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Abstract. Let F be a uniform function of two complex variables to an additive

abelian group, i.e., F satisfies the functional equation

n−1∑
r=0

F

(
x + r

n
, ny

)
= F (x, y) (n = 1, 2, 3, . . . )

introduced by Z. W. Sun in the 1980s. Suppose that 〈x + 1, y〉 ∈ Dom(F ) for all

〈x, y〉 ∈ Dom(F ). In this paper we establish the following reciprocity law:

m−1∑
r=0

F

(
x + nr

m
, my

)
=

n−1∑
r=0

F

(
x + mr

n
, ny

)

for any 〈x, y〉 ∈ Dom(F ) and m, n = 1, 2, 3, · · · . Several applications are also given.

1. Introduction

In 1989 Z. W. Sun [S1] introduced the following original concept in his study of
covering equivalence.

Definition 1. For a function F of two complex variables into an additive abelian
group M , if for any ordered pair 〈x, y〉 in the domain of F we have

(1)
{〈

x + r

n
, ny

〉
: r = 0, 1, · · · , n− 1

}
⊆ Dom(F )

and

(2)
n−1∑
r=0

F

(
x + r

n
, ny

)
= F (x, y)
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for every n ∈ Z+ = {1, 2, 3, · · · }, then we call F a uniform function (into M).
There are many examples of uniform functions, the reader may consult [S1], [S2],

[S3], [S4] and [CS].
The main result of this paper is the following observation.

Theorem 1 (Reciprocity law for uniform functions). Let F be a uniform function
into an additive abelian group. Suppose that 〈x + 1, y〉 ∈ Dom(F ) for all 〈x, y〉 ∈
Dom(F ). Then, for any positive integers m and n, we have

(3)
m−1∑
r=0

F

(
x + nr

m
,my

)
=

n−1∑
r=0

F

(
x + mr

n
, ny

)

for all 〈x, y〉 ∈ Dom(F ).

Remark 1. If F be a uniform function with F (x + 1, y) = F (x, y) for all 〈x, y〉 ∈
Dom(F ), then Lemma 2.1 of [CS] indicates that

n−1∑
r=0

F

(
x + mr

n
, ny

)
= (m,n)F

(
x

(m,n)
, (m,n)y

)

for all m,n ∈ Z+ and 〈x, y〉 ∈ Dom(F ), where (m,n) denotes the greatest common
divisor of m and n.

Although Theorem 1 seems simple, it is very useful.

Corollary 1 (Graham, Knuth and Patashnik [GKP, p.94]). Let m,n ∈ Z+ and
x ∈ R where R is the field of real numbers. Then we have

(4)
m−1∑
r=0

[
x + nr

m

]
=

n−1∑
r=0

[
x + mr

n

]
,

where [x] denotes the greatest integer not exceeding the real number x.

Proof. This is because the function [ ] : R × Z+ → R given by [ ](x, y) = [x] is
uniform. The identity

n−1∑
r=0

[
x + r

n

]
= [x] (n ∈ Z+)

is due to Hermite. �

Remark 2. In fact, if m,n ∈ Z+ and x ∈ R then both sides of (4) coincide with
(m,n)[x/(m,n)] + ((m,n)− 1)/2 + (m− 1)(n− 1)/2.
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Corollary 2. Let m,n be positive integers, and let z be any complex number with
z/(m,n) 6∈ Z. Then we have the identity

(5)
m−1∑
r=0

cot π
z + nr

m
=

m

n

n−1∑
r=0

cot π
z + mr

n
.

Proof. Let C denote the field of complex numbers. By Example 2.4 of [S4], the
function cot0(x, y) = y−1 cot(πx) with x ∈ C \ Z and y > 0 is uniform. In view of
Theorem 1, for any x ∈ C \ Z and y > 0 we have

m−1∑
r=0

1
my

cot π
x + nr

m
=

n−1∑
r=0

1
ny

cot π
x + mr

n
.

Letting x tend to z we then obtain the desired identity. (Note that z 6∈ mZ+nZ =
(m,n)Z.) �

Corollary 3. Let Γ(z) be the well known Γ-function. Then for any m,n ∈ Z+ and
z ∈ C \ {0,−1,−2, . . . } we have

(6)
m−1∏
r=0

Γ
(

z + nr

m

)
= (2π)(m−n)/2

( n

m

)z+(mn−m−n)/2 n−1∏
r=0

Γ
(

z + mr

n

)
.

Proof. By Example 2.2 of [S4], the function γ(x, y) = Γ(x)yx−1/2/
√

2π with x 6=
0,−1,−2, . . . and y > 0 is a uniform function into the multiplicative group C∗ of
nonzero complex numbers. Applying Theorem 1 we find that

m−1∏
r=0

γ

(
z + nr

m
,m× 1

)
=

n−1∏
r=0

γ

(
z + mr

n
, n× 1

)
.

This implies the desired identity (6). �
For k ∈ N = {0, 1, 2, · · · } let Bk(x) denote the Bernoulli polynomial of degree k

and set
Sk(n) = 0k + 1k + . . . + (n− 1)k for n = 1, 2, · · · .

Theorem 1 also implies the following result.

Theorem 2. Let k ∈ N and m,n ∈ Z+. Then

(7)
k∑

j=0

(
k

j

)
mk−jnj−1Bj(mx)Sk−j(n) =

k∑
j=0

(
k

j

)
mj−1nk−jBj(nx)Sk−j(m).

Remark 3. Theorem 2 in the case x = 0 yields the main result of Hans J. H. Tuenter
[T]. When x = 0 and n = 1, (7) turns out to be a recursion for Bernoulli numbers
which was proved by E. Y. Deeba and D. M. Rodriguez [DR] and used by F. T.
Howard [H] to deduce those classical congruences concerning Bernoulli numbers.

Theorems 1 and 2 will be proved in the next section.
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2. Proof of Theorems 1 and 2

Proof of Theorem 1. Fix 〈x, y〉 ∈ Dom(F ). If q, r ∈ N and 0 6 r < m, then〈
x + (mq + r)

m
,my

〉
=

〈
x + r

m
+ q, my

〉
∈ Dom(F ).

Thus 〈(x + l)/m,my〉 ∈ Dom(F ) for every l ∈ N. Similarly, 〈(x + l)/n, ny〉 ∈
Dom(F ) for all l ∈ N.

Observe that

m−1∑
r=0

F

(
x + nr

m
,my

)
=

m−1∑
r=0

n−1∑
s=0

F

(
(x + nr)/m + s

n
, n(my)

)

=
m−1∑
r=0

n−1∑
s=0

F

(
x + nr + ms

mn
,mny

)

=
n−1∑
s=0

m−1∑
r=0

F

(
(x + ms)/n + r

m
,m(ny)

)

=
n−1∑
s=0

F

(
x + ms

n
, ny

)
.

This concludes the proof. �

Proof of Theorem 2. By Raabe’s theorem, the function bk : C × Z+ → C given by
bk(x, y) = ym−1Bk(x) is a uniform function as observed by Sun [S2].

Since
∞∑

l=0

Bl(x + y)
zl

l!
=

zexz

ez − 1
eyz =

∞∑
j=0

Bj(x)
zj

j!

∞∑
i=0

yi z
i

i!
,

we have the identity

Bk(x + y) =
k∑

j=0

(
k

j

)
Bj(x)yk−j .

Observe that

n−1∑
r=0

bk

(
mnx + mr

n
, n · 1

)
=

n−1∑
r=0

nk−1Bk

(
mx +

mr

n

)
=

n−1∑
r=0

nk−1
k∑

j=0

(
k

j

)
Bj(mx)

(mr

n

)k−j

=
k∑

j=0

(
k

j

)
Bj(mx)mk−jnj−1Sk−j(n)
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Similarly,

m−1∑
r=0

bk

(
mnx + nr

m
, m · 1

)
=

k∑
j=0

(
k

j

)
Bj(nx)mj−1nk−jSk−j(m).

So the desired (7) follows from Theorem 1. �
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