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Abstract. We look at a model of a two-way nondeterministic finite automaton
augmented with monotonic counters operating on inputs of the form 
 ��������� 
 ���� for
some fixed � and distinct symbols 
 ��� ����� � 
 � , where � ��� ����� � � � are nonnegative in-
tegers. Our results concern the following Presburger safety verification problem:
Given a machine � , a state � , and a Presburger relation � over counter values, is
there ��� ��� ����� � � ��� such that � , when started in its initial state on the left end of the
input 
 ���� ����� 
 � �� with all counters initially zero, reaches some configuration where
the state is � and the counter values satisfy � ? We give positive and negative
results for different variations and generalizations of the model (e.g., augmenting
the model with reversal-bounded counters, discrete clocks, etc.). In particular, we
settle an open problem in [10].

1 Introduction

Recently, there has been significant progress in automated verification techniques for
finite-state systems. One such technique, called model-checking [5, 6, 22, 20, 23], ex-
plores the state space of a finite-state system and checks that a desired temporal prop-
erty is satisfied. In recent years, model-checkers like SMV [20] and SPIN [16] have
been successful in some industrial-level applications. Successes in finite-state model-
checking have inspired researchers to develop model-checking techniques for infinite-
state systems (e.g., arithmetic programs that contain integer variables and parameters).

However, for infinite-state systems, a fundamental problem - the decidability prob-
lem - should be addressed before any attempts to develop automatic verification proce-
dures. It is well known that in general, it is not possible to automatically verify whether
!
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an arithmetic program with two integer variables (i.e., a Minsky machine) is going to
halt [21]. Therefore, a key aspect of the research on infinite-state system verification is
to identify what kinds of practically important infinite-state models are decidable with
respect to a particular form of properties.

Counter machines are considered a natural model for specifying reactive systems
containing integer variables. They have also been found to have a close relationship
to other popular models of infinite-state systems, such as timed automata [1]. Since
general counter machines like Minsky machines are undecidable for verification of any
nontrivial property, studying various restricted models of counter machines may help
researchers to obtain new decidable models of infinite-state systems and identify the
boundary between decidability and undecidability.

In this paper, we study a model of a two-way nondeterministic finite automaton
augmented with monotonic counters operating on inputs of the form � � �������� � � �� for some
fixed � and distinct symbols � �	� ����� � � � , where


 �	� ����� � 
 � are nonnegative integers. Our
results concern the following Presburger safety verification problem: Given a machine�

, a state � , and a Presburger relation  over counter values, is there � 
 ��� ����� � 
 ��� such
that

�
, when started in its initial state on the left end of the input � � �������� � � �� with all

counters initially zero, reaches some configuration where the state is � and the counter
values satisfy  ? We give positive and negative results for different variations and gen-
eralizations of the model (e.g., augmenting the model with reversal-bounded counters,
discrete clocks, etc.). In particular, we settle an open problem in [10]. In the sequel, we
refer to the tuples of counter values that can be reached by

�
(on all inputs) as the

reachable set at state � , or simply reachability set when � is understood.
Some of our decidable results are quite powerful in the sense that the underlying ma-

chines may have nonsemilinear (i.e., non Presburger) reachability sets. This is in con-
trast to most existing decidable results in model-checking infinite-state systems (e.g.,
pushdown systems [4]) that essentially have semilinear reachability sets. For instance,
consider a nondeterministic transition system

�
that is equipped with a number of

monotonic counters ����� �	� ����� � ��� and a number of nonnegative integer parameter-
ized constants � ��� ����� � � � .

�
has a finite number of control states. On a transition from

one control state to another,
�

is able to increment the counter synchronously (i.e.,
� �������! that increments every � � by the same amount  , where  "��# �%$&� or
some �(' ), test the truth value of a Presburger formula on � and � � � �)�%� � � � , or reset
a counter to 0.

�
is a form of a generalized timed automaton (with discrete clocks,

Presburger enabling conditions, and parameterized durations) [10] in disguise. We fur-
ther require that each counter is reset for at most a fixed number of times (such as 10).
We show in this paper that the safety verification problem is decidable for such

�
. It

is easy to see that
�

, with these reset-bounded counters, can exhibit a reachability set
satisfying � '+* � � , which is not Presburger.

2 Preliminaries

Let , be the set of nonnegative integers and -/.0, . A - -counter machine is a two-
way nondeterministic finite automaton with input endmarkers (two-way NFA) aug-
mented with - counters, each of which can be incremented by 1, decremented by 1,



and tested for zero. We assume, w.l.o.g., that each counter can only store a nonnega-
tive integer, since the sign can be stored in the states. If � is a nonnegative integer, let
2NCM( - , � ) denote the class of - -counter machines where each counter is � reversal-
bounded, i.e., it makes at most � alternations between nondecreasing nonincreasing
modes in any computation; e.g., a counter whose values change according to the pat-
tern # $ $���������� � $ # $ $ # is 3-reversal, where the reversals are underlined. For
convenience, we sometimes refer to a machine in the class as a 2NCM( - , � ). Note
that the counters in a 2NCM( - , # ) are monotonic (i.e., nondecreasing). A 2NCM( - , � )
is finite-crossing if there is a positive integer - such that in any computation, the input
head crosses the boundary between any two adjacent cells of the input no more than -
times. Note that a 1-crossing 2NCM( - , � ) is a one-way nondeterministic finite automa-
ton augmented with -�� -reversal counters. 2NCM( - ) will denote the class of - -counter
machines whose counters are � -reversal bounded for some given � . For deterministic
machines, we use ‘D’ in place of ‘N’. If

�
is a machine, 	�� � � denotes the language

it accepts.
We will need the following result from [17].

Theorem 1. There is a fixed � such that the emptiness problem for 2DCM(2, � ) over
bounded languages is undecidable.

We will also need the following results.

Theorem 2. The emptiness problem is decidable for the following machine classes:
(a) 2DCM(1) [18], (b) 2NCM(1) over a bounded language [8], (c) 2NCM( - ) over a
unary alphabet (i.e., over a bounded language on 1 letter) for every - [18], and (d)
finite-crossing 2NCM( - ) for every - [17, 15].

Let 
 be a finite set of variables over integers. For all integers ��� , with �.�
 , � and
- (with ��� # ), � ����� ������ - is an atomic linear relation on 
 and � ����� �������� -
is a linear congruence on 
 . A linear relation on 
 is a Boolean combination (using� and � ) of atomic linear relations on 
 . A Presburger formula on 
 is the Boolean
combination of atomic linear relations on 
 and linear congruences on 
 . A set  is
Presburger-definable if there exists a Presburger formula ! on 
 such that  is exactly
the set of the solutions for 
 that make ! true. It is well known that Presburger formulas
are closed under quantification.

Let " be a positive integer. A subset # of , � is a linear set if there exist vectors$&% � $ ��� �)�%� � $&' in , � such that # �)( $ * $ � $*% � � � $ � � �)�%� � � '+$&' �-, $�. 
 .0/ � � � . ,�1 �
# is a semilinear set if it is a finite union of linear sets. It is known that # is a semilinear
set iff # is Presburger-definable [14].

Let 2 be an alphabet consisting of " symbols � � � �%�)� � � � . For each string (word) 3
in 254 , we define the Parikh map 6 �73 � of 3 as follows: 6 �83 � � � 
 � � �)�%� � 
 � � , where


 '
is the number of occurrences of � ' in 3 . If 	 is a subset of 2 4 , the Parikh map of 	
is defined by 6 �8	 � �9(:6 �73 � * 3 .;	<1 . 	 is a semilinear language if its Parikh map
6 �8	 � is a semilinear set. Obviously, if the languages accepted by machines in a class =
are effectively semilinear (that is, for each

�
in = , the semilinear set 6 �8	�� � � � can be

effectively computed), then the emptiness problem for = is decidable. We will need the
following theorem from [17]:



Theorem 3. Let
�

be a finite-crossing 2NCM( - ). Then 6 �8	 � � � � is a semilinear set
effectively computable from

�
.

Note the result above is not true for machines that are not finite-crossing. For example,
a 2DCM(1,1) can recognize the language (�# � $ ' * 
 divides � 1 , which is not semilinear.

3 Machines with Monotonic Counters over Bounded Languages

3.1 One-Way Input

Let
�

be a nondeterministic one-way finite automaton augmented with a number of
reversal-bounded counters. An input to

�
is of the form � � �� ����� � � �� for some fixed � and

distinct symbols � �	� ����� � � � , where

 �	� ����� � 
 � are nonnegative integers. It is known that the

Presburger safety verification problem for these machines is decidable [17], even when
one of the counters is unrestricted in that it can change mode from nondecreasing to
nonincreasing and vice-versa an unbounded number of times. The machine

�
can fur-

ther be generalized by allowing some of the reversal-bounded counters to reset to zero.
Thus

�
now has one unrestricted counter, some “reset counters”, and some reversal-

bounded counters. There is no fixed bound on the number of times a reset counter can
reset (but between two resets, the counter is reversal-bounded). Reset counters are quite
useful in modeling clocks in real-time systems [1]. If each counter is monotonic (i.e.,
0-reversal-bounded) between two resets, the problem is decidable [7]. (The decidabil-
ity holds even when the machine is allowed to have discrete clocks which operate and
can be tested as in a timed automaton [1].) For the general case, the aforementioned
machines with at least four reset counters is undecidable for the problem. This can be
shown by a reduction to two-counter machines, noticing that an unrestricted counter
can be simulated by two reset counters, each of which is 1-reversal-bounded between
two resets.

Other generalizations of the model which allows linear constraints as counter tests
have also been shown decidable for the problem [19].

3.2 Two-Way Input

We now study the more complicated model when the input to the machine is two-way.
So now

�
is a nondeterministic two-way finite automaton augmented with monotonic

counters = �	� ����� � = � operating on an input of the form � � �������� � � �� , with left and right end-
markers. There is an interesting model equivalent to this model.

Let
���

be a nondeterministic machine with 1 unrestricted counter � and " mono-
tonic counters = � , ..., = � . ��� has no input tape. There are � parameterized constants
� � � ����� � � � . Initially, all the counters are zero. During the computation,

� �
can check if

the unrestricted counter � is equal to # or equal to � � (

 � $&� ��� � � ). Moreover, � is not

allowed to exceed � ��� � � � � ����� � � � � .���
is equivalent to

�
. An input � � �� ����� � � �� (with left and right endmarkers) to

�
corresponds to the parameterized constants, by interpreting


 � � � 
 � � 
 � � � ������� � � 
 � � 
 � �
����� � 
 ��� to be the values of � ��� � �&� ����� � � � , respectively. This correspondence assumes
that � ��. � � ����� . � � . However, since there are only a finite number of these orderings,



this assumption can be made without loss of generality. Clearly,
�

starting on the left
endmarker corresponds to the unrestricted counter � of

� �
starting at zero.

�
moving

right (left) on the input corresponds to
� �

incrementing (decrementing) � .
� �

can
determine if

�
is on the boundary between � � and � � � � by checking if � is equal to

� � . In view of the equivalence of the two models, will use them interchangeably in the
sequel.

Let  be a Presburger relation on the values - � , .., - � of the monotonic counters and
� be a state of

�
. We say that

�
satisfies  if there is � 
 � � ����� � 
 � � such that

�
, when

started in its initial state on the left end of the input � � �������� � � �� with all counters initially
zero, reaches some configuration where the state is � and the counter values satisfy
 . Note that we do not assume that

�
necessarily halts. So, in fact, a configuration

satisfying  may be an intermediate configuration in some computation. Also, there
may be several configurations satisfying  . In the paper, we usually do not explicitly
specify the state � when  is satisfied, since its specification is usually obvious from
construction.

An atomic equality relation is a relation - � � - ' , 
��� � . A relation  is an equality
relation if it is a conjunction of atomic equality relations and no - � is involved in more
than one atomic relation in  . We denote such a relation by �� .
Theorem 4. Let

�
be as specified above. Let  and  � be a Presburger relation and

an equality relation, respectively.

1. There is a fixed " such that it is undecidable whether
�

with " monotonic counters
satisfies  � .

2. When ��� $ (i.e., there is only one parameterized constant � � ), it is decidable
whether

�
satisfies  .

3. When
�

is deterministic and always halts, it is decidable whether
�

satisfies  .

Proof. We first prove Part 1. From Theorem 1, there is a fixed � such the empti-
ness problem for 2DCM(2, � ) over bounded languages is undecidable. Let

�
be such

an automaton. Clearly, we can convert
�

to an equivalent automaton
� �

which has� � $ ���	� �� � 1-reversal counters where each counter starts at zero, and on input 3 ,
� �

accepts if and only if it halts with all counters zero. To insure this, we can add to���
a dummy counter which is incremented at the beginning and only decremented,

i.e., becomes zero when the input is accepted. Suppose
� �

has " 1-reversal coun-
ters, = �	� ����� � = � (one of these is the dummy counter). Note that " is fixed since � is
fixed. We modify

� �
to a nondeterministic automaton

� � �
with � " monotonic coun-

ters: = �� � = �� � ����� � = �� � = �� , where = �� and = �� are associated with counter = � . ��� � on
input 3 simulates the computation of

� �
, first using counter = �� to simulate = � when

the latter is in a nondecreasing mode. When counter = � reverses (thus entering the non-
increasing mode),

� � �
continues the simulation but using counter = �� : incrementing

this counter when
� �

decrements = � . At some time during the computation (which
may be different for each



),
� �

guesses that = � has reached the zero value. From that
point on,

��� �
will no longer use counters = �� and = �� , but continues the simulation.

When
��� �

has guessed that = �� � = �� for all


’s (note that for sure the two counters

corresponding to the dummy counter are equal), it halts. Clearly, 3 is accepted by
� �

if and only if
��� �

on 3 can reach a configuration with = �� � = �� for

 � $&� ����� � " (this



is relation  � ). As noted earlier,
� � �

on input � � �������� � � �� can be interpreted as a machine��� � �
with an unrestricted counter � and � parameterized constants � ��� ����� � � � whose

values are set to � $ � 
 � � � � $ � 
 � � 
 � � � ����� � � $ � 
 � � 
 � � ����� � 
 ��� , respectively. The
movement of the input head of

� � �
is simulated by the unrestricted counter � .

For Part 2, given
�

with monotonic counters = � � ����� � = � , we construct a two-way
nondeterministic finite automaton with reversal-bounded counters over a unary input
(with endmarkers)

���
.
���

simulates
�

faithfully, with the input head of
� �

simulat-
ing the unrestricted counter � of

�
and " counters simulating the = � ’s. At some point,���

guesses that the values of the monotonic counters satisfy the relation  .
� �

then
uses another set of counters to verify that this is the case, and accepts. The result fol-
lows from the decidability of the emptiness problem for two-way nondeterministic finite
automata augmented with reversal-bounded counters over a unary alphabet[18], and
the fact that a Presburger relation on = �	� ����� � = � can be verified by additional reversal-
bounded counters.

For Part 3, since
�

is deterministic and always halts,
� �

(i.e., the
���

in the proof
of Part 1) is finite-crossing on any input. The result then follows from the decidabil-
ity of the emptiness problem for finite-crossing finite automata with reversal-bounded
counters (Theorem 3), and the fact that Presburger relations can be verified by reversal-
bounded counters.

In Theorem 4, the relations  and �� are defined over monotonic counters = � � ����� �
= � . In fact, the theorem still holds when the relations are defined over = � � �)�%� � = � , � ,
and � � � �)�%� � � � . This is because � � $ additional monotonic counters can be added to
“store” the values for � and � ��� �%�%� � � � at the time when the test for  is performed.

Consider the following restriction on the counters: = �	� �%�%� � = � are ordered in that
all the increments of = � are followed by those of = ' whenever $�. 
 � � . " . Then it
can be shown, using Theorem 2(b) directly, that it is decidable whether

�
satisfies  .

Open Question: In Part 3, if we do not assume that
�

always halts, we do not know
if the problem is still decidable, since the machine is no longer finite-crossing and, in
fact, the set of tuples of reachable values of the monotonic counters is not semilinear in
general. For example, consider a deterministic machine

�
with a two-way unary input

and three monotonic counters = � � = � � = � . On input � of length � ,
�

initially stores
� in = � . Then

�
makes (left-to-right and right-to-left) sweeps of the input, adding

1 to = � and � to = � after every sweep.
�

iterates this process without halting. Let
� � (+� 
 � � � " � * there is an instance in the computation where the values of the 3
counters are


 � � � " 1 . Thus
�

is the set of all “reachable” counter values. Then
�

is not
semilinear; otherwise, since semilinear sets are closed under intersection,

�
intersected

with the semilinear set ( � � � � � � � * � � � in ,�1 will yield (+� � � � � � � � * � in ,�1 , which
is not semilinear.

4 Generalized Counter Timed Systems

Timed automata [1] are a standard model for studying real-time systems. A timed au-
tomaton can be considered as a finite automaton augmented with a finite number of
clocks. In this paper, we consider clocks taking values in , (i.e., clocks are discrete).



In a timed automaton, a clock can progress (i.e., � � � � � $ ) or reset ( � � � # ). How-
ever, one clock progresses iff all the clock progresses. In addition, clocks can participate
tests in the form of comparisons between the difference of two clocks against a constant
(e.g., ���� � � ).

The result in Part 2 of Theorem 4 can be further generalized. In [3], pushdown timed
systems (these are timed automata equipped with a pushdown stack) with “observation”
counters were studied. The purpose of the counters is to record information about the
evolution of the system and to reason about certain properties (e.g., number of occur-
rences of certain events in some computation). The counters do not participate in the
dynamic of the system, i.e., they are never tested by the system. A transition specifies
for each observation counter an integral value (positive, negative, zero) to be added to
the counter. Of interest are the values of the counters when the system reaches a spec-
ified configuration. Here we only consider the case when the clocks of the system are
discrete. It follows from the results in [3] (see also [9]) that these systems have decid-
able safety properties, and the tuples of “reachable” values of observation counters is
Presburger.

A special case is when the pushdown stack is replaced by an unrestricted counter
� . Call this a counter timed system. Then the results in [3] obviously hold. Now we
generalize the counter timed system in the following way:

1. Instead of observation counters, the system has a finite number of reversal-bounded
counters, and these counters participate in the dynamic of the system (i.e., they can
be tested by the system).

2. The system is parameterized in the sense that there is a parameterized constant � ,
and during the computation, the system can check if the unrestricted counter � is
equal to � (in addition to being able to test if � is zero).

3. � cannot exceed � .

Note that an observation counter can be simulated by two reversal-bounded counters:
one counter keeps track of the increases and another counter keeps track of the de-
creases. When the system guesses that it has reached the target configuration, the dif-
ference of the counter values can be computed in one of the counters, and the sign of
the difference can be specified in the other counter, which is set to 0 for negative and
1 for positive. Call a system # defined above a generalized counter timed system. Such
an # can model part of a memory management system as follows:

1. # dynamically allocates/retrieves memory to/from " processes. The total amount
of memory available is equal to � (the parameterized constant).

2. # uses the unrestricted counter � to keep track of the available memory, decre-
menting (resp. incrementing) � when a process requests (releases) memory. Note
that # can check if � is zero or equal to � .

3. Among the reversal-bounded counters, we might use � " monotonic counters for the
following purpose: Two counters  �� and  �� are associated with process



. During

the computation,  �� (resp.  �� ) is incremented if process



requests (resp. returns)
memory from (resp. to) the system.

4. Other reversal-bounded counters can be used for other purposes (e.g., each process
can use a monotonic counter to keep track of the “cost” of requesting memory;
assume there is a unit charge per memory request).



5. As in a timed automaton, the (discrete) clocks are used to enforce timing con-
straints.

Questions concerning the relationships among the parameterized constant, unrestricted
counter, reversal-bounded counters, and clocks can be asked, such as: Is it always the
case that �!� � � �8 �� �  �� � � ����� � �8 �� �  �� � ? Is it always the case that the total
cost of process



is less than the total cost of process � ? Is it always the case that # is

fair (e.g., � � *  �� �  �' * � � for each

 � � )? etc.

Clearly, the set of tuples of reachable counter values is not semilinear (even when
there are no clocks). However, we can still show that safety is decidable. Let # be a
generalized counter timed system. A configuration � of # is a tuple � � � � � � ��� ��� � ,
where � is the value of the parameterized constant � , � is the state, � is the array of
clock values, � is the value of the unrestricted counter with � . � , and � is the array
of values of the reversal-bounded counters.

Theorem 5. It is decidable to determine, given a generalized timed counter system #
and two Presburger sets � and � of configurations of # , whether there is a computation
of # that starts from some configuration in � and reaches some configuration in � .
Thus, it it decidable to determine whether # can go from an initial configuration in � to
an “unsafe” configuration in � .

Proof. We can view the clocks in # as counters, which we shall refer to as clock-
counters. Now reversal-bounded counters can only perform standard tests (comparing
a counter against 0) and standard assignments (increment or decrement a counter by 1,
or simply nochange). But clock-counters in # have nonstandard tests and nonstandard
assignments. This is because a clock constraint allows comparison between two clocks
like � � � � � � � . Note that using only standard tests, we can compare the difference
of two clock-counter values against an integer like 5 by computing � � � � � in another
counter. But each time this computation is done, it will cause at least one counter rever-
sal, and the number of such tests during a computation can be unbounded. The clock
progress � � � � � $ is standard, but the clock reset � � � # is not. Since there is no bound
on the number of clock resets, clock-counters may not be reversal-bounded (each reset
causes a counter reversal).

We first prove an intermediate result. Denote by 2UNCM a 2NCM( - ), for some - ,
over a unary alphabet. Thus, a 2UNCM is a nondeterministic two-way finite automaton
over a unary alphabet augmented with finitely many reversal bounded counters. Define
a semi-2UNCM as a 2UNCM which, in addition to reversal-bounded counters, has
clock-counters that use nonstandard tests and nonstandard assignments as described in
the previous paragraph.

Suppose we are given # and Presburger sets � and � . Let
�
	

and
���

be one-way
nondeterministic finite automata with reversal-bounded counters accepting � and � ,
respectively. (Since � and � are Presburger, these machines can be constructed [17].)
We construct a semi-2UNCM

�
which operates as follows. The input to

�
is � (which

is a concrete instance of the parameterized constant � ) with endmarkers.
�

starts by
guessing and storing in its counters the components of the tuple � � � � ��� ��� � , and checks
that � � � � � � �� ��� � is in � using

� 	
.
�

then simulates # starting in configuration � �
� � � � � � �� ��� � . At some point during the simulation,

�
guesses that it has reached a



configuration � ��� � � � � � � � �� � ��� � � in � .
���

then simulates
� �

and accepts if � is in
� .

The semi-2UNCM
�

can now be converted to an 2UNCM
� �

by simulating the
clocks in

�
by reversal-bounded counters, using the techniques in [9]: First we con-

struct a semi-2UNCM
� � from

�
, where clock-counter comparisons are replaced by

“finite table look-up”, and therefore, nonstandard tests are not present in
� � . Then we

eliminate the nonstandard assignments of the form ����� # (clock resets) in
� � and

obtain the desired 2UNCM
� �

. The details can be found in [9]. The result now follows
since emptiness is decidable for 2UNCM’s from Theorem 2 (c).

The safety problem can be generalized as follows (called the multi-safety problem).

– Given: A system # and Presburger sets � � � � � ����� � � � of configurations of # , "�� # .
– Question: Is there a computation of # that starts from some configuration � in �

and goes through some configurations � �	� ����� � � � , where � � is in � � for $�. 
 . " ?
(Note that that � � � ����� � � � can occur at different times.)

The theorem above easily generalizes to:

Theorem 6. The multi-safety problem for generalized counter timed system is decid-
able.

If # is a generalized counter timed system, define ��� �+-�� �+# � to be the binary reach-
ability set ��� � -�� � # � �)(+� � � � � * starting in configuration � , # can reach configuration
� 1 . As we have seen, the binary reachability ��� �+-�� �+# � is not Presburger in general.
However, we can give a nice characterization for it.

A 2UNCM is a nondeterministic two-way finite automaton over a unary alphabet
augmented with reversal bounded counters. Define a " -2UNCM as a 2UNCM which, in
addition to the two-way unary input, is provided with " distinguished counters, called
input counters. (Note that the machine has other reversal-bounded counters aside from
the input counters.) A tuple � � � 
 ��� ����� � 
 � � in , � � � is accepted by a " -2UNCM

�
if�

, when started with � on the two-way input (i.e., � is the length of the unary input)
and


 ��� ����� � 
 � in the " input counters, eventually enters an accepting state. Note that the
input counters can be tested against zero and decremented during the computation, but
cannot be incremented. The set accepted by

�
is the set of all � " � $ � -tuples accepted

by
�

. A multi-2UNCM is a " -2UNCM for some " . The proof of the following lemma
is straightforward from Theorem 2(c).

Lemma 1. The emptiness problem for multi-2UNCM is decidable.

Using the above lemma and the ideas in the proof of Theorem 5, we can show the
following characterization for the binary reachability ��� � -�� � # � :

Theorem 7. If # is a generalized counter timed system, we can effectively construct a
multi-2UNCM

�
accepting ��� � -�� � # � .



5 Synchronized Monotonic Counters

Let � � � ����� � � � be nonnegative integer parameterized constants, and � � ()� � � ����� � � � 1
be a set of nonnegative integer variables. The variables in � are incremented syn-
chronously. We use � ��� � �  to indicate � � ��� � � �  �� �%�)� � � � � � � �  .
Consider the following instruction set:

� �&� ���0� � # ,
� �&� ���0� � $ ,
� �&� ���0� � � � , for some $�. 
 . � ,
� � if � then goto 6 else goto � ,

and a nondeterministic choice,
� � goto 6 or � .

where � is an instruction label and test � is a Presburger formula over � ��� �%�%� � � � and
the variables in � . A synchronized counter program  is a sequence of instructions
drawn from the instruction set. A configuration of a program is a tuple consisting of an
instruction label, values of � �	� �%�%� � � � , and values of variables in � . Notice that, in  ,
there could be many different tests � ’s and in general  is nondeterministic.

Theorem 8. It is decidable to determine, given a synchronized counter program  and
two Presburger sets � and � of configurations of  , whether there is a computation of
 that starts from some configuration in � and reaches some configuration in � . Thus,
it it decidable to determine whether  can go from an initial configuration in � to an
“unsafe” configuration in � .

The proof of Theorem 8 uses Theorem 2 (b). Synchronized counter programs have
a close relationship with timed automata (with discrete clocks). Though the standard
model of timed automata is quite useful, more powerful clock tests are needed in order
to model more complicated systems. In [10], we studied a class of generalized timed
automata that allows Presburger clock tests. More precisely, a generalized timed au-
tomaton � is a synchronized counter program augmented with reset instructions:

� � ��� � � / � 
 � �
where the monotonic variable (i.e., a clock) � � is reset to 0 and all the other mono-
tonic variables do not change their values. � is deterministic if � does not contain
nondeterministic choice instructions. Since generalized timed automata can simulate
two-counter machines [1], though there are practical needs to use generalized timed
automata to specify complex real-time systems, the “Turing computing” power of the
model prevents automatic verification of simple properties such as reachability. There-
fore, decidable approximation techniques are of great interest, since these techniques
would provide a user some degree of confidence in analyzing and debugging complex
real-time specifications. In contrast to the most direct approximation techniques [2, 12,
11, 13] that bound the number of transitions to a fixed number, the approximation tech-
niques presented in [10] restrict the clock behaviors but do not necessarily bound the
number of transition iterations to be finite.

There are three approximation techniques in [10]. The � -reset-bounded approxima-
tion bounds the number of clock resets by a given positive integer � for each clock. The
� -bounded approximation requires that, for each clock, the clock value is less than a



given positive integer � every time the clock resets (but after the last reset, the clock
can go unbounded.). Combining these two, the � � � ��� -crossing-bounded approximation
requires that, for each clock, there are at most � times that the clock resets after its
value is greater or equal to � . It was shown in [10] that, when � is deterministic, The-
orem 8 holds for � under any one of the three approximations. The case when � is
nondeterministic was left open in [10]. The following result settles the open case.

Theorem 9. It is decidable to determine, given a generalized timed automaton � under
any one of the three approximations, and two Presburger sets � and � of configurations
of � , whether there is a computation of � that starts from some configuration in � and
reaches some configuration in � .

Proof. We only consider the � -reset-bounded approximation; the other two approxima-
tions are similar (see [10]). In an � -reset-bounded execution of � , each clock is reset
for at most � times. Therefore, the execution can be partitioned into a concatenation of
at most ��� * � * phases such that, in each phase, there is no clock reset, and any two
consecutive phases are connected with a clock reset instruction. Notice that a phase can
be modeled as an execution of a synchronized counter program (which does not contain
resets). The theorem follows by generalizing Theorem 8 into a “concatenation” of the
program for each phase.

6 Conclusion

We introduced a model of a two-way nondeterministic finite automaton augmented with
monotonic counters operating on inputs over a bounded language for investigating the
verification properties of infinite-state systems. We then proved positive and negative
results on the safety verification properties for different variations and generalizations of
the model (e.g., augmenting the model with reversal-bounded counters, discrete clocks,
etc.). In particular, we settled an open problem in [10].
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