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Abstract In this paper we establish some explicit congruences for Euler polyno-
mials modulo a general positive integer. As a consequence, if a, m ∈ Z
and 2 - m then

mk+1

2
Ek

“x + a

m

”
− (−1)a

2
Ek(x) ∈ Z[x] for every k = 0, 1, 2, . . .,

which may be regarded as a refinement of a multiplication formula.
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1. Introduction
Congruences for Bernoulli numbers have been a very intriguing objec-

tive of research since the time of L. Euler, and they recently got revived
in connection with p-adic interpolation of L-functions. Congruences for
Euler numbers, being cognates of Bernoulli numbers, have also received
much attention from the same point of view of p-adic interpolation. In
[S4] the author determined Euler numbers modulo powers of two, while
Euler numbers modulo any odd integer are essentially trivial.

As a natural further step, we are led to consider congruences among
Bernoulli and Euler polynomials, the latter of which will be our main
concern in this paper. We prove the integrity of coefficients of fk(x; a,m)
(defined by (1.7)), which are related to the summands in the multiplica-
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tion formula (1.6) for Euler polynomials, and establish number-theoretic
generalizations thereof (Theorems 1.2 and 2.1).

Hereafter, the labelled formulae with star indicate those known ones
which have their counterparts for Bernoulli or Euler polynomials. Hope-
fully, these will serve also as a basic table for these polynomials (for
more information, the reader is referred to [AS], [E], [S1]). In referring
to them, we omit the star symbol.

Euler numbers E0, E1, E2, . . . are defined by

E0 = 1 and
n∑

k=0
2|k

(
n

k

)
En−k = 0 for n ∈ N = {1, 2, 3, · · · }. (1.1)∗

It is well known that they are integers and odd-numbered ones E1,
E3, E5, · · · are all zero.

For each n ∈ N0 = {0, 1, 2, . . .}, the Euler polynomial En(x) of degree
n is given by

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

. (1.2)∗

Note that
En = 2nEn(1/2). (1.3)∗

Here are basic properties of Euler polynomials:

En(x) + En(x + 1) = 2xn, (1.4)∗

En(x + y) =
n∑

k=0

(
n

k

)
Ek(x)yn−k, (1.5)∗

and

mk
m−1∑

a=0

(−1)aEk

(
x + a

m

)
= Ek(x). (1.6)∗

From now on we always assume that q is a fixed integer greater
than one, and let Zq denote the ring of q-adic integers (see [M]). For
α, β ∈ Zq, by α ≡ β (mod q) we mean that α− β = qγ for some γ ∈ Zq.
A rational number in Zq is usually called a q-integer.

In this paper we aim at establishing some explicit congruences for
Euler polynomials modulo a general positive integer.

We adopt some standard notations. For example, for a real number α,
bαc stands for the greatest integer not exceeding α, and {α} = α− bαc
the fractional part of α, (a, b) the greatest common divisor of a, b ∈ Z,
and ∆(P (x)) the difference P (x + 1)− P (x) of a polynomial P (x). For
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a prime p, n ∈ N0 and a ∈ Z, we write pn‖a if pn | a and pn+1 - a. For
a, b ∈ Z\{0}, by a ∼2 b we mean that both 2n‖a and 2n‖b for a common
n ∈ N0.

For convenience we also use the logical notations ∧ (and), ∨ (or), ⇔
(if and only if), and the special notation:

[A] =

{
1 if A holds,
0 otherwise.

By (1.1) and (1.2) it is easy to get

E0(x) = 1, E1(x) = x− 1
2

and E2(x) = x2 − x,

and verify that the polynomial

fk(x) = fk(x; a,m) =
mk+1

2
Ek

(
x + a

m

)
− (−1)a

2
Ek(x) (1.7)

has integral coefficients for k = 0, 1, 2.
This phenomenon is not contingent but universal as asserted by the

following general theorem.

Theorem 1.1. For each k ∈ N0 and a, m ∈ Z with 2 - m, we have

fk(x) = fk(x; a,m) =
mk+1

2
Ek

(
x + a

m

)
− (−1)a

2
Ek(x) ∈ Z[x].

This result is remarkable in that (1.6) can be expressed as the van-
ishing arithmetic mean

1
m

m−1∑

a=0

(−1)afk(x; a,m) = 0.

Theorem 1.1 follows from the following more general result whose
proof will be given in Section 2.

Theorem 1.2. Let k ∈ N0, d,m ∈ N and d | m. Let c be a real number,
and let P (x) denote the polynomial

[2 - q] + d [2 | q]
2

mkEk

( x

m

)

− (−1)b
c

(d,q)
c (d, q)k+1

2

(m

d

)k
Ek

(
d

(d, q)
· x

m
−

⌊
c

(d, q)

⌋)
.
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Then P (x) ∈ Zq[x]. Furthermore, if q is odd, then

P (x) ≡
q−1∑

j=0

2-(d−1)j+b c+jd
q
c

(−1)j(x + jm)k (mod q); (1.8)

if q is even, then

P (x) ≡
q−1∑

j=0

(−1)j−1(x + jm)k

(⌊
c + jd

q

⌋
+ [2 | d ∧ 2 | j](−1)b

c+jd
q
c
)

+





q

2
[2 - m ∧ 4 | d + 1]∆(xk) (mod q) if 2 | k,

q

2
[4 | d + 1](∆(xk) + [4 | q]∆(xk−1)) (mod q) if 2 - km,

q

2
[d ∼2 m]([2‖m] + [2‖q])xk−1 (mod q) if 2 - k(m− 1).

(1.9)

Now we derive various consequences of Theorem 1.2.

Corollary 1.1. Let k ∈ N0 and m ∈ N, and let x be a q-integer. If q is
odd, then

mk

2
Ek

( x

m

)
− (−1)b

x
(m,q)

c (m, q)k+1

2
Ek

({
x

(m, q)

})

≡
q−1∑

j=0

2-(m−1)j+bx+jm
q

c

(−1)j(x + jm)k (mod q).

If q is even, then

mk+1

2
Ek

( x

m

)
− (−1)b

x
(m,q)

c (m, q)k+1

2
Ek

({
x

(m, q)

})

≡
q−1∑

j=0

(−1)j−1(x + jm)k

(⌊
x + jm

q

⌋
+ [2 | m ∧ 2 | j](−1)b

x+jm
q

c
)

+





q

2
([2‖m] + [2‖q])xk−1 (mod q) if 2 - k and 2 | m,

0 (mod q) if k = 0,

q

2
[4 | m + 1 ∧ (k = 1 ∨ 2 | k ∨ 2‖q)] (mod q) otherwise.
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Proof. Just apply Theorem 1.2 with c = x and d = m, and note that
q
2xk ≡ q

2x (mod q) if k > 0 (cf. [S3, Lemma 2.1]).

Corollary 1.2. Let a ∈ Z, k ∈ N0, m ∈ Z+, 2 | q and (m, q) = 1. Then

fk(x; a,m)

≡
q−1∑

j=0

(−1)j−1

⌊
a + jm

q

⌋
(x + a + jm)k

+
q

2
[4 | m + 1]

(
∆(xk) + [2 - k ∧ 4 | q]∆(xk−1)

)
(mod q).

Proof. Clearly 2 - m and ∆((x+a)k)−∆(xk) ∈ 2Z[x]. Applying Theorem
1.2 with c = a, d = m, and x replaced by x + a, we obtain the desired
congruence.

Proof of Theorem 1.1. Suppose first that m > 0. Then by Corollary 1.2,

fk(x; a, m) ∈ Z2[x].

If p is an odd prime, then Ek(x)/2 ∈ Zp[x], and also by (1.5)

mk+1

2
Ek

(
x + a

m

)
=

m

2

k∑

l=0

(
k

l

)
El(0)mk

(
x + a

m

)k−l

∈ Zp[x].

Thus every coefficient of the polynomial fk(x) = fk(x; a,m) is a p-integer
for any prime p, which amounts to fk(x) ∈ Z[x].

For the negative modulus case (−m > 0), using

Ek(1− x) = (−1)kEk(x) (1.10)∗

and 2 - m, we may express fk(x; a,−m) as

−mk+1

2
Ek

(
x + (a + m)

m

)
+

(−1)a+m

2
Ek(x).

Thus the positive modulus case applies and the proof is complete.

In the spirit of Sun [S3], Theorem 1.2 can also be used to deduce some
general congruences of Kummer’s type for Euler polynomials. However,
in order not to make this paper too long, we will not go into details.
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2. Proof of Theorem 1.2
We introduce the Bernoulli polynomials Bn(x) (n ∈ N0) by the gen-

erating power series

zexz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
. (|z| < 2π) (2.1)∗

Their values Bn(0) at x = 0 are rational numbers, called Bernoulli
numbers and denoted by Bn; it is well known that B2k+1 = 0 for
k = 1, 2, 3, . . .. Raabe’s multiplication formula (counterpart of (1.6))
reads

mn−1
m−1∑

r=0

Bn

(
x + r

m

)
= Bn(x) for any m ∈ N. (2.2)∗

Other properties include

∆(Bn(x)) = nxn−1 (2.3)∗

and
En(x) =

2
n + 1

(
Bn+1(x)− 2n+1Bn+1

(x

2

))
, (2.4)∗

the last one links the Euler and the Bernoulli polynomials.

Lemma 2.1. Let k be a positive integer and y be a real number. Then

kEk−1(x + {y}) = 2(−1)byc
(
Bk(x + {y})− 2kBk

(x

2
+

{y

2

}))
. (2.5)

Proof. Observe that
{y

2

}
<

1
2
⇐⇒ {y} = 2

{y

2

}
⇐⇒ byc = 2

⌊y

2

⌋
⇐⇒ 2 | byc. (2.6)

Hence, if 2 | byc, the right hand side of (2.5) is

2
(

Bk(x + {y})− 2kBk

(
x + {y}

2

))
,

which coincides with the left hand side of (2.5) in view of (2.4). Now, if
2 - byc, then the right hand side of (2.5) is

−2
(

Bk(x + {y})− 2kBk

(
x + {y}+ 1

2

))
.

We may express Bk

(x+{y}+1
2

)
as 21−kBk (x + {y})−Bk

(x+{y}
2

)
by (2.2).

Then what remains is −2
(
2kBk

(x+{y}
2

)−Bk(x+ {y})) which equals the
left hand side of (2.5). This completes the proof.
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Lemma 2.2. Let k ∈ N0 and m ∈ Z \ {0}. Then (k + 1)mkEk(x/m) ∈
Z[x]. Furthermore,

(k + 1)mkEk

( x

m

)
− xk − (x− km)

(x + m)k − xk

m
∈ 2Z[x].

Proof. First note that by (2.4),

(l + 1)El(0) = 2(1− 2l+1)Bl+1

for any l ∈ N0. Hence, if l is even then

(l + 1)El(0) = [l = 0];

while for odd l, we see that in the expression

(l + 1)El(0) = 2l+1 − 1− 2(2l+1 − 1)
(

Bl+1 +
∑

p−1|l+1

1
p

)

+ 2
∑

p6=2
p−1|l+1

2l+1 − 1
p

,

the third and fourth terms are integers by the von Staudt–Clausen the-
orem (cf. [IR, pp. 233-236]) and Fermat’s little theorem, respectively, so
that (l + 1)El(0) is an odd integer.

Using (1.5) and writing (k + 1)
(
k
l

)
as (l + 1)

(
k+1
l+1

)
, we find that

(k + 1)mkEk

( x

m

)
=

k∑

l=0

(
k + 1
l + 1

)
(l + 1)El(0)mlxk−l

lies in Z[x] and that

(k + 1)mkEk

( x

m

)
−

(
k + 1

1

)
E0(0)xk −

k∑

l=1
2-l

(
k + 1
l + 1

)
mlxk−l ∈ 2Z[x].

Now, since

k∑

l=1
2-l

(
k + 1
l + 1

)
mlxk−l =

(x + m)k+1 + (x−m)k+1

2m
− xk+1

m

=
(x + m)k+1 − xk+1

m
−

(
k + 1

1

)
(x + m)k
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−
k+1∑

j=2

(
k + 1

j

)
(−2m)j(x + m)k+1−j ,

the third term lying in 2Z[x], we conclude that what we should subtract
from (k + 1)mkEk

(
x
m

)
is

(
k + 1

1

)
E0(0)xk +

(x + m)k+1 − xk+1

m
−

(
k + 1

1

)
(x + m)k

= xk + (x− km)
(x + m)k − xk

m
,

as asserted, and the proof is complete.

Lemma 2.3 ([S3, Theorem 4.1]). Let k ∈ N0, d,m, n ∈ N, d | n, m | qn,
and 2 - d or 2 - q or 2 | qn

m . Put d̄ = (d, qn/m) and m̄ = (m, qn/d).
Then, for any real number y, the polynomial

L(x, y) =
1

k + 1

(
dmkBk+1

( x

m

)
− d̄m̄kBk+1

(
x

m̄
−

⌊ y

m̄

⌋))
(2.7)

is in Zq[x] and is congruent to

R(x, y) =
qn/m−1∑

j=0

(x + jm)k

(⌊
y + jm

qn/d

⌋
+

1− d

2

)
− q

3
[3 | d]

n

d
· qn

m
kxk−1

+
q

2
k[d ∼2 n]

([
2 | n ∧ 2‖qn

m

]
xk−1

+ [2 - m ∧ 2‖n ∧ 2‖q]∆(xk−1)
)

(2.8)

modulo q.

Now we establish a result more general than Theorem 1.2 ((2.9) and
(2.10) below are generalizations of (1.8) and (1.9), respectively).

Theorem 2.1. Let k ∈ N0, d,m, n ∈ N, d | n, m | qn, and 2 - d or 2 - q
or 2 | qn

m . Put d̄ = (d, qn/m) and m̄ = (m, qn/d). Then for any real
number y we have

Pk(x, y) :=
[2m - qn] + d[2m | qn]

2
mkEk

( x

m

)

− d̄m̄k

2
(−1)by/m̄cEk

(
x

m̄
−

⌊ y

m̄

⌋)
∈ Zq[x].
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Moreover, if qn/m is odd then

Pk(x, y) ≡
qn/m−1∑

j=0

2-(d−1)j+b y+jm
qn/d

c

(−1)j(x + jm)k

+
q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4)]kxk−1 (mod q); (2.9)

if qn/m is even then

Pk(x, y)

≡
qn/m−1∑

j=0

(−1)j−1(x + jm)k

(⌊
y + jm

qn/d

⌋
+ [2 | d ∧ 2 | j](−1)b

y+jm
qn/d

c
)

+ Rk(x) (mod q), (2.10)

where

Rk(x)

=





q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4) ∧ 2 - m]∆(xk) if 2 | k,

q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4)](∆(xk) + [4 | q]∆(xk−1)) if 2 - km,

q

2
[d ∼2 n]([d 6≡ 0, 1 (mod 4)] + [2 | n ∧ 2‖(qn/m)])xk−1

if 2 - k(m− 1).

Proof. We observe that the (k + 1)-degree terms in (2.7) cancel each
other in view of d/m = d̄/m̄. Hence L(x, y) is of degree at most k.
Writing

L(x, y) =
k∑

i=0

ai(y)xi,

we see that 2kL(x
2 , y

2 ) ∈ Zq[x], and similarly 2kR(x
2 , y

2 ) ∈ Zq[x], and a
fortiori that

L(x, y)− 2k+1L
(x

2
,
y

2

)
∈ Zq[x]

and

L(x, y)− 2k+1L
(x

2
,
y

2

)
≡ R(x, y)− 2k+1R

(x

2
,
y

2

)
(mod q). (2.11)
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By (2.7) we can express the left hand side of (2.11) in such a way that
we may apply Lemma 2.1 to deduce that

L(x, y)− 2k+1L
(x

2
,
y

2

)

=
dmk

2
Ek

( x

m

)
− (−1)by/m̄c d̄m̄k

2
Ek

( x

m̄
−

⌊ y

m̄

⌋)
. (2.12)

On the other hand, the right hand side of (2.11) is congruent to

Σ− q

3
[3|d]

n

d
· qn

m
k

(
xk−1 − 2k+1

(x

2

)k−1
)

+ r(x)

modulo q, where

r(x) =
q

2
k[d ∼2 n]

( [
2 | n ∧ 2‖qn

m

]
xk−1

+ [2 - m ∧ 2‖n ∧ 2‖q]∆(xk−1)
)

(2.13)

and

Σ =
qn/m−1∑

j=0

(
(x + jm)k

(⌊
y + jm

qn/d

⌋
+

1− d

2

)

− (x + 2jm)k

(
2

⌊
y + 2jm

2qn/d

⌋
+ 1− d

))
. (2.14)

Hence

R(x, y)− 2k+1R
(x

2
,
y

2

)
≡ Σ + r(x) (mod q) . (2.15)

By the counterpart of (2.6), the second term on the right hand side
of (2.14) becomes

−
qn/m−1∑

j=0

(x + 2jm)k

(⌊
y + 2jm

qn/d

⌋
− d +

[
2 |

⌊
y + 2jm

qn/d

⌋])

in which we shall divide the sum into two parts via midpoint. Then

Σ =
qn/m−1∑

j=0

(x + jm)k

(⌊
y + jm

qn/d

⌋
+

1− d

2

)

−
qn/m−1∑

i=0
2|i

(x + im)k

(⌊
y + im

qn/d

⌋
− d +

[
2 |

⌊
y + im

qn/d

⌋])
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−
qn/m−1∑

i=0
2|i+qn/m

(
x +

(
i +

qn

m

)
m

)k
(⌊

y + (i + qn/m)m
qn/d

⌋

− d +
[
2 |

⌊
y + im

qn/d
+ d

⌋])
.

Whence, writing

cj(y) =
⌊

y + jm

qn/d

⌋
(2.16)

for j = 0, 1, . . ., we obtain

Σ ≡
qn/m−1∑

j=0

(x + jm)kcj(y)[2 - j] +
d− 1

2

qn/m−1∑

j=0

(x + jm)k(2 [2 | j]− 1)

+
qn/m−1∑

j=0

(x + jm)k([2 | j ∧ 2 - cj(y)])

−
qn/m−1∑

j=0

(x + jm)kcj(y)
[
2 | qn

m
+ j

]

−
qn/m−1∑

j=0

(x + jm)k
[
2 | qn

m
+ j ∧ 2 | cj(y) + d

]
(mod q).

Recombination of terms yields

Σ ≡
qn/m−1∑

j=0

(x + jm)kcj(y)
(
[2 - j]−

[
2 | qn

m
− j

])
+ Σ1 + Σ2 (mod q) ,

where

Σ1 =
d− 1

2

qn/m−1∑

j=0

(−1)j(x + jm)k,

Σ2 =
qn/m−1∑

j=0

(x + jm)k

(
[2 | j ∧ 2 - cj(y)]

−
[
2 | qn

m
− j ∧ 2 | cj(y) + d

])
.

(2.17)
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Thus, in view of the equality [2 - j] − [2 | qn
m − j] = [2 | qn

m ](−1)j−1, we
deduce that

Σ ≡
[
2 | qn

m

] qn/m−1∑

j=0

(−1)j−1(x + jm)kcj(y) + Σ1 + Σ2 (mod q) .

(2.18)

Writing

Σ1 =
d− 1

2
mk

qn/m−1∑

j=0

(−1)j
( x

m
+ j

)k

and applying (1.4) and (1.5) successively, we obtain

Σ1 =
d− 1

2
· mk

2

qn/m−1∑

j=0

(
(−1)jEk

( x

m
+ j

)
− (−1)j+1Ek

( x

m
+ j + 1

))

=
d− 1

2
· mk

2

(
Ek

( x

m

)
− (−1)qn/mEk

( x

m
+

qn

m

))

=
d− 1

2
· mk

2

(
Ek

( x

m

)
− (−1)qn/m

k∑

l=0

(
k

l

)
Ek−l

( x

m

)(qn

m

)l
)

;

whence separating the term with l = 0,

Σ1 =
d− 1

2
·
[
2 -

qn

m

]
mkEk

( x

m

)

− (−1)qn/m
∑

0<l≤k

(
k

l − 1

)
(k − l + 1)mk−lEk−l

( x

m

) d− 1
2

· nlql

2l
.

(2.19)

Now, by [S3, Lemma 2.1], ql−1/l ≡ 0 (mod q) for l > 2, so that if
0 < l ≤ k, then

d− 1
2

· nlql

2l
=

(
d

2

)
nl

d
· q

2
· ql−1

l

≡ q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4)]

× (
[l = 1] + [l = 2 ∧ 2 - n ∧ 2‖q]) (mod q), (2.20)

and in particular, only two terms with l = 1, 2 appear on the right hand
side of (2.19) modulo q. Hence the sum on the right hand side of (2.19)
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is congruent to

d− 1
2

· qn

2
[k > 0]kmk−1Ek−1

( x

m

)

+
d− 1

2
· n2q2

4
[k > 1]k(k − 1)mk−2Ek−2

( x

m

)

modulo q. Thus, by Lemma 2.2, Σ1 is congruent to

d− 1
2

[
2 -

qn

m

]
mkEk

( x

m

)
− (−1)qn/m d− 1

2

×
(

nq

2
[k > 0]

(
xk−1 + (x− (k − 1)m)

(x + m)k−1 − xk−1

m

)

+
n2q2

4
[k > 1]k

(
xk−2 + (x− (k − 2)m)

(x + m)k−2 − xk−2

m

))

modulo q. By (2.20) with l = 1, 2, the second term of the above expres-
sion is congruent to −(−1)qn/mr̄(x) modulo q, where

r̄(x) =
q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4) ∧ 2 | k]

(x + m)k − xk

m

+
q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4) ∧ 2 - k]

× x(x + m)k−1 − (x + m)xk−1

m

+
q

2
[2‖q ∧ 2 - kn ∧ 4 | d + 1]

(x + m)k−1 − xk−1

m
. (2.21)

Thus

Σ1 ≡ d− 1
2

[2 -
qn

m
]mkEk

( x

m

)
+ r̄(x) (mod q). (2.22)

Now, from (2.11)–(2.13), (2.18) and (2.22), it follows that

dmk

2
Ek

( x

m

)
− (−1)by/m̄c d̄m̄k

2
Ek

( x

m̄
−

⌊ y

m̄

⌋)
≡ Σ + r(x)

≡
[
2 | qn

m

] qn/m−1∑

j=0

(−1)j−1(x + jm)kcj(y)

+
d− 1

2

[
2 -

qn

m

]
mkEk

( x

m

)
+ r(x) + r̄(x)

+
qn/m−1∑

j=0

(x + jm)k
(
[2 | j ∧ 2 - cj(y)]
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−
[
2 | qn

m
− j ∧ 2 | cj(y) + d

])
(mod q).

With the help of the binomial theorem, we can easily verify that r(x) +
r̄(x) ≡ Rk(x) (mod q). If qn/m is odd, then either 2 - q or 2 | m, whence

Rk(x) ≡ q

2
[d ∼2 n ∧ d 6≡ 0, 1 (mod 4)]kxk−1 (mod q).

and the desired results follow.

Proof of Theorem 1.2. Just apply Theorem 2.1 with n = m and y =
cm/d.
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[E] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcen-
dental Functions I, McGraw-Hill, New York, Toronto and London, 1953.

[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory
(Graduate texts in mathematics; 84), 2nd ed., Springer, New York, 1990.

[M] K. Mahler, Introduction to p-adic Numbers and their Functions, Cambridge
Univ. Press, Cambridge, 1973.

[S1] Z. W. Sun, Introduction to Bernoulli and Euler polynomials, a talk given at
Taiwan, 2002, http://pweb.nju.edu.cn/zwsun/BerE.pdf.

[S2] Z. W. Sun, Combinatorial identities in dual sequences, European J. Combin.
24(2003), 709–718.

[S3] Z. W. Sun, General congruences for Bernoulli polynomials, Discrete Math.
262(2003), 253–276.

[S4] Z. W. Sun, On Euler numbers modulo powers of two, J. Number Theory, 2005,
in press.


