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ABSTRACT. Let E be a real quadratic field with discriminant d Z 0 (mod p) where
p is an odd prime. For p = +1 we determine H0<c<d (4)=p (LII;C_/EJ) modulo p? in

terms of a Lucas sequence, the fundamental unit and the class number of E.

1. INTRODUCTION

Let p be an odd prime not dividing a positive integer m. A. Granville [G, (1.15)]
discovered the remarkable congruence

I <Lp -1 ) = (=) DE=D/2(P _ 4 1) (mod p?),

0<k<m pk/mJ

where we use |x| to denote the integral part of a real number x. Subsequently the
present author [S1] determined further J,_,_,, /2 (Lp%ﬁl J) mod p?. In this paper
a more sophisticated result connected with real quadratic fields will be established.

For A,B € 7 the Lucas sequences u, = uy,(A,B) and v, = v,(4,B) (n =
0,1,2,...) are given by

up =0, u; =1, and up41 = Au,, — Buyp—1 forn=1,2,3,...,

vg =2, v1 = A, and v,y = Av, — Bu,_1 forn=1,2,3,....
It is well known that
(a — Plu, =™ — 4" and v, =a" + p" foreveryn=0,1,2,...,

where o and 3 are the two roots of the equation 22 — Az + B = 0. Also, for any odd

prime p we have u, = (%) (mod p) and v, = A (mod p), where A = A? — 4B and
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(]—9) denotes the Legendre symbol. (See, e.g., [R, pp.41-55].) If p is an odd prime
not dividing B, then p | u,_(ay since Aup, + v, = 2up 1 and Auy, — vy, = 2Buy, .
Throughout this paper, for an assertion P we set
1 if P holds,
[P] =

0 otherwise.

Our main result is as follows.

Theorem 1.1. Let E be a quadratic field with discriminant d = 2%pq - - - p, where
o € {0,2,3) and py,...,p, are distinct odd primes. Let ¢ = (a + b\/d)/2 be the
fundamental unit of the field E where a,b € Z, and N (g) be the norm (a* — b*d) /4
of € with respect to the field extension E/Q. Let h be the class number of the field
E, and p be an odd prime not dividing d. Then, for p = +1 we have

1 (Lf;—/;J) 1+"”<2d>(<a+[a>op @t Y pz )

0<c<d O<z<r

(H=p (1.2)
0 d [N(e)=1] 9

3 (5) up_(%)(a,N(a))bdh (mod p*),

+

where @ is Euler’s totient function and (2) is the Kronecker symbol.

Remark. Under the conditions of Theorem 1.1, d = 1 (mod 4) if a« = 0, and
d/4 =3 (mod 4) if a = 2; also p divides bu,,_ (2 ( ( )) since for p t b we have

(=)= ()9

Ezample. Each of the quadratic fields Q(v/13),Q(v/21),Q(v/6),Q(+/7) has class

number 1, and their fundamental units are

i 21 10+ 2v/21 16+ 3v/2
3+2\/_3, 5+2\/_, 5+N6:0+T’ 8+3ﬁ:%\/_8

with norms —1, 1,1, 1 respectively; see, e.g., [C, p.271]. Let p be an odd prime and
p € {1,—1}. If p does not divide 13, 21, 6, and 7, respectively, then Theorem 1.1
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gives the congruences

p—1 13» — 13 13
11 =14+ ———— U, (13(3, - 1),
0<e<13 (ch/ 13] 2 2
(B)=p
p— 21\ 21
11 =143BP =3+ —T4+p| =) Zu, (2,(51),
[pe/21] p) 2 7%
e

)
(120

H (U];;Qz) =1+8(2 -2)+2(3"-3)+p (9) 24u,,_(5)(10,1),
)

0<c<24 P
2te, (2)=p
= P—(3 ’
0<c<28 LpC/QSJ P
2te, (L)=p

modulo p? respectively, where () and (%) are Jacobi symbols.

c
We deduce Theorem 1.1 by combining the following two theorems.

Theorem 1.2. Let m > 2 be an integer with the factorization pi* ---p2r where

P1,--- ,Ppr are distinct primes and o, ... , . are positive integers. Let p be an odd
prime not dividing m. Then

= ()7 T (o)

0<k<m/2
(kum)=1 (1.3)

p(m) < -1

=1+ —— ) (pi —a;+1) 1 (mod p?).
pi —
=1

2

(2

In the next theorem we use the Bernoulli polynomial B, (x) of degree n and the

nth Bernoulli number B,, = B, (0). Also, we let P denote the set of all (positive)
primes.

Theorem 1.3. Let E be a real quadratic field with discriminant d and class number
h. Let e = (a+bvd)/2 > 1 be the fundamental unit of E where a,b € Z, and N (g)

be the norm (a® —b%d) /4 of €. Let p be an odd prime not dividing d, and let u stand
for bu,,_(ay(a,N(g)). Then

d—1

() () -m) = (5) T wmin 0

c=1
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and
I (p—l)@”_ (4)(1 + 45%) (mod p?) fd=gordeb.
0<c<d/2 [pe/d] 1+ (%)[N(E):HCMTu (mod p2) otherwise. '
(¢,d)=1

Remark. In the case where d = 1 (mod 4) is a prime, (1.4) was proved in [GS] by
means of p-adic logarithms and Dirichlet’s class number formula (see, e.g., [W]).

In the spirit of R. Crandall and C. Pomerance [CP], Theorems 1.1-1.3 might be
of computational interest.

We shall make some preparations in the next section and give proofs of Theorems
1.1-1.3 in Section 3.

2. ON THE SUM Y g<k<p + MODULO p

m|k—r

Bernoulli polynomials play important roles in many aspects. The reader is re-
ferred to [IR, pp.228-248] for basic properties, and to [DSS] for a bibliography of
related papers.

In this section we prove the following basic result and derive some consequences.

Theorem 2.1. Let m be a positive integer not divisible by an odd prime p. Then
for any r € Z we have

p—1 1

> = n(ma (Z)-an({52)) mean @

k=r (r;od m)

where {x} stands for the fractional part of a real number x.

Proof. Applying Lemma 3.1 of [S3] with &k = p — 2, we find that

S e (e[ e 2D

an

mod p).

B, 1 (% + t) — B, 1 (t) = pi:l (p; 1) By 1 ((% + t)l — tl> =0 (mod p).

=1

(Recall that By = —1/2 and Bg,11 = 0 for n = 1,2,.... Also, p divides no
denominators of By, Ba, ... ,Bp_3 by the theorem of Clausen and von Staudt (cf.
[IR, pp. 233-236]).) Therefore (2.1) follows. [

Remark. The author first discovered Theorem 2.1 in Sept. 1991 by using Fourier
series, and Lemma 3.1 of [S3]| was originally motivated by this result.
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Corollary 2.1. Let m and n be positive integers, and let p be an odd prime not
dividing m. Then

Lpn/m]

pn S IO
By ({E}) = Bp1= mY_Kylnm) == 32 ¢ (modp), (2.2)
- Ptk
where
p—1 1 p—1 1
Kp(r,m) = P = —K,(1—r,m) (mod p). (2.3)
k=1 1=1 p
m|k—rp m|l—(1—r)p

r=1 r=1

On the other hand,

n n p—1 1 pn—1 1 Lpn/m] 1
—ZKp(r,m)E rp—k: . ;: Z k—(modp)
r=1 r=1 k=1 j=1 k=1
m|rp—k pti, mlj ptk

So we have (2.2). O

Let p be an odd prime and r be any integer. An explicit congruence for K,(r, 12)
mod p appeared in Corollary 3.3 of [S2]. By Theorem 2.1 and [GS, (4)] we can also
determine

K, (3+6r,24), K,(5,40), K,(25,40), K,(6,60), K,(36,60)

modulo p in terms of some second-order linear recurrences.
For a prime p and any a € Z not divisible by p, the Fermat quotient g,(a) is
defined as the integer (a?~! —1)/p.

Corollary 2.2. Let p be an odd prime and let m be a positive integer not divisible
by p. Then we have

m

Zer(r, m) = —¢qp(m) (mod p). (2.4)
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Proof. By Corollary 2.1,

iiKp(r, m) :% Zm: (Bp—l ({]ﬂ}> — Bp_l)
n=1r=1 n=1
= (S ({22) )
Em—lmp_QBp_l (—) —mP !B, 1 = (1-mP 1B, 1 (mod p)
r=0

where we have applied Raabe’s theorem in the last step. It is well known that
pBp_1 = —1 (mod p) (cf. [IR, p.233]). Also,

SN Kplrm) =Y (m— (r = 1)Ky (r.m)
=—) (m+1-r)Ky(m+1—r,m)=—=>Y sKy(s,m) (mod p).

So we have (2.4). O

Remark. Tt can be shown that (2.4) is equivalent to a formula of Lerch [L] which
was deduced in a different way.

3. PROOFS OF THEOREMS 1.1-1.3
Proof of Theorem 1.2. For each positive integer d we set
p—1
va= T1 (20n):
0<c<asz NP/
(c,d)=1

where (1) and 9(2) are considered as 1. For any a € Z with p 1t a, clearly

e () (- ()
() (5 ()

Thus, Theorem 1.1 of [S1] implies that if d # 0 (mod p) then

1L ()

0<c<d/2
z{ P+ (e if24d,
) 4 ()2 (U222 20

(2) [2]d] (1 . dp2— d 2] d)(2rt — 1)) (mod p?).
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Since H0<k<n/2 (ka/nj) Hd| ¥(d) for n = 1,2,..., applying the Mdbius inver-
sion formula we get that
1 )u(m/ d)

-1 11 (Lp /d]

dlm 0<e<d/2

2 ajm #(m/d)[2]d]
= (—1)%5 S 6 (25— B) <2) ‘
p

d)#(m/d) ( m (dp —d 1 9
X — X 1+pl— —[2]d]2P" —-1) (mod p*©).
() IO (%
By elementary number theory, >, 1 (%)dT = % and also
m/2
()= S ()i 3 a()
2¢c|m c|(m/2)

since m > 2. Therefore

o) b1 d\ Hm/d) dP — d
(—1) 2522 g (m) = 11 (]—?> <1 + Z“( ) ) (mod p?).
dlm
Observe that
H (d)ﬂ(m/d) H (m/HEIpi>ﬂ(HieIPi)
dlm p IC{1,...,r} p
_ my/HIg{L...,r} [Lici pi _ m? /11—, p? '
p p
Htlpgr_l(mrl) DLy 9r—1 . [r=1]
()= () =)
Also,
+Zu< ) )= uld [[a-»7)
dlm dlm 1=1
=TT (m™ =2l 77) = T (i + @0 = pi)™ = (i + 0} = pi))™ )
=1 1=1

= H (@(p?i) + (" = Dl — (i - 1)19?”_1))
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Thus (1.3) holds in view of the above. [

Proof of Theorem 1.3. Write e~ (3) = (V +U+/d)/2 where U,V € Z, and let p’ be
an integer with pp’ = 1 (mod d). Theorem 3.1 of Williams [W] states that

p—1 .
h% — (g) N(e)(()-1/2 Z 6PT'(Z) (mod p)
i=1

where (i) = 20<j<d{p’i/d}(%)'
Let & = (a — bv/d)/2. Then € + & = a and €& = N(¢). Clearly

vn(a, N(€)) + wn(a, N(e))bv/d = " + " + =

_g bWd = 2™

forn=0,1,..., thus U = bup_(%)(a,N(g)) =u (and V = vp_(%)(a,N(e))).
Observe that

p_lﬂ(i) d—1 d 1 d—1

SRV T X (9T 2

i=1 7j=1 0<i<p j=1 j<r<d O<z<p
d{p'i/d}>j dlp'i—r

d—1 d 1 d—1 d
2(5) 2,2 i-5(5) X mea
Jj=1 j<7"<d2|<ii<rz Jj=1 j<r<d

As x(j) = (?) is a nontrivial multiplicative character modulo d, the sum Zd 1(%l)
vanishes. Therefore, with the help of Corollary 2.1, we have

( ) (éfwd) —if@(r,@)

r=1

1< )i o ({3 15
DEE) () -
=16 (9) (Bs (5) - Bmr) o

c=

d—1

1M1
%b
N

TMH HM

Q=
= H
a3,

Combining the above we obtain (1.4).
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For each ¢ =1,... ,d — 1, we have x(d — ¢) = x(—1)x(c) = x(c); also

Lpc/d]
o () = I (=3)

k=1
Lpe/d] 1 e
=1—p z = 1—|—p<Bp1 ({E}) —Bpl) (mod p2).
k=1
Taking the above congruence and (1.3) modulo p, we obtain
I (-l = ( )
0<c<d/2 O<c<d/2 pc/d
(C,d)zl (c d

- d [d is a prime power]
=1 () (mod )

and hence
)[d=8 or deP)

d
_qylpe/dl(d) _ (_
[[ -D "

0<c<d/2

(Note that 4 | ¢(d) and no square of an odd prime divides d.) On the other hand,

11 ((—1)ch/dJ(§c—/;J>)<i>

- I (02 (e (D) -5
iy (‘é) (50 (%) - )

l\DI’B

Q‘
\/
/\
—N

3
—~
QU
=
@)
N~—
—
N———
|
T
_
N——

0<c<d/2 <

_1+pz<ccl
a2 () ( )( (g)_Bp_l) (mod 7).

These, together with (1.4), yield

() = ()77 (e e (YY)

0<c<d/2

S

r
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It is well known that N(¢) = —1if d =8 or d € P (see, e.g., [C, pp. 185-186]). So
the desired (1.5) follows. [

Proof of Theorem 1.1. By Theorem 1.2 and the proof of Theorem 1.3,

(é>[d=80rdeﬁ"] H (p—l)zlJr@F(d,p) (mod p?)

P 0<e<d/2 Lpe/d]
(e,d)=1
where
2p—1 —1 pf_l —1
F(d,p) =la > 0](2a — o + 1)ﬁ + Z (pi — 1+ 1)—]%‘ —
o<ir
Py —p
=(a+[a>0)(2F " —1)+ L 1@
o<igr pi =
also

H <§)C_/;J)(i) _ 1+thu (g>[N(€)_1] (mod 5?)

0<c<d/2
(e,d)=1

d [d=8 or deP]
(3)

where u = bup_(%)(a, N(e)) =0 (mod p). Therefore

Hd/2 (ch/dJ)( d—c /d ) II (L]I)?c_/;J>1+p(C)

0<c< 0<c<d/2
(%) P (c,d)=1
[N(e)=1]\ p
=1+ Sran) (145 (5) )
2
[N(e)=1]
=1+ 5ran) (1005 (5) )
2
d dhu (d\NE=1
=1+ #F(d7 )+p P (—) (mod p?).

This proves (1.2). We are done. [

Acknowledgment. The author thanks the referee for his many helpful comments.
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