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Abstract. A famous unsolved conjecture of P. Erdős and J. L. Selfridge

states that there does not exist a covering system {as(mod ns)}k
s=1 with

the moduli n1, . . . , nk odd, distinct and greater than one. In this pa-

per we show that if such a covering system {as(mod ns)}k
s=1 exists with

n1, . . . , nk all square-free, then the least common multiple of n1, . . . , nk

has at least 22 prime divisors.

1. Introduction

For a ∈ Z and n ∈ {1, 2, 3, . . . }, we simply let a(n) denote the residue
class

a(mod n) = {a + nx : x ∈ Z}.

In the early 1930s P. Erdős called a finite system

A = {as(ns)}k
s=1 (∗)

of residue classes a covering system if
⋃k

s=1 as(ns) = Z. Clearly (∗) is
a covering system if and only if it covers 0, 1, . . . , NA − 1 where NA =
[n1, . . . , nk] is the least common multiple of the moduli n1, . . . , nk.

Here are two covering systems with distinct moduli constructed by
Erdős:

{0(2), 0(3), 1(4), 5(6), 7(12)},
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{0(2), 0(3), 0(5), 1(6), 0(7), 1(10), 1(14), 2(15),

2(21), 23(30), 4(35), 5(42), 59(70), 104(105)}.

Covering systems have been investigated by various number theorists
and combinatorists, and many surprising applications have been found.
(See [3], [4] and [7].)

A covering system with odd moduli is said to be an odd covering system.
Here is a well-known open problem in the field (cf. [3]).

Erdős-Selfridge Conjecture. There does not exist an odd covering sys-
tem with the moduli distinct and greater than one.

In 1986-1987, by a lattice-geometric method, M. A. Berger, A. Felzen-
baum and A. S. Fraenkel ([1] and [2]) obtained some necessary conditions
for system (∗) to be an odd covering system with 1 < n1 < · · · < nk, one
of which is the inequality

r∏
t=1

pt − 1
pt − 2

−
r∑

t=1

1
pt − 2

> 2,

where p1, . . . , pr are the distinct prime divisors of NA. They also showed
that if (∗) is an odd covering system with n1, . . . , nk square-free, distinct
and greater than one, then the above inequality can be improved as follows:

r∏
t=1

pt

pt − 1
−

r∑
t=1

1
pt − 1

> 2

and consequently r > 11. This was also deduced by the second author [6]
in a simple way.

In 1991, by a complicated sieve method, R. J. Simpson and D. Zeilberger
[5] proved that if (∗) is an odd covering system with n1, . . . , nk square-free,
distinct and greater than one, then NA has at least 18 prime divisors.

In this paper we obtain further improvement in this direction by a direct
argument.

Theorem 1. Suppose that (∗) is an odd covering system with 1 < n1 <

· · · < nk. If NA = [n1, . . . , nk] is square-free, then it has at least 22 prime
divisors.

In contrast with the Erdős-Selfridge conjecture, recently the second
author [8] showed that if (∗) is a covering system with 1 < n1 < · · · < nk

then it cannot cover every integer an odd number of times.
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2. Proof of Theorem 1

For convenience we let [a, b] = {x ∈ Z : a 6 x 6 b} for any a, b ∈ Z.
Assume that N = NA = p1 · · · pr where p1 < · · · < pr are distinct odd

primes. For each t ∈ [1, r], we set

dt =
⌊

3
5
(t− 1)

⌋
(where b·c is the greatest integer function), and define

Mt =
{ {pipt : 1 6 i 6 dt} if t 6 8,

{pipt : 1 6 i 6 dt} ∪ {p1p2pt, p1p3pt} if t > 9.

Note that d1 = d2 = 0 and hence M1 = M2 = ∅.
For s ∈ [1, k] let

n′s =
{

pt if ns ∈ Mt for some t,

ns otherwise.

Since n′s | ns, we have as(ns) ⊆ as(n′s). Thus A′={as(n′s)}k
s=1 is also an

odd covering system. Let

Ī = [1, k]\
r⋃

t=1

It where It = {1 6 s 6 k : n′s = pt}.

Then⋃
s∈Ī

as(n′s) ⊇ [0, N − 1]\
r⋃

t=1

⋃
s∈It

as(n′s) =
r⋂

t=1

(
[0, N − 1]\

⋃
s∈It

as(n′s)
)

.

For each t ∈ [1, r], clearly |It| 6 dt + 1 < pt if t 6 8, and |It| 6 dt + 3
otherwise. Observe that dt 6 3(pt − 1)/5 < pt − 3 if t > 9. So there is a
subset Rt of [0, pt − 1] satisfying the following conditions:

(a) |Rt| = pt − 1− dt if t 6 8, and |Rt| = pt − 3− dt if t > 9;
(b) x 6≡ as(mod pt) for any x ∈ Rt and s ∈ It.
Define

X = {x ∈ [0, N − 1] : the remainder of x mod pt lies in Rt for t ∈ [1, r]}.

Then |X| =
∏r

t=1 |Rt| by the Chinese Remainder Theorem, also

X ⊆
r⋂

t=1

(
[0, N − 1]\

⋃
s∈It

as(n′s)
)
⊆

⋃
s∈Ī

as(n′s) =
⋃
s∈Ī

as(ns)
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and hence X =
⋃

s∈J Xs, where

Xs = X ∩ as(ns) and J = {s ∈ Ī : Xs 6= ∅}.

For each s ∈ J , the set Xs consists of those x ∈ [0, N − 1] for which
x ≡ as (mod pt) if pt | ns, and x ≡ rt (mod pt) for some rt ∈ Rt if pt - ns.
Thus, by the Chinese Remainder Theorem,

|Xs| =
∏

16t6r
pt-ns

|Rt| = |X|
∏

16t6r
pt|ns

|Rt|−1 for all s ∈ J.

Let a0 ∈ X, n0 = p1p2 and X0 = X ∩ a0(n0). Again by the Chinese
Remainder Theorem,

|X0| =
∏

2<t6r

|Rt| = |X|
∏

16t6r
pt|n0

|Rt|−1.

Let j = 0 if n0 6∈ {ns : s ∈ J}, and let j be the unique element of J with
nj = n0 if n0 ∈ {ns : s ∈ J}. Set J0 = {s ∈ J : (ns, n0) = 1}. Then

|X| =
∣∣∣∣ ⋃

s∈J∪{j}

Xs

∣∣∣∣ 6
∑

s∈J\(J0∪{j})

|Xs|+
∣∣∣∣Xj ∪

⋃
s∈J0

Xs

∣∣∣∣
6

∑
s∈J\(J0∪{j})

|Xs|+ |Xj |+
∑
s∈J0

|Xs\Xj |

=
∑

s∈J\(J0∪{j})

|Xs|+ |Xj |+
∑
s∈J0

(|Xs| − |Xs ∩Xj |)

and so
|X| 6

∑
s∈J∪{j}

|Xs| −
∑
s∈J0

|Xs ∩Xj |.

If s ∈ J0, then Xs ∩ Xj consists of those x ∈ [0, N − 1] for which x ≡
aj (mod nj), x ≡ as (mod ns), and x ≡ rt (mod pt) for some rt ∈ Rt if
pt - njns, therefore

|Xs ∩Xj | =
∏

16t6r
pt-njns

|Rt| = |X|
∏

16t6r
pt|n0ns

|Rt|−1.

Set

D1 = {d > 1 : d | N} \
(
{p1, . . . , pr} ∪

r⋃
t=1

Mt

)
,
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and

D2 = {ns : s ∈ J ∪ {j}} and D3 = {d ∈ D1 : (d, n0) = 1}.

If s ∈ J , then n′s 6= pt for any t ∈ [1, r], and thus ns = n′s ∈ D1. Since
d2 = 0, we also have nj = p1p2 ∈ D1. Therefore D2 ⊆ D1, and so D2∩D3

coincides with D4 = {ns : s ∈ J0}.
Let

xt = |Rt|−1 6 1 for t = 1, . . . , r,

and
I(d) = {1 6 t 6 r : pt | d}

for any positive divisor d of N . Observe that∑
d∈D1\D2

∏
t∈I(d)

xt − x1x2

∑
d∈D3\D4

∏
t∈I(d)

xt

=
∑

d∈D1\(D2∪D3)

∏
t∈I(d)

xt + (1− x1x2)
∑

d∈D3\D4

∏
t∈I(d)

xt > 0.

Thus

|X| 6
∑

s∈J∪{j}

|Xs| −
∑
s∈J0

|Xs ∩Xj |

=
∑

d∈D2

|X|
∏

t∈I(d)

xt −
∑

d∈D4

|X|x1x2

∏
t∈I(d)

xt

6|X|
( ∑

d∈D1

∏
t∈I(d)

xt − x1x2

∑
d∈D3

∏
t∈I(d)

xt

)
.

Since d1 = d2 = 0 and dt < 3 for t < 6, by the above we have

1 6
∑

I⊆[1,r]
|I|>1

∏
t∈I

xt −
r∑

t=1

∑
16i6dt

xixt −
∑

96t6r

(x1x2xt + x1x3xt)

− x1x2

( ∑
I⊆[3,r]
|I|>1

∏
t∈I

xt −
∑

36t6r

∑
36i6dt

xixt

)

=
r∏

t=1

(1 + xt)− 1−
r∑

t=1

xt −
r∑

t=3

dt∑
i=1

xixt −
∑

96t6r

(x1x2xt + x1x3xt)

− x1x2

( r∏
t=3

(1 + xt)− 1−
r∑

t=3

xt −
r∑

t=6

dt∑
i=3

xixt

)
.
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It follows that f(x1, . . . , xr) > 2, where

f(x1, ..., xr) =(1 + x1 + x2)
r∏

t=3

(1 + xt)−
r∑

t=1

xt + x1x2 −
r∑

t=3

dt∑
i=1

xixt

+ x1x2

8∑
t=3

xt − x1x3

∑
96t6r

xt + x1x2

r∑
t=6

dt∑
i=3

xixt

can be written in the form
∑

i1,... ,ir
ci1,... ,ir

xi1
1 · · ·xir

r with ci1,... ,ir
> 0.

Let q1 = 3 < · · · < qr be the first r odd primes. For each t ∈ [1, r], as
pt > qt we have xt 6 x′t, where

x′t =
{

(qt − dt − 1)−1 if 1 6 t 6 8,

(qt − dt − 3)−1 if 9 6 t 6 r.

Thus
f(x′1, . . . , x′r) > f(x1, . . . , xr) > 2.

By computation through computer we find that

f(x′1, . . . , x′21) = 1.995 · · · < 2,

therefore r 6= 21. (This is why we define dt and Mt in a somewhat curious
way.)

In the case r < 21, we let pr+1 < · · · < p21 be distinct primes greater
than pr, and then

A = {a1(n1), . . . , ak(nk), 0(pr+1), . . . , 0(p21)}

forms an odd covering system with NA square-free and having exactly 21
distinct prime divisors. This is impossible by the above.

Now we can conclude that r > 22 and this completes the proof.
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