

((ar
n

)) ln(2πmn)
2

=SΓ(a, b, n) + ln(mn)S(a, b, n)
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and [
D; 0,m
ψ; 0,m

]
(a, b, n) =

n−1∑
r=0

((ar
n

))
ψ

(
br

n
, nm

)
=

∑
r∈n∗
n-br

((ar
n

)) 1
mn

(
Γ′({br/n})
Γ({br/n})

+ ln(mn)
)

+
∑
r∈n∗
n|br

((ar
n

)) 1
mn

(−γ + ln(mn))

=
TΓ(a, b, n)

mn
.

We are done. �

Proof of Theorem 1.2. i) By Theorem 1.1,∑
cd=m

∑
r1,r2∈d∗

[
D; 0, 1
ψ; 0, 1

]
(ac+ r1n, bc+ r2n, dn) = m

∑
d|m

d

[
D; 0, d
ψ; 0, d

]
(a, b, n).

In light of Lemma 3.1, this says that∑
cd=m

∑
r1,r2∈d∗

1
dn
TΓ(ac+ r1n, bc+ r2n, dn) = m

∑
d|m

d
TΓ(a, b, n)

dn
,

which is equivalent to (1.14).
ii) If c, d ∈ Z+ and cd = m, then by Lemma 3.1 we have∑

r1,r2∈d∗

[
D; 0, 1
Γ∗; 0, 1

]
(ac+ r1n, bc+ r2n, dn)

=
∑

r1,r2∈d∗

SΓ(ac+ r1n, bc+ r2n, dn)

+ ln(dn)
∑

r1,r2∈d∗

S(ac+ r1n, bc+ r2n, dn).

This, together with (1.5), yields that∑
cd=m

∑
r1,r2∈d∗

[
D; 0, 1
Γ∗; 0, 1

]
(ac+ r1n, bc+ r2n, dn)

−
∑

cd=m

∑
r1,r2∈d∗

SΓ(ac+ r1n, bc+ r2n, dn)

=
∑

cd=m

(ln d+ lnn)
∑

r1,r2∈d∗

S(ac+ r1n, bc+ r2n, dn)

=(lnn)mσ(m)S(a, b, n) + Σ
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where

Σ =
∑

cd=m

ln d
∑

r1,r2∈d∗

[
D; 0, 1
D; 0, 1

]
(ac+ r1n, bc+ r2n, dn).

It is well known that
∑

d|k Λ(d) = ln k for k ∈ Z+. (See, e.g. [A].) By Möbius’
theorem, this implies that

Λ(k) =
∑
d|k

µ(d) ln
k

d
= −

∑
d|k

µ(d) ln d for any k ∈ Z+.

By the proof of Theorem 1.1,

Σ =
∑

rst|m

ln(rst)µ(r)st2
[
D; 0, t
D; 0, t

](
ar

m

rst
, br

m

rst
, n

)
=

∑
d|m

d
∑
st=d

t
∑
r|m

d

µ(r) ln(rd)
[
D; 0, t
D; 0, t

](
a
m

d
, b
m

d
, n

)
and hence

Σ =
∑
d|m

d

( ∑
r|m

d

µ(r) ln d+
∑
r|m

d

µ(r) ln r
) ∑

t|d

tS
(
a
m

d
, b
m

d
, n

)
=

∑
d=m

d(ln d)σ(d)S
(
a
m

d
, b
m

d
, n

)
−

∑
d|m

dΛ
(m
d

)
σ(d)S

(
a
m

d
, b
m

b
, n

)
=mσ(m)(lnm)S(a, b, n)−

∑
d|m

dσ(d)Λ
(m
d

)
S

(
a
m

d
, b
m

d
, n

)
.

In view of Lemma 3.1,∑
d|m

d

[
D; 0/d, d
Γ∗; 0/d, d

]
(a, b, n) =

∑
d|m

d (SΓ(a, b, n) + ln(dn)S(a, b, n))

=σ(m)SΓ(a, b, n) + S(a, b, n)
(
σ(m) lnn+

∑
d|m

d ln d
)
.

Thus, by Theorem 1.1 and the above,

mσ(m)SΓ(a, b, n) +mS(a, b, n)
(
σ(m) lnn+

∑
d|m

d ln d
)

−
∑

cd=m

∑
r1,r2∈d∗

SΓ(ac+ r1n, bc+ r2n, dn)

=mσ(m)(lnn+ lnm)S(a, b, n)−
∑
d|m

dσ(d)Λ
(m
d

)
S

(
a
m

d
, b
m

d
, n

)
.
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Therefore

mσ(m)SΓ(a, b, n)−
∑

cd=m

∑
r1,r2∈d∗

SΓ(ac+ r1n, bc+ r2n, dn)

=m
( ∑

d|m

d lnm−
∑
d|m

d ln d
)
S(a, b, n)−

∑
d|m

m

d
σ

(m
d

)
Λ(d)S(ad, bd, n)

=m
∑
d|m

d ln
m

d
S(a, b, n)−m

∑
d|m

Λ(d)
S(ad, bd, n)

d
σ

(m
d

)
.

=m
∑
d|m

Λ(d)σ
(m
d

) (
S(a, b, n)− S(ad, bd, n)

d

)

where in the last step we note that∑
d|m

d ln
m

d
=

∑
d|m

d
∑
t|m

d

Λ(t) =
∑
t|m

Λ(t)
∑
d|m

t

d =
∑
t|m

Λ(t)σ
(m
t

)
.

Fix d ∈ Z+ and let d′ = d/(d, n) and n′ = n/(d, n). Evidently,

S(ad, bd, n)
(d, n)

=
1

(d, n)

(d,n)−1∑
s=0

n′−1∑
t=0

((
ad′(sn′ + t)

n′

)) ((
bd′(sn′ + t)

n′

))

=
n′−1∑
t=0

((
ad′t

n′

)) ((
bd′t

n′

))
=

n′−1∑
r=0

((ar
n′

))((
br

n′

))
= S(a, b, n′).

By the above we finally get (1.15). This concludes the proof. �
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