
On Two-Way Nondeterministic Finite Automata with
One Reversal-Bounded Counter

�

Zhe Dang

School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

Oscar H. Ibarra
�

Department of Computer Science
University of California

Santa Barbara, CA 93106, USA

Zhi-Wei Sun

Department of Mathematics
Nanjing University

Nanjing 210093, China

Abstract

We show that the emptiness problem for two-way nondeterministic finite automata aug-
mented with one reversal-bounded counter (i.e., the counter alternates between nondecreas-
ing and nonincreasing modes a fixed number of times) operating on bounded languages
(i.e., subsets of ����������	�
�� for some nonnull words � �� ����� � � �) is decidable, resolving a
problem left open in [4,7]. The proof is a rather involved reduction to the solution of a
special class of Diophantine systems of degree 2 via a class of programs called two-phase
programs.

Key words: Counter machine, reversal-boundedness, emptiness problem, bounded
language

�
A preliminry version of this paper was presented at the 13th Annual International Symposium on

Algorithms and Computation, Vancouver, Canada.�
Corresponding author: ibarra@cs.ucsb.edu, Tel. +1-805-893-4171. The research of Oscar

H. Ibarra was supported in part by NSF Grants IIS-0101134 and CCR02-08595.

Preprint submitted to Elsevier Science 28 June 2005

1 Introduction

Automata theory tries to answer questions concerning the relationship between formal lan-
guages and automata that recognize the languages. A fundamental decision question con-
cerning any class of language recognizers is whether the emptiness problem (for the class)
is decidable, i.e., whether there exists an algorithm to decide the following question: given
an arbitrary machine � in the class, is the language accepted by � empty? Decidability of
emptiness could lead to the decidability of other questions such as containment, equivalence,
etc.

The simplest recognizers are the finite automata. It is well-known that all the different va-
rieties of finite automata (one-way, two-way, etc.) are effectively equivalent, and the class
has a decidable emptiness problem. When the two-way finite automaton is augmented with
a storage device, such as a counter, a pushdown stack or a Turing machine tape, emptiness
becomes undecidable (no algorithms exist). In fact, it follows from a result in [12] that the
emptiness problem is undecidable for two-way finite automata augmented with one counter
(even on a unary input alphabet). If one restricts the machines to make only a finite number
of turns on the input tape, the emptiness problem is still undecidable, even for the case when
the input head makes only one turn [5]. However, for such machines with one-way input,
the emptiness problem is decidable, since they are simply pushdown automata with a unary
stack alphabet.

Restricting the operation of the counter in a two-way one-counter machine makes the empti-
ness problem decidable for some classes. For example, it has been shown that emptiness
is decidable for two-way counter machines whose input head is finite-crossing (i.e., for all
inputs, the number of times the input head crosses the boundary between any two adjacent
cells is bounded by a fixed number) and whose counter is reversal-bounded (i.e., the num-
ber of alternations between nondecreasing mode and nonincreasing mode is bounded by a
fixed number, independent of the input) [5]. Interestingly, when the two-way input is un-
restricted but the counter is reversal-bounded, emptiness is decidable when the machine is
deterministic and accepts a bounded language (i.e., a subset of � �������� � �� for some fixed non-
null words � ��� ����� � � �) [4]. This result was later shown to hold for the general case when
the input is not over a bounded language [7], by a reduction to the bounded case. These ma-
chines are quite powerful. They can accept fairly complex languages. For example, such a
machine can recognize the language consisting of strings of the form �
	 ��� where divides � .
A question left open in [4,7] is whether the aforementioned decidability of emptiness holds
for nondeterministic machines (over bounded or unbounded languages). Our main result set-
tles this question for the bounded case. More precisely, we show that the emptiness problem
for two-way nondeterministic finite automata augmented with a reversal-bounded counter
over bounded languages is decidable. The proof is an involved reduction to the solution of a
special class of systems of quadratic Diophantine equations, which we show decidable. The
systems are more general than the ones used in [4], where the emptiness problem for the
deterministic case was reduced to a simpler system (that was shown decidable in [9].) More-
over, unlike the proof for the deterministic case [4], where the reduction from the machine

2

to the system of equations was carried out in one step, in our proof for the nondeterministic
case, we use an intermediate machine model, called two-phase programs. At present, we are
not able to generalize this result to the case when the input to the machine does not come
from a bounded language. We note that when the machines are augmented with two reversal-
bounded counters, emptiness is undecidable, even when the machines are deterministic and
accept only bounded languages [5].

The rest of this paper is organized as follows. In Section 2, we introduce some known results
on reversal-bounded counters and number theory. These results are used in the proof of our
main theorem. In Section 3, we show a decidable class of Diophantine systems of degree 2.
The Diophantine systems are used in Section 4 to establish that a class of simple programs
has a decidable emptiness problem. The main theorem follows in Section 5 by reducing it to
the simple programs. Section 6 compares the computing capabilities of nondeterministic and
deterministic two-way one-counter machines with one reversal-bounded counter. Section 7
is a brief conclusion.

2 Preliminaries

Let � be a nonnegative integer. A � -counter machine is a two-way nondeterministic finite
automaton with input endmarkers (two-way NFA) augmented with � counters, each of which
can be incremented by 1, decremented by 1, and tested for zero. We assume, w.l.o.g., that
each counter can only store a nonnegative integer, since the sign can be stored in the states. If� is a nonnegative integer, let 2NCM(� , �) denote the class of � -counter machines where each
counter is � reversal-bounded; i.e., it makes at most � alternations between nondecreasing
and nonincreasing modes in any computation; e.g., a counter whose values change according
to the pattern � � ����������� � � � � � � is 3-reversal, where the reversals are underlined. For
convenience, we sometimes refer to a machine in the class as a 2NCM(� , �). A 2NCM(� , �)
is finite-crossing if there is a positive integer 	 such that in any computation, the input head
crosses the boundary between any two adjacent cells of the input no more than 	 times. Note
that a 1-crossing 2NCM(� , �) is a one-way nondeterministic finite automaton augmented with
� � -reversal counters. 2NCM(�) will denote the class of � -counter machines whose counters
are � -reversal bounded for some given � . For deterministic machines, we use ‘D’ in place of
‘N’. If � is a machine,
�� �� denotes the language that � accepts.

A language is strictly bounded over � symbols � � � � � � ����� � � � if it is a subset of � � � � �� ����� � �� .
A language is bounded over � nonnull words � � � � � � ����� � � � if it is a subset of � �� � �� ����� � �� .
A straightforward argument shows that a machine of any type studied in this paper accepts
a nonempty bounded language if and only if there is another machine of the same type that
accepts a nonempty strictly bounded language. So when dealing with the emptiness question
for machines over bounded languages, we need only handle the case when the machines
accept strictly bounded languages. For convenience we will simple use the term bounded
language. There are other equivalent definitions of “boundedness” that we will use in the
paper. We will need the following results.

3

Theorem 2.1 The emptiness problem is decidable for the following classes: (a) 2DCM(1)
[7], (b) 2NCM(�) over a unary alphabet (i.e., over a bounded language on one symbol) [7],
and (c) finite-crossing 2NCM(�) for every � [3,5].

Next, we recall the definitions of (semi)linear sets and their connection to counter machines.
Let � be the set of nonnegative integers and � be a positive integer. A subset � of � � is a
linear set if there exist vectors ��� � � � � ����� � ��� in � � such that ���
	��������������� � � � �
����� ��������� � � 	�� ��� � The vectors ��� (referred to as the constant vector) and � � � � � � ����� � ���
(referred to as the periods) are called the generators of the linear set � . The set ����� � is
semilinear if it is a finite union of linear sets. Clearly, semilinear sets are closed under union.
Let !�"	 � ��� � � � ����� � � � � be an alphabet. For each word � in � , define the Parikh map of
� to be #�� � �$� �%� �&� '�(� � �)� '+* � ����� � � �&� '+, � � where � �)� '.- denotes the number of symbol � 	 ’s in
word � ,

�0/ / � . For a language
��1 � , the Parikh map of
 is # �
 �2�!	�#�� � �3� � �
4� .
The language
 is semilinear if # �
 � is a semilinear set.

Obviously, if the languages accepted by machines in a class 5 are effectively semilinear (that
is, for each � in 5 , the semilinear set �6�7#��
 � can be effectively constructed), then the
emptiness problem for 5 is decidable. We will need the following theorem from [5]:

Theorem 2.2 Let � be a finite-crossing 2NCM(�). Then # �
�� �� � is a semilinear set effec-
tively computable from � .

Note that the result above is not true for machines that are not finite-crossing. For example,
a 2DCM(1,1) can recognize the language 	 � 	 � � �� divides �8� , which is not semilinear.

Let 9 be a finite set of nonnegative integer variables. An atomic Presburger relation on 9 is
either an atomic linear relation 4:<;>=��?:<@BAC� � or a mod constraint @EDGF�� , where �H: � � � � and
	 are integers with � / �IA 	 . A Presburger formula can always be constructed from atomic
Presburger relations using J and K . Presburger formulas are closed under quantification. LetL

be a set of M -tuples � � ��� ����� � �ON � in � N .
L

is Presburger-definable if there is a Presburger
formula P ��@ ��� ����� � @QN � such that the set of nonnegative integer solutions of P is exactly

L
. It

is known that
L

is a semilinear set iff
L

is Presburger-definable [2]. One may already notice
that, for the purpose of this paper, we define a Presburger formula only over nonnegative
integer variables (instead of integer variables).

Let R �TS � @ � be a Presburger formula in two nonnegative integer variables S and @ . R is
unitary if R is a conjunction of atomic Presburger relations and each atomic linear relation in
R is in the form of � � S�� � � @UA1� with � � � 	WV

� � � � � � . We say that R is 1-mod-free (resp.
2-mod-free) if R does not contain any mod constraints in the form of SXDYFZ� (resp. @BD[F3�)
for any � � 	 . We say R is mod-free if R is 1-mod-free and 2-mod-free. R is a point if R is
@\� �]K^S_�`� for some � � � � � . R is a line if R is @E� �WS)�G� , or R is Sa�6� (called a vertical
line), for some � � � � � . R is a sector if R is @cb �WSd�U� , or R is �WSe�f� / @ / �WghSi�U�jg , for
some �kA �?g � � / �jg � � . Observe that if R is mod-free and unitary, then for each sufficiently
large 	 , R � 	Z�dS � @ � can be written into a (finite) disjunction of points, lines, and sectors.

An atomic l -formula over nonnegative integer variables @ ��� ����� � @QN is either m ��@ � � ����� � @QN �2�

4

� or a divisibility m � @ ��� ����� � @QN ��� � ��@ ��� ����� � @QN � � where m and � are linear polynomials with in-
teger coefficients. A l -formula can be built from atomic l -formulas using K , � , and � .
Notice that a Presburger formula is also a l -formula. If a l -formula does not contain � -
quantifiers, the formula is called a ground formula. A set

L
of M -tuples � � ��� ����� � �ON � in � N

is l -definable if there is a l -formula P � @ ��� ����� � @QN � such that the set of nonnegative inte-
ger solutions of P is exactly

L
. As stated in the Lipshitz’s Theorem [9], the satisfiability of

l -formulas is decidable. We will also need some basic results in number theory.

Theorem 2.3 Let � ��� � � be positive integers and � � � � � be nonnegative integers. The fol-
lowing two items are equivalent: (1) There is a nonnegative integer solution of M to � � � ��MkV� � � K�� � � � MEV � � � , (2) ���
	 ��� ��� � � ��� � � V � � .

Theorem 2.3 follows from the following result in [10]: for any positive integers � ��� � � and
integers � � � � � , ���	 ��� ��� � � � � � � V � � if and only if there exists a nonnegative integer M
such that M D��2(� � and M D���* � � . We will also need the following well-known theorem of
Frobenius.

Theorem 2.4 Let � � � ����� � �HN be positive integers. Then there exists a positive integer �>� such
that, for each integer �Zb �%� with ���	 � � ��� ����� � �?N ��� � , the linear equation � � @ � � ����� � �?N�@QN0�6�
has nonnegative integer solutions.

Given M positive integers � � � ����� � �?N with ���
	 � � � � ����� � �?N �3� �
, the Frobenius problem is to

determine the greatest integer � � � � � ����� � �?N � not in the set 	 � � @ � � ����� � �HN�@QN���@ ��� ����� � @QN ���� . It is well known that � � � � � � � ��� � � � � V � � V � � . In 1942, A. Brauer [1] proved
that � � � � � ����� � �?N � / � N ��� � � ��� F.,�� (F , V ��

where 	W��� � and 	 � � ���	 � � ��� ����� � � � � for
�6� � � ����� � M . In 1992, R. Kannan [8] showed that for any fixed M there is an algorithm
in polynomial time to compute � � � � � ����� � �?N � . In 1996, J. L. Ramirez-Alfonsin [13] proved
that the Frobenius problem is NP-hard.

The main theorem of the paper is that the emptiness problem for 2NCM(1) over bounded
languages is decidable. The next three sections constitute the entire proof. We first investigate
a class of decidable Diophantine systems of degree 2 in Section 3. Then, we show that the
emptiness problem for so-called “two-phase programs” is decidable in Section 4. The main
theorem follows in Section 5 by reducing the emptiness problem for 2NCM(1) over bounded
languages to the emptiness problem for two-phase programs.

3 A Decidable Class of Diophantine Systems of Degree 2

It is well-known that, in general, it is undecidable to determine if a Diophantine system of
degree 2 (i.e., a finite set of Diophantine equations of degree 2) has a nonnegative integral
solution [11]. In this section, we exhibit a nontrivial decidable class of Diophantine systems
of degree 2. We will use this result later.

5

Let � ��� � � ����� ��� � ��� ��� ����� ��� N � S � � ����� � S � be nonnegative integer variables. A positive linear
polynomial over S ��� ����� � S � is in the form of �W�>� � � S � � ����� � � � S � where each � 	 , �

/ / � ,
is a nonnegative integer. In this section, � � � 	 ��� ��� 	 ��� �	� � ��
 ��
 � (

�[/ / � � �[/ � / M) are
positive linear polynomials over S � � ����� � S � . Consider the following inequalities

�
�� 	 � �

� 	 � 	 ���
/ � / �

�� 	 � �
� 	 � 	 ���d�

�
�� 	 � �

� 	 � 	 � � (1)

and

�
�� � � N

� � � � � � / � / �
�� � � N

� � � � � � � �
�� � � N

 � � � �
 � (2)

Let � be a predicate on nonnegative integer � -tuples satisfying, for all nonnegative integers
S ��� ����� � S � , � �TS ��� ����� � S � � is true iff the conjunction of (1) and (2) has a nonnegative integer
solution for � ��� � � ����� ��� � ��� � � ����� ��� N . The following lemma states that � is effectively l -
definable; i.e., a l -formula defining � can be computed from the description of (1) and (2).
The proof uses Theorem 2.4 and Theorem 2.3.

Lemma 3.1 The predicate � �TS � � ����� � S � � defined above is effectively l -definable.

Proof. We will construct the l -formula that defines � �TS ��� ����� � S � � as required. Inequalities
(1) and (2) can be rewritten into the following equations by introducing new nonnegative
integer variables @ ��� ��� � � :

�
�� 	 � �

� 	 � 	 ���kV @ V�� � (3)

�
�� 	 � �

� 	 � 	 � � �i@ V � � (4)

�
�� � � N

� � � � ���kV � V � � (5)

�
�� � � N

 � � � � �d� � V
 � (6)

Observe that, for all nonnegative integers S ��� ����� � S � , � � S ��� ����� � S � � iff the equation system
of (3,4,5,6) has a nonnegative integer solution for � ��� ��� ����� ��� � ��� � � ����� ��� N � @ ��� ��� � � . Let us
fix a 4-tuple � of subsets ��� � � � � � ��� � ��� � where � � � � � � 	 � � ����� � �c� � ��� � �	� � 	 � � ����� � M � . � �
derives a zero-condition on S ��� ����� � S � that makes each coefficient � 	 in equation (3) with
 � � � not zero (all the others are zero). That is, the zero-condition of � � is

�

	 ;��j(
� 	 � S � � ����� � S � � � �3K �

	�!;"�j(
� 	 � S � � ����� � S � �2� � �

Similarly, we may define the zero-conditions of � � � ��� � ��� but for the other three equations
(i.e., (4), (5), (6), respectively). The zero-condition #$� of � is the conjunction of the four
zero-conditions derived from � � � � � � ��� � ��� . Notice that #%� is Presburger, hence l -definable.

6

We use � � to denote � K #%� . Clearly, since there are only finitely many choices for � and
��� � � � � , it suffices for us to show that � � is l -definable. We have the following two cases
to consider.

Case 1. None of � � � � � � ��� � ��� is empty. We use ���
	 �� 	 � � � � � to denote the gcd of all the
� 	 ’s in (3) with � � � (all the other � 	 ’s are zero, under the condition of # �). Similarly, we
may define ���	 � � 	 � � � � � , ���	 � � � � � � ��� � , ���	 �
 � � � � �	� � , for (4), (5), (6), respectively.
Consider the following divisibilities:

���	 � � 	 � � � � ��� �)V @)V � � (7)

���	 � � 	 � � � � ��� � � @kV � � (8)

���	 � � � � � � ��� ��� �)V � V � � (9)

���	 �
 � � � � �	� ��� �d� � V
 � (10)

We claim that,

Claim 1. For all nonnegative integers S ��� ����� � S � satisfying #%� , � � S � � ����� � S � � iff there is
a nonnegative integer solution of � � @ ��� ��� � � for the system of (7,8,9,10).

The only-if part is obvious. To show the if-part, let S ��� ����� � S � be any given nonnegative in-
tegers satisfying #%� . Suppose that � � � @ � ��� � ��� � � � � constitutes a nonnegative integer solution
to (7,8,9,10) for the given S � � ����� � S � . We are going to argue that the system of (3,4,5,6), for
the given values of S ��� ����� � S � , has a nonnegative integer solution for � � @ ��� ��� � � ��� � � ����� ��� N �
� ��� ����� ��� � . Consider

� � � ���	 �� 	 � � � � � ���
	 � � � � � � ��� �
� � � � V @ � V �

and
� � � ���	 � � 	 � � � � � ���	 � � � � � � ��� �

� � � � V � � V � �
Observe that ���
	 �� 	 � � � � ��� � � and ���	 � � � � � � ��� ��� � � for any value of

�
. From Theorem

2.4, there is a
� �$� � such that, for every

� b � � ,
�

�� 	 � �
� 	 � 	 �6� � (11)

and

�
�� � � N

� � � � �`� � (12)

has a nonnegative solution for � � � ����� ��� � ��� � � ����� ��� N . Now, let
�

be
� � and therefore, � � and

� � be also fixed. We use � � � � ����� ��� �� ��� � � � ����� ��� �N to denote a solution to (11) and (12). Let
	 ������� �%� � � �U@ � V � � � � � � � � � V
 � � , 	 � � �

�� 	 � � � 	 	 , 	 � �
�
�� � � N � � 	 . It is left to the

reader to verify that the following forms a solution to the system of (3,4,5,6):

7

� 	 � �
�
	 � 	 	

� � �G/ / � ,
� � � � �� � 	 	 � � �[/ � / M ,
�E� ���	 � � 	 � � � � � ���	 � � � � � � ��� �

� � � 	 � 	 � � � � ,
@\�1@ � ,
� � � V @ � � �

�� 	 � � � 	 � � � �	 � 	 	 � � � (notice that � b � by the choice of)
� � � � ,
�1�
 V � � � �

�� � � N
 � � � � �� � 	 	 � � , (notice that � b � by the choice of).

This completes the proof of Claim 1.

Next, we argue that the system of (7,8,9,10) is l -definable. We only look at (7): ���
	 �� 	 � �� � ��� �EVe@ V � , the other formulas of (8),(9) and (10) are similar. Pick an element � � � � .
If T� is the only element in � � , then we are done since (7) is now � 	�� � � VC@BV � which is
l -definable. If otherwise, we write ���	 � � 	 � � � � � as ���
	 �� 	�� � ���	 � � 	 � � � � V`	 T�O� � � .
A technique used in [9] can be applied as follows. By introducing a new nonnegative integer
variable � � and using Theorem 2.3, (7) can be transformed into � 	�� �

� � V � and ���
	 �� 	 � �� � V 	 T�<� ��� � �^V @EV � . This process can be continued until all the elements � � ����� � �� in � �
are enumerated. Eventually, (7) can be written into the following conjunction

� 	�� �
� �2V �YK � 	�� �

� �	� � V @kV � �
�� ��
 �

� 	� �
� � V � � � � (13)

which is l -definable. Notice that, in above, we introduce new variables � � � ����� � � ��� � . Hence,
the system of (7,8,9,10) can be transformed into a l -definable formula � over � � @ ��� ��� � �
as well as a number of newly introduced variables. Using Theorem 2.3, it can be concluded
that

Claim 2. for all nonnegative integers S ��� ����� � S � that satisfy #%� , � �TS � � ����� � S � � iff there
is a nonnegative integer solution of � � @ ��� ��� � � and the newly introduced variables to � .

Hence, � � is l -definable.

Case 2. At least one of � ��� � � � ��� � �	� is empty. If � � ��� , then we replace (7) with � VZ@ V �`� �
(since the left-hand side of (3) is now 0). Similarly, if � � ��� (resp. ��� � �	�), then we replace
(8) (resp. (9), (10)) with � � @cV � � � (resp. � V � V � � � � �1� � V
 � �). Notice
that the replacing formula (e.g., � V�@cV�� � � for (7)) is simply a linear constraint over
S ��� ����� � S � and thus is l -definable. After the replacement, Claim 1 in Case 1 is still true,
by using a similar (and easier) proof. Completely analogous to the usage of Theorem 2.3 in
showing Claim 2 of Case 1, we may conclude that � � is l -definable.

This completes the proof of Lemma 3.1.

8

4 Two-Phase Programs

In this section, we introduce an intermediate machine model called simple programs. A
simple program is intended to model a class of nondeterministic programs with a single
nondecreasing counter and a number of parameterized constants. For instance, consider the
following simple program

Input (S ��� S � � S � � ;
1: @ � � � ;
2: Increment @ by any amount (nondeterministically chosen) between S � and

� S � ;
3: Nondeterministically goto 4, 5, or 7;
4: Increment @ by S � ;
5: Increment @ by S � ;
6: Goto 2;
7: Halt.

In the program, the input nonnegative integer variables do not change values during compu-
tation; i.e., they are parameterized constants. Each increment made on the counter satisfies
some Presburger constraint in two variables; e.g., S � /��\/ � S � holds for the increment

�
made in step 2 above. A two-phase program is simply a pair of simple programs � � and � �
that share the same array of input variables S ��� ����� � S � . We are interested in the following
question: is there an assignment for S � � ����� � S � such that the counter in � � and the counter
in � � have the same value when both � � and � � halt? A decidable answer to this question
will be given in this section. The reader might have noticed that there is some inherent re-
lationship between two-phase programs and 2NCM(1) over bounded languages. Indeed, this
intermediate result will be used in the next section to prove our main theorem. Before we
proceed further, we need a formal definition.

A simple program � is a tuple � � � S ��� ����� � S � � @ ��� ���	� where

 � is a finite set of control states, with two special states designated as the initial state and
the final state.
 S � � ����� � S � are � input (nonnegative integer) variables,
 @ is the nonnegative integer counter which is always nondecreasing,
 � is a finite set of Presburger formulas on two nonnegative integer variables,
 � ����� 	 � � ����� � � �	� � �f� is a finite set of edges. Each edge � � � � R ��� g � in � denotes
a transition from state � to state � g while incrementing the counter @ according to the
evolution pair � � R � .

The semantics of � is defined as follows. A configuration � � � � ��� ����� � � � � � � in ��f� � �f�
is a tuple of a control state � , values � � � ����� � � � for the input variables S � � ����� � S � , and value
� for the counter @ . We use � � � � ��� ����� � � � � � ����� � � g � �Hg� � ����� � �Wg� � �Qg � to denote a one-step
transition satisfying the following conditions:

 There is an edge � � � � R ��� g � in � connecting state � to state � g ,

9

 The value of each input variable does not change; i.e., � � ��� ����� � � � � � � � g� � ����� � � g� � ,
 The evolution pair � � R�� is satisfied; i.e., R � � 	 � � g V�� � is true (hence, � / � g since R is
defined on nonnegative integers).

A path is a sequence � � � � � ��� ����� � � � � � � � ����� � � 	 � � � � ����� � � � � � 	 � ����� � � � � � ��� ����� � � � � � � � � for
some � b �

, such that � � 	 � � ��� ����� � � � � � 	 � � � � � 	 � � � � ��� ����� � � � � � 	 � � � for each � / /
�"V �

. In particular, if � �4� � (the counter starts from 0), � � is the initial state and � � is the
final state, then � accepts � � ��� ����� � � � � � � � .
A two-phase program � � � consists of two simple programs � � and � � that share the same
� , input variables S ��� ����� � S � and � . We shall use @ � (resp. @ �) to denote the counter in
the positive (resp. negative) program � � (resp. � �). A � -tuple of nonnegative integer values
� ��� ����� � � � is accepted by the two-phase program � � � if there is a counter values � such
that � � ��� ����� � � � � � � is accepted by both � � and � � . We shall use
 � � � � � to denote all the � -
tuples accepted by � � � .
 � � � � � is called the tuple language accepted by � � � . A two-phase
program models some one counter system where the counter starts from 0 and, after a number
of increments followed by a number of decrements, moves back to 0. In � � � , the positive
program models the increasing phase and the negative program models the decreasing phase
(but the counter in the negative program is always increasing). Therefore, we need further
argue whether the total increments made by the positive program equals the total increments
made by the negative program. The main result of this section is that the tuple language
accepted by a two-phase program � � � is l -definable. The proof first shows that it suffices
to consider a special form of a two-phase program � � � : each R � � is a point, a line, or a
sector. Then, the result follows by making use of Lemma 3.1.

Theorem 4.1 The tuple language accepted by a two-phase program is l -definable.

Proof. The theorem states that the tuple language accepted by a two-phase program � � � is
l -definable; i.e.,

�� � � � � is l -definable. (14)

The following four arguments will establish that we need only consider a special class of
two-phase programs in showing (14).

(Argument 1) It suffices to show statement (14) by assuming that � � � is 2-mod-free (i.e.,
each R � � is 2-mod-free). If � � � is not 2-mod-free, let

�
be the multiplier of all the

constants 	 such that a mod-constraint in the form of @6D0F � (with � / � A) appears
in some R � � . Now, we build a new two-phase program �0g � � , consisting of a new �Gg �
(with counter �@ �) and a new � g � (with counter �@ �), which is 2-mod-free. The state set of
� g � � is � g � 	 � � � � ��� � / �`A � � . Edges in � g � � are constructed from edges in � � �
as follows. For each � / � � � g A �

, we create an edge � � � � � � � � R � ��� � � � g � � g � � in � g � � from
an edge � � � � R ��� g � in � � � , where R � ��� � S � �@ � , a Presburger formula over two nonnegative
integer variables S and �@ , is defined as R � S � � � �@0� � g?V � � . Notice that, when � � �Hg (resp.
�kA �?g), the requirement of

� � �@ � �HgWV �kb � in R naturally makes �@ � � (�@cb �). It is also
noticed that, counter @ increments from � to � g on edge � � � � R ��� g � iff counter �@ increments

10

from �� to �� g on edge � � � � � � � � R � � � � � � g � �?g � � , where �B� � � ���� � and � g � � � �� g � �?g . The
new �[g � (resp. �[g �) can be obtained by replacing each edge in � � (resp. �[g �) with the

� �

new edges constructed above. Notice that both � g � and � g � are 2-mod-free, since each R � � � is
2-mod-free. Obviously, a tuple of � � � ����� � � � is in
 � � � � � iff there is �� such that, for some
� / �&A �

,

 � g � (resp. � g �) starts from state � � � � � and ends with state � � g � � � , where � and � g are the
initial and the final states of � � (resp. � �), and
 � � � � ����� � � � � �� � is accepted by both �[g � and �[g � .

The argument follows by noticing that there are only finitely many choices of � .

(Argument 2) It suffices to show statement (14) by assuming that � � � is unitary (i.e., each
R � � is unitary) and 2-mod-free. According to (Argument 1), we suppose that � � � is
2-mod-free. If � � � is not unitary, let

�
be the absolute value of the multiplier of all the

non-zero coefficients of @ in atomic linear relations appearing in all R � � (recall R is
a Presburger formula over two variables S and @). Choose any � / � � � ����� � � � A �

. For
each

� / / � , let �S 	 be a nonnegative integer variable. By assuming S 	 �
� � �S 	 � � 	 ,R �TS 	 � @ � is transformed into R 	 � �S 	 � @ �$� R �

� � �S 	 � � 	 � @ � , for each
��/ / � . Notice that

R 	 is unitary and 2-mod-free, since a linear constraint � � S 	 � � � @iA!� (w.l.o.g., � � � �) in
R �TS 	 � @ � is now � � � �S 	 � � � @eA_��V � � � 	 , which is equivalent to one of the following two
unitary constraints: � ' (�'+* � �S 	 � @cA

� � '%(� -' * when � � � �T��V � � � 	 � , �
' (�'+* � �S 	 � @cA

� � � '%(� -' *�� when
otherwise. Define � g�� 	�R 	 � R � � � � / / � � . The argument follows from the fact
that there are only finitely many choices for � ��� ����� � � � and for each such choice, � � � (with
input variables S � � ����� � S � and �) corresponds to some 2-mod-free and unitary two-phase
program (on input variables �S ��� ����� � �S � and � g).

(Argument 3). It suffices to show statement (14) by assuming that � � � is mod-free (i.e., each
R � � is 1-mod-free and 2-mod-free) and unitary. According to (Argument 2), we assume
that � � � is 2-mod-free and unitary. If � � � is not 1-mod-free, let

�
be the multiplier of all

the constants 	 such that a mod-constraint in the form of S"D0F � (with � / � A) appears
in some R � S � @ � in � . Choose any � / � ��� ����� � � � A �

. By making S 	 �
� � �S 	 � � 	 ,R �TS 	 � @ � is transformed into R 	 � �S 	 � @ �$� R �

� � �S 	 � � 	 � @ � , for each
��/ / � . Notice that

R 	 is mod-free and unitary, since each mod-constraint (on S) in R now is either true or false.
Similar to (Argument 2), we can establish this argument.

(Argument 4). It suffices to show statement (14) by assuming that � � � is single (i.e., each
R � � is a point, a line, or a sector). According to (Argument 3), we suppose that � � �
is unitary and mod-free. Hence, we may find a large number 	 such that, for each R � � ,
R � 	���S � @ � is a disjunction R � �TS � @ � � ����� � R�� �TS � @ � (for some

�
) of points, lines, and

sectors. We assume that each S 	 b 	 .
� A transform of S 	 � �S 	 � 	 will bring � � � to the

� If, for some � , 	 	�
� , we may explicitly assuming 	 	 to be a concrete value less than � , and
an induction procedure can be used upon � � � with a smaller � (since 	 	 is gone). As for the base
of the induction, observe that, for ����	 ��������� � 	 � � � , the emptiness problem for the two-phase
program is decidable, since, in this case, each 	 	 is bounded and the two-phase program can be

11

form that is desired (by replacing each edge � � � � R ��� g � with edges � � � � R � ��� g � , �G/ � / �).

(Argument 5). It suffices to show statement (14) by assuming that � � � is single and each
R � � is not a point nor a vertical line. According to (Argument 4), we suppose that each
R � � is a point, a line, or a sector. Argument 5 can be established by assuming each S 	 b 	
for some large 	 . 	 can be chosen such that it is greater than the S -coordinate of each point
and each vertical line in � . A transform of S 	 � �S 	 � 	 will bring � � � to the form that is
desired. (When, for some , S 	 A 	 , we use the footnote in Argument 4 discussed in above.)

From the above arguments, we assume that each R � � is in the form of a (non-vertical)
line @"� �WS �a� (�Xb � � � b �), a sector � S"�a� / @ (�Xb � � � b �), or a sector
�WSk�Y� / @ / �?ghSk�0��g (�kA �?g � � / �jg). Notice that, R � S � @ � is always satisfiable for any fixed
S . Now, we construct a counter machine � � with counters �

�
� � ����� � � �

� ��� �
� � ����� ��� �

� ��� �
(all counters start from 0) that simulates � � as follows. Whenever � � executes an edge
� � � � R ��� g � , � � moves from state � to state � g and does the following to the counters:

 If R is a line in the form of @E� �WS1�e� (� b � � � b �), then in � � ,
�

�

	 � ���
�

	 � � ;� � � � � � �e� ;
and all the other counters in � � do not change.
 If R is a sector �WS1�e� / @ / � g S`�e� g with � / �kA � g � � / � / � g , then in � � ,
�

�

	 � ���
�

	 � � ;� �

	 � � � �

	 � � �Hg V � � ,� � � � � � � � , for some � that is nondeterministically chosen with � / � / � g ;
and all the other counters in � � do not change.
 If R is a sector �WS1�e� / @ with �kb � � �Zb � , then in � � ,
�

�

	 � ���
�

	 � � ;� � � � � � � � , for some � that is nondeterministically chosen with �Ib � ;
and all the other counters in � � do not change.

Notice that, all the counters in � � are nondecreasing. The relationship between � � and � �

can be easily seen as follows. �TS ��� ����� � S � � � � is accepted by � � iff �� 	 � � �
�

	
� S 	 � � � /

� / �� 	 � � ���
�

	 � � �

	 �
� S 	 � � � for some ��� �

� � ����� � � �
� ��� �

� � ����� ��� �
� �	� � � that is reachable

in � � at the final state. We use a predicate

 ��� �
� � ����� � � �

� ��� �
� � ����� ��� �

� ��� � � (15)

to denote that the counter values �
�
� � ����� � � �

� ��� �
� � ����� ��� �

� ��� � are reachable in � � at the
final state. Since the counters are nondecreasing,

is Presburger (Theorem 2.2). Similarly,

we may construct a counter machine � � from � � and obtain another Presburger formula

L ��� �
� � ����� � � �� ��� �

� � ����� ��� �� ��� � � � (16)

reduced to a 1-reversal counter machine, whose emptiness is decidable (Theorem 2.1). Therefore, for
each ��� 	 ��������� � 	 � � � , the truth value of � 	 ��������� 	 ������ � � � � � is computable.

12

Hence, �TS � � ����� � S � � is in
 � � � � � iff the following statement, called � � S ��� ����� � S � � , is true
for S ��� ����� � S � :

There is � such that�
�� 	 �

�
�

�

	
� S 	 � � � / � / �

�� 	 �
�
��� �

	 � � �

	 �
� S 	 � � � (17)

and �
�� 	 �

�
� �
	
� S 	 � � � / � / �

�� 	 �
�
��� �

	 � � �
	 �
� S 	 � � � (18)

hold for some nonnegative integers �
�
� � ����� � � �

� ��� �
� � ����� � � �

� ��� � � � �
� � ����� � � �� �

� �
� � ����� � � �� ��� � satisfying (15) and (16).

Therefore, in order to show that the tuple language
 � � � � � is l -definable, we need only
to prove so for � �TS � � ����� � S � � . The two Presburger formulas in (15) and (16) define two
semilinear sets

and

L
. Hence, each of

and

L
can be written into a finite union of

linear sets. It suffices for us to argue that � �TS ��� ����� � S � � is l -definable assuming that

and
L

are two linear sets, which are generated by nonnegative integer variables � � � ����� ��� �
and ����� ����� ��� N , respectively. That is, each of �

�
� � ����� � � �

� ��� �
� � ����� � � �

� ��� � can be written
into a positive linear polynomial (i.e., the generator) over � ��� ����� � � � ; each of � �

� � ����� � � �� �
� �
� � ����� � � �� ��� � can be written into a positive linear polynomial over � ��� ����� ��� N . Substituting

these generators in (17) and (18) and re-organizing the terms into the form of (1) and (2).
From Lemma 3.1, � �TS ��� ����� � S � � is l -definable. Thus,
 � � � � � is l -definable.

Consider a finite set of two-phase programs � , each of which has � -ary input S ��� ����� � S � . The
Presburger emptiness problem for � is to decide, given a Presburger formula � �TS ��� ����� � S � � ,
whether there is some input S � � ����� � S � accepted by each program in � . Since � �TS ��� ����� � S � �
is l -definable and l -definability is closed under intersection, we have

Theorem 4.2 The Presburger emptiness problem for a finite set of two-phase programs is
decidable.

5 2NCM(1) over Bounded Languages

Before we discuss 2NCM(1, �), we first look at a property of a 2NCM(1,0) � over a unary
input (i.e., a two-way NFA with a unary input tape augmented with a nondecreasing (i.e.,
monotonic) counter). The input is in the form of

¢ � ����� �� ��� �� $

of size S for some S , where ¢ and $ are the left and right endmarkers. � works exactly
as a two-way NFA except that, at some move (i.e., a left move, a right move, or a station-
ary move), � can increment the counter by 1. Suppose the counter initially starts from
0. When the input head is initially at the left endmarker, we use �
	�	 (resp. ��	�) to de-
note the restricted version of � that � returns to the left (resp. right) endmarker upon

13

acceptance (during which � does not read the endmarkers). When the input head is ini-
tially at the right endmarker, � and � 	 are defined similarly. We use R 	�	 �TS � @ � (resp.
R 	� � S � @ � � R �TS � @ � � R 	 �TS � @ �) to stand for the fact that � 	 	 (resp. ��	 , � , �)
accepts the input of size S and upon acceptance, the counter has value @ .

If we allow the input head to return to the endmarkers for multiple times, R �TS � @ � can not
be characterized by a Presburger formula. For instance, let � be such as machine. � keeps
scanning the input (of size S b �

) from ¢ to $ and back, while incrementing the counter.
� nondeterministically accepts when $ is reached. Obviously, R 	 � S � @ � now is exactly
�]M � � M S_�6S � @ � that is not Presburger. However, with the restrictions of �
	 , R � S � @ � is
Presburger. The proof uses a complex loop analysis technique.

Lemma 5.1 R 	 	 � S � @ � , R 	 �TS � @ � � R � S � @ � , and R 	 � S � @ � are Presburger formulas for
any � specified above.

Proof. We only prove the lemma for R 	� �TS � @ � . The other cases are similar. Let � be the
number of control states in � 	 . Let

�
be some fixed positive integer (the value will be

made clear in a moment). Clearly, for each S / �
, R 	� � S � @ � is Presburger. This is because,

when the input size bounded by
�

is stored in the finite control, a finite automaton can be
used to accept all the unary encodings � � � : of � S � @ � with R 	� �TS � @ � . The encodings form a
regular language which is semilinear. Consider an input of size S � �

and a number @ with
R 	� � S � @ � . Let � be an accepting execution of � 	� that witnesses the fact of R 	 � S � @ � .
Now, we fix any state � . During � , the input head may be at the same state � and the same
input cell � (an input cell is one containing input symbol �) twice – obviously, during which
no endmarkers is read. We call this a loop at � . The left-radius (resp. right-radius) of the
loop is the distance between � and the leftmost (resp. rightmost) input cell scanned during
the loop. The length

�
of the loop is the number of increments made on the loop. Since the

input has endmarkers, the left-radius (resp. right-radius) cannot exceed the distance between
cell � and the left endmarker (resp. right endmarker).

Now, we modify ��	 into �1g by assuming that the input does not have endmarkers; i.e., the
input is infinite (in both directions). Suppose �kg starts from state � and cell � . What is the
set � of the lengths of all the possible loops at � � � � � ? When each length in � is represented
as a unary string, � can be accepted by a pushdown automaton. The automaton, starting
from state � , simulates �`g : it pushes (resp. pops) a symbol whenever ��g moves to the right
(resp. left). The automaton reads its own input (the unary encoding of a length) whenever
�1g makes a counter increment. The automaton accepts the length if the stack is empty (i.e.,
�1g returns to cell �) with state � and the automaton is at the end of its own input. Hence,
� , being context-free, is a semilinear set. This gives the fact that � is regular since � �`� .
Therefore,

Claim 1. There are non-negative integers � 	 ��� 	 ,
�0/ / M for some M , such that

� � �
�� 	 � N

	�� 	 � � � 	 � � � ��� �

14

Define
L � � � �?@ �� 	 � N]	�� 	 � � 	 � 	 � � 	 � � 	 � . Any

�
� � can be written in the form of

� � � � � P (19)

where � � � , � � P � � , P � � / L
. This can be shown by considering cases for � 	 � � ,

� 	 � � , and both of them positive (in this case, if
� � � 	 � � g � 	 and

� � L for some � , then� � � � 	 � � g g � 	 � � � � g g g � 	 � � 	 where � g � � g g g � 	 � � g g with � g g A � 	 . Take Pc� � 	 � � g g � 	 and� � � 	 and �)� � g g g �). Formula (19) essentially says that, in �6g , any long loop (i.e.,
� � L)

can be replaced by a number of short loops (i.e., loops of lengths P and � which are bounded
by
L

). Let � be the smallest number such that, for each � / L with � � � (there are finitely
many such � ’s), there is a loop of length � whose left-radius and right-radius are both less or
equal to � . Formula (19) implies that each long loop in � g can be simulated by short loops
(
/ L

) with small (
/ �) radius.

Though � 	� and �1g are different, a loop in � 	� is also a loop in �`g . In particular, if the
cell � is at least � cells away from both of the end markers, then any loop in � 	� at � � � � �
can be simulated by short loops with small radius in � 	 , according to (19). What if the cell
� is � A � cells away from the left end marker? In this case, we can construct a machine
� g g that is similar to � g . The input of � g g is with left end marker but without the right
end marker (i.e., the input is right-infinite): ¢ � � � ����� . �)g g starts from state � and the same
cell � . �1g g works exactly the same as �`g during which �`g g never reads the left end marker.
By memorizing the position � of the cell � in the finite control of �kg g , we can similarly to
conclude that, there are numbers

L �� and � �� such that every loop of �`g g at � � � � � can be
simulated by short loops (

/ L ��) in �1g g at � � � � � with small right-radius (
/ � ��). When the

cell � is � A � cells away from the right end marker, we can analogously define � g g g and
the numbers

L �� and � �� such that every loop of �`g g g at � � � � � can be simulated by short loops
(
/ L ��) in �1g g g at � � � � � with small left-radius (

/ � ��). Define ���3� � � �]� � � � 	 L � L �� � L �� �
and ���B� ����� � � � � 	 � � � �� � � �� � . Take

� � � � � ��������� and � � �������	�
� . It can be
concluded that,

Claim 2. Whenever S � �
, any loop of � 	� at � � � � � (no matter what the position of the

cell � is) can be simulated by short loops (
/ �) at � � � � � in � 	� with small (both left and

right) radius (
/��
�).

We divide the input (with S � �
) into three blocks: � (the first

�
� number of � ’s), (the

middle SaV �
� number of � ’s), and � (the last

�
� number of � ’s). Based upon Claim 2, we

build three finite tables, called R � � , R � , and R � � , as follows. For each state � , � / � /��
� � �

/
� / � ,

 R � � � � � � � � � is true iff ��	� has a loop at � � � � � with length � , where � is the � -th cell in � ;
 R � � � � � � is true iff ��	 has a loop at � � � � � with length � , where � is a cell in ;
 R � � � � � � � � � is true iff ��	� has a loop at � � � � � with length � , where � is the � � � V � � -th cell
in � .

Notice that the truth value of the tables are unique and independent of the value of S (as long
as S � �

). Now, we construct a new machine � � with one counter to simulate � 	 . � �

15

works on input
¢ � ����� �� � � ��

� � ����� �� � � �:
which is the original input of � 	� padded with a number of

�
’s. � � faithfully simulates

��	 except that the input head of � � will not cross any � -cell (input cell containing symbol
�) for more than � times. Obviously, � � does not have the full power of � 	� , since some
loops of ��	 may not be executed in � � . In order to make � � as strong as � 	� , whenever
� � reads an � -cell � and at state � , it looks at the three tables. If � is the � -th cell in � , � �

nondeterministically and repeatedly increments its counter as follows:

(*) Nondeterministically pick a � satisfying RZ� � � � � � � � � ;
increment the counter by � ;
goto (*) or exit.

The cases when � is in and � are similar. In this way, � � is able to simulate any loops of
��	 . When ��	� reads the right endmarker and accepts, � � starts to compare its counter
value with the length of the padded string by decrementing the counter while reading the
string. � � accepts the padded input if the comparison is successful. Clearly, for S � �

,
�TS � @ � is accepted by � � iff R 	 � S � @ � . Notice that � � is a finite-crossing reversal-bounded
counter machine (with one 1-reversal counter) that accepts a semilinear language (Theorem
2.2). Hence, combining the case for S / �

mentioned earlier, we have established R 	 � S � @ �
is Presburger.

The rest of this section focuses on the emptiness problem for 2NCM(1, �) on bounded lan-
guages. A slightly different definition of boundedness, but equivalent to the one we gave in
Section 2 with respect to decidability of emptiness is the following. A � -bounded language
is a subset of � � � � � � � � �� ����� � � � �� � � � � where � 	 ,

�k/ / � � �
, is the -th delimiter, and each

block � �	 between the two delimiters � 	 and � 	 � � is the -th block. A bounded language is a
� -bounded language for some � . Recall that a 2NCM(1, �) is a two-way NFA augmented with
an � -reversal-bounded counter. When the input language of a 2NCM(1, �) � is restricted to
a bounded language, � is called a 2NCM(1, �) over a bounded language. We may assume,
w.l.o.g, that, on a � -bounded input word � � � � � � � � �� ����� � � � �� � � � � , a 2NCM(1, �) � makes a
counter reversal only when it is reading one of the delimiters � ��� ����� � � � � � . Otherwise, we
may insert up to � many new delimiters � ��� ����� � � � to an input word of � and construct a
new 2NCM(1, �) � g working on the new �^� � -bounded word. � g simulates � properly and
makes sure that, whenever � makes the -th reversal, � g is reading the delimiter � 	 . It is not
difficult to show that, if the the bounded language accepted by � g is l -definable, then so is
the bounded language accepted by � .

We first consider the case when � � �
. Let � be a 2NCM(1,1) working on a � -bounded

language. Let � � � � � � (����� � � � � , � � � � be an input word where
� � - is the -th block of

symbol 1’s with length S 	 . Sometimes, we simply call the input as �TS ��� ����� � S � � . Without
loss of generality, we assume that the counter @ in � , when � accepts the input, returns
to 0 and the input head is on delimiter � � � � with � being at the final state. An accepting
computation 5 of � can be divided into a number of segments. Each segment is associated

16

with a state pair � � ��� g � and a block
� � - . In the sequel, we shall use � ��� � ����� to denote a

segment. We have the following four cases:

(1). (a LL-segment) � , at state � , reads the � �
-th delimiter and � returns to the Q� �

-th
delimiter with state � g , during which � only reads symbols in

� � - .
(2). (a LR-segment) � , at state � , reads the -th delimiter and � returns to the � �

-th
delimiter with state � g , during which � only reads symbols in

� � - .
(3). (a RR-segment) � , at state � , reads the -th delimiter and � returns to the -th delimiter

with state � g , during which � only reads symbols in
� � - .

(4). (a RL-segment) � , at state � , reads the � �
-th delimiter and � returns to the -th

delimiter with state � g , during which � only reads symbols in
� � - .

A segment is positive (resp. negative) if the net counter change is b � (resp.
/ �) on the

segment. Therefore, since the counter is one reversal-bounded, 5 can be treated as a sequence
5 � of positive segments followed by a sequence 5 � of negative segments. Obviously, since
5 is accepting, the total increments � �T5 � � of the counter on 5 � equals the total decrements
� �T5 � � of the counter on 5 � .

We use a segment symbol � ��� � � � F�� 	 (resp. V
��� � � � F��) to abstract a positive (resp. negative) seg-
ment associated with state pair � � ��� g � , -th block

� � - , and 	 � 	 LL,LR,RR, RL � . According
to Lemma 5.1, on a segment, the relationship between the absolute values of counter changes
and the length of the block associated with the segment can be characterized by a Presburger
formula (i.e., the formula of the segment symbol). Now, a two-phase program � � � can be
constructed such that each segment symbol � ��� � � � F�� 	 corresponds to a transition in � � as fol-
lows (in below, R is the formula of the segment symbol):

 If 	 � LL, then the transition is � � � � � � � � � R � � � g � � � � � .
 If 	 � LR, then the transition is � � � � � � � R � � � g � � � � � .
 If 	 � RR, then the transition is � � � � � � � R � � � g � � � .
 If 	 � RL, then the transition is � � � � � � � � � R � � � g � � � � � .

Similarly, transitions in � � can be constructed from symbols V ��� � � � F�� 	 . Let � ��� 	��� � be a two-
phase program consisting of � � and � � such that

 the initial state of � � is � � � � � � � where � � is the initial state of � ,
 the final state of � � � is � � � � � ,
 the initial state of � � is � � � � � ,
 the final state of � � is � ��� � � �G� � � where ��� is the final state of � .

It is noticed that the final state of � � is equal to the initial state of � � . It is observed that
�TS ��� ����� � S � � is accepted by � iff there are some state � and some

�[/ � / �3� �
such that,

�TS ��� ����� � S � � is accepted by � ��� 	��� � . Since there are only finitely many choices of � and � , from
Theorem 4.1, we obtain that the bounded language accepted by 2NCM(1,1) is effectively l -
definable.

Lemma 5.2 The bounded language accepted by a 2NCM(1,1) is effectively l -definable.

17

Next, we show that the bounded language accepted by 2NCM(1, �) for any � is l -definable.
2NCM(1, �), when � � �

, is more complex than 2NCM(1,1). However, we will show that the
emptiness of 2NCM(1, �) � � can be effectively reduced into the emptiness of the “intersec-
tion” of finitely many 2NCM(1,1)’s.

The � -reversal-bounded counter @ behaves like this: � ��� � ����� � � ��� . Each � stands for
a nondecreasing phase; each � stands for a nonincreasing phase. Two consecutive phases
of � and � are called a round. Without loss of generality, we assume that � is odd and @
makes exactly � reversals, so @ has precisely � � � � � � �� rounds. We also assume that the
machine starts with zero counter and accepts with zero counter. If ��� �TS � � ����� � S � � is an
input to � � ,
�� � � � � is a string � S � � ����� � S � ��� � � ����� ��� � � � � , i.e., it is � S ��� ����� � S � � padded
with some ��� V � � -bounded word � � ��� ����� ��� � � � � . Note that a given � -bounded word � has
many

�� � � ��� ’s.

A “trace” of the computation of � � can be represented by a
� ���"V � � -tuple

�f� � 	 � � � � � 	 � � � � � ����� � 	�� � � � � � � � � �
where at the end of round � � � ����� � � V �

, � � is at delimiter 	 	 (since � � is about to
reverse) in state � 	 . Clearly, there are only a finite number of such � ’s. We will construct �
2NCM(1,1)’s �� ��� ����� � �� � such that:

(*) a � -bounded word � is in
 � � � � iff �
�� � � ��� is in
 � �� � ��� ����� �
 � �� ��� for some
� and

�� � � � � .

If � is an input to � � , the input to each �� 	 is a string of the form �
�� � � ��� . For)�� � ����� � �"V �
, �� 	 carries out the following two phases:

(1) Restores the value of the counter to � 	 � � , then moves its input head to delimiter 	 	 � � ,
and then simulates � � starting in state � 	 � � . In the simulation, �� 	 ignores � and the
paddings.

(2) When � � completes a round and starts to reverse (i.e., increments) the counter, �� 	
“remembers” the delimiter � 	 and state � 	 (when the reversal occurs), and goes to block
� 	 and verifies that the current value of the counter is � 	 (note that if such is the case,
the counter would be zero after checking). Then �� 	 moves its input head to the leftmost
symbol and accepts if 	 	 � � 	 and � 	 � � 	 .

For k� �
, �� � does not need the restoration phase, but simulates � � starting in state � �

(the initial state of � �). It also executes phase 2. For � � , �� � executes the restoration
phase only and accepts if � � , after completing a round, accepts. Notice that, in the above
construction, each � 	 is used to denote the counter value of � � at the end of each round.
It is easy to verify that (*) above holds and each �� 	 is indeed a 2NCM(1,1). Hence, from
Lemma 5.2 noticing that l -definability is closed under intersection, union (over the � ’s) and
� -quantification (for eliminating the padding � 	 ’s), we have finally proved the main theorem
of the paper that settles the open problem in [4,7].

18

Theorem 5.3 The bounded language accepted by 2NCM(1, �) is effectively l -definable.
Therefore, the emptiness problem for 2NCM(1, �) over bounded languages is decidable.

We note that in the construction above, if the original machine � � is a DCM(1, �), i.e., deter-
ministic, then the machines �� ��� ����� � �� � are also deterministic. Moreover, the machine � �
need not operate on a bounded language, since the construction of � g� (that uses delimiters
� ��� ����� � � �) does not really need this assumption. Hence:

Corollary 5.4 If � � is a DCM(1, �) (resp. NCM(1, �)), one can construct � DCM(1,1)’s
(resp. NCM(1,1)’s) �� ��� ����� � �� � such that a word � is in
 � � � � iff �
�� � � � � is in
�� �� � � �
����� �
�� �� � � for some � and

�� � � ��� . Hence, the emptiness for NCM(1, �), � � � � � � ����� is
decidable iff one can decide whether
�� �� � � � ����� �
 � �� � � is empty for any number � of
machines �� ��� ����� � �� � in NCM(1,1).

6 Comparing 2NCM(1) and 2DCM(1)

Recall that 2NCM(1) represents the class of machines
� � 2NCM(1, �) and 2DCM(1) repre-

sents its deterministic version. Here, we compare their accepting capabilities for two cases:
(1) when the inputs are bounded, and (2) when the inputs are unrestricted.

6.1 Bounded Inputs

Currently, it is open whether the classes 2NCM(1) and 2DCM(1) are equivalent over bounded
languages. We believe that this is unlikely, even though over bounded languages, a finite-
crossing 2NCM(�) can be converted to a finite-crossing 2DCM(�) for any � [5]. We use
2NCM(1) � � 2DCM(1) to stand for the following statement: for any 2NCM(1) with � -
bounded input, there exists a 2DCM(1) with �&�1M -bounded input (for some M) such that,
for any S ��� ����� � S � , �TS � � ����� � S � � is accepted by the 2NCM(1) iff there exist � ��� ����� ��� N
with �TS ��� ����� � S � ��� ��� ����� ��� N � being accepted by the 2DCM(1).

Theorem 6.1 2NCM(1) � � 2DCM(1).

Proof. From Theorem 5.3, the bounded language accepted by a 2NCM(1) is l -definable.
Since a tuple language definable by a ground formula in l can be accepted by a 2DCM(1)
(a 2DCM(1) can check divisibility), the result follows.

We use 2NCM(1)= � 2DCM(1) to stand for the following statement: for any 2DCM(1) with
�Z� M -bounded input, there exists a 2NCM(1) such that, for any S � � ����� � S � , � S ��� ����� � S � � is
accepted by the 2NCM(1) iff there exist � � � ����� ��� N with � S � � ����� � S � � � ��� ����� ��� N � accepted
by the 2DCM(1). It is open whether 2NCM(1)= � 2DCM(1) is true or not. However, if it is
true, then on bounded languages, 2NCM(1) is as expressive as l -formulas, which can be
shown immediately:

19

Theorem 6.2 If 2NCM(1)= � 2DCM(1), then a bounded language is l -definable iff it is ac-
cepted by a 2NCM(1).

Next consider the following decision question:

Given: An equation � of the form
 � �
 � @ � � ����� �
 N�@QNY� � , where @ ��� ����� � @QN are non-
negative integer variables and
 � �
 ��� ����� �
 N are linear polynomials with integer coefficients
(� � V � �) over nonnegative integer variables � � � ����� ��� � .
Question: Does � have a nonnegative integer solution in @ ��� ����� � @QN ��� � � ����� ��� � ?

Associate the string � 	 (�� � 	 *�� ����� � � 	 , with each � -tuple of nonnegative integers � ��� ����� � � � ,
where � and � are distinct symbols. (Note that � � ��� , the null string.) If the � -tuple is over
the integers, then we can use another symbol, say

�
, to represent a negative number, e.g., if

 � �V � , then this is represented by
��� 	 � � , i.e.,

� � . However, for notational convenience we use
� ��� ����� � � � to also denote the string representing it. Note that the set of strings representing
a set of � -tuples of integers is a bounded language over the alphabet consisting of symbols
� � � � � .

Given equation � , we define the set
L

of � � M � �B� � � -tuples of integers �U� �
�� �
 � � ����� �
 N ��
��� ����� � � N ��� ��� ����� ��� � � , where:

(1) Each
 	 is positive, negative, or zero.
(2) Each

�
	 has the same sign as
 	 .

(3) Each � 	 is nonnegative.
(4) For each � � � ����� � M ,
 	 divides

�
	 , if
 	 is not zero; if
 	 is zero,

�
	 is zero.

(5)
2� � �
� � ����� � � N[� � .

(6)
 	 is the value of the linear polynomial
 	 � � ��� ����� ��� � � .
Clearly, � has a solution if and only if

L
is nonempty. It is straightforward to construct

a 2DCM(1, �) for some � accepting the bounded language corresponding to
L

. Since the
emptiness problem for 2DCM(1, �)’s is decidable (Theorem 2.1), it follows that we can decide
whether � has a nonnegative integer solution in @ ��� ����� � @QN ��� ��� ����� ��� � .

Now, consider a simpler equation � g of the form
2�I�
 � @ � � ����� �
�N�@QN`� � , where
@ ��� ����� � @QN ��� are nonnegative integer variables and
^� �
 ��� ����� �
 N are linear polynomials
with nonnegative integer coefficients over nonnegative integer variables � ��� ����� ��� � . Define
the set

L g of ��MU� � � � � -tuples of integers �"� � � ��� ����� � � N ��� ��� ����� ��� � ��� � , where the
components of the tuples are defined similarly as above (note that
�� �
 ��� ����� �
 N are no
longer components of the tuple). Again, � g has a nonnegative integer solution if and only ifL g is nonempty, and

L g can be accepted by a 2DCM(1, �) for some � .

If, instead of
L g , we define

L g g as the set of ���X� � � -tuples of nonnegative integers � � � � ����� �
� � ��� � such that for some @ ��� ����� � @QN , � g is satisfied. One can easily construct a 2NCM(1,1)
to accept

L g g . The nondeterministic machine “guesses” the @ g	 � . However, we believe no
2DCM(1, �) can accept

L g g for any � . In fact, even if � g is of the simple form � �� � @ � �
����� � �?N � N�@QNY� � , L g g does not seem to be recognizable by a 2DCM(1, �) for any � , when M

20

is at least 2.

6.2 Unrestricted Inputs

In the case of 2NCM(1) and 2DCM(1) over unrestricted inputs, it has recently been shown in
[6] that there is a language accepted by a 2NCM(1) that cannot be accepted by a 2DCM(1).
For completeness, we describe the language that separates the two classes.

Consider only single-tape TMs
�

over the alphabet 	 � � ��� � ��� �>� (one symbol represents
blank). We assume that these symbols are different from 0 and 1. Let � ��� � � � ����� be the states,
where � � is the initial state, and � � is the unique halting state.

Let � be a transition rule of the form � � 	 � � � � � � � � � � 	 � , where 	 = 0 (1) represents left
(right) move. We encode this rule by the string � � � �2� � 	�� � � � � � � � 	 . If � is a set of rules
= 	 � � � ����� � � � � , let � � � � � � � � � � � � � � � � � ����� � � � � � � . Note that � need not necessarily
constitute a deterministic set of rules.

We represent a configuration of the TM on the tape as a string � � � � 	 � , where � and �
are strings in 	 � � ��� � ��� �>� � . This represents the configuration where the tape content is � � , the
read/write head is on the first symbol of � , and the state is � 	 .

Let be the alphabet 	 � � ��� � ��� � � � � � � � � � � � � . Define the following language
 � over as
follows: A string @ � � � � @ � � � ����� � @ � � � is in
 � if:

(1) @\� � � � � is an encoding of a set of rules of a TM.
(2) � � � � � � ����� � � � is a halting sequence of configurations of the TM represented by � � � � ;

i.e., for each , � 	 � � is a configuration that results from configuration � 	 using a rule in
@ .

The following result was shown in [6].

Theorem 6.3 Let
 g � be the complement of
 � , i.e.,
 g � �� � V
 � .
(1) We can effectively construct a one-way nondeterministic finite automaton with one reversal-
bounded counter �`g� accepting
 g � . Hence,
 g � is in 2NCM(1).
(2)
 g � is not in 2DCM(1).

7 Conclusions

We showed that the emptiness problem for two-way nondeterministic finite automata aug-
mented with one reversal-bounded counter operating on bounded languages is decidable,
resolving a problem left open in [4,7]. The proof was a rather involved reduction to the so-
lution of a special class of Diophantine systems of degree 2 via a class of programs called

21

two-phase programs.

References

[1] A. Brauer. On a problem of partitions. Amer. J. Math., 64:299–312, 1942.

[2] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages. Pacific J. of
Mathematics, 16:285–296, 1966.

[3] E. M. Gurari and O. H. Ibarra. The complexity of decision problems for finite-turn multicounter
machines. Journal of Computer and System Sciences, 22:220–229, 1981.

[4] E. M. Gurari and O. H. Ibarra. Two-way counter machines and Diophantine equations. Journal
of the ACM, 29(3):863–873, 1982.

[5] O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal of
the ACM, 25(1):116–133, January 1978.

[6] O. H. Ibarra and Z. Dang. On two-way FA with monotonic counters and quadratic Diophantine
equations. Theoretical Computer Science, 312:359–378, 2004.

[7] O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-way
counter machines. SIAM J. Comput., 24:123–137, 1995.

[8] R. Kannan. Lattice translates of a polytope and the Frobenius problem. Combinatorica, 12:161–
177, 1992.

[9] L. Lipshitz. The Diophantine problem for addition and divisibility. Transactions of AMS,
235:271–283, 1978.

[10] K. Mahler. On the Chinese remainder theorem. Math. Nachr., 18:120–122, 1958.

[11] Y. V. Matiyasevich. Hilbert’s tenth problem. MIT Press, 1993.

[12] M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory of
Turing machines. Ann. of Math., 74:437–455, 1961.

[13] J. L. Ramirez-Alfonsin. Complexity of the Frobenius problem. Combinatorica, 16:143–147,
1996.

22

