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ON ¢-EULER NUMBERS, ¢-SALIE
NUMBERS AND ¢-CARLITZ NUMBERS

HAO PAN AND ZHI-WEI SUN (NANJING)

ABSTRACT. Let (a;q)n = H0<k<n(1 —ag®) forn =0,1,2,.... Define ¢-
Euler numbers Ej,(q), g-Salié numbers Sy, (q) and g-Carlitz numbers Ch, (q)
as follows:

= — (g0

Z Sn(q) io: qn(n 1) 2n/ i (_1)nq'r'L(2n71)$2n
n=0

(q,q)n = ()2 (a9)2n

and

o O gn(n—1)2n+1 ( 1)n n(2n+1) .2n+1
3o P el Y .

- (q,q)n = (@ a)2nt1 (45 9)2n+1

‘We show that
E2n (Q) - E2n+25t(q) = [QS]qt (mOd (]- =+ q)[28]qt>

for any nonnegative integers n, s, t with 2 { ¢, where [k], = (1—¢*)/(1—q);
this is a g-analogue of Stern’s congruence Eay, 425 = Ea, +2° (mod 2S+1).
We also prove that (—¢;q)n = [[ocp<n(1+ q*) divides Sa,,(g) and the
numerator of Cgy(q); this extends Carlitz’s result that 2" divides the Salié
number Ss, and the numerator of the Carlitz number Cs,,. Our result on
g-Salié numbers implies a conjecture of Guo and Zeng.

1. INTRODUCTION

The Euler numbers Fy, E1, Es, ... are defined by
x x —z\ —1 ) on \ —1
2e e’ +e T
E = - — S .
Z nl e 41 < 2 > (nZ:O(Qn)!) ’
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2 H. PAN AND Z. W. SUN

they are all integers because there holds the recursion

) CDE%k:%p (neN={0,1,2,...}),
k=0
20k

where the Kronecker symbol 6, ,,, is 1 or 0 according as n = m or not. It
is easy to see that Fory1 = 0 for every k =0,1,2,.... In 1871 Stern [St]
obtained an interesting arithmetic property of the Euler numbers:

FEopios = Ey, +2° (mod 2°%1) for any n,s € N; (1.1)
equivalently we have
FEop = B, (mod 2°7) <= m =n (mod 2%) for any m,n,s € N. (1.1')

Later Frobenius amplified Stern’s proof in 1910, and several different
proofs of (1.1) or (1.1") were given by Ernvall [E], Wagstaff [W] and Sun
[Su]. Our first goal is to provide a complete g-analogue of the Stern con-
gruence.

As usual we let (a;q)n = [[ocpen(l — aq®) for every n € N, where an
empty product is regarded to have value 1 and hence (a;q)o = 1. For

n € N we set
= > "

0<k<n

[n]q =

this is the usual g-analogue of n. For any n,k € N, if £ < n then we call

m:: Ho<renlrls I ()
k q (H0<s<k;[S]q)(Ho<t<n—k[t]q) (Q3 Q)k(q; Q)n—k

a q-binomial coefficient; if k > n then we let [Z}q = 0. Obviously we have

limg_; mq = (Z) It is easy to see that

[n} :qk[n_ll +{n—1] forall k,n=1,2,3,....
k:q k q k—lq

By this recursion, each g-binomial coefficient is a polynomial in ¢ with
integer coefficients.
We define ¢-Euler numbers E,,(q) (n € N) by

ZE (Zq >3 (1.2)
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Multiplying both sides by Y- q( ") 20 /(q; q@)2n, We obtain the recursion

> [Z} qq(5>En—k(q> — G0 (MEN)

k=0
20k

which implies that E,,(q) € Z[g]. Observe that

& l—q) )"
ZE”'( H0<kz<n ZE )

(4 9)2n n—=0 H0<k<2n[k’]q
and hence lim,_.; E,(q) = E,,.
The usual way to define a g-analogue of Euler numbers is as follows:

n

(See, e.g., [GZ].) We assert that E,(q) = q(g)En(l/q). In fact,

(D (o (—g~ta)"
?;q Enla™ H0<k<n( ZE H0<k<n(1—q—k)

(i ¢ () (=g 1a) ) (i = )

"0 [locrcon(l—a7%) o [lo<r<on(l—d") .
Recently, with the help of cyclotomic polynomials, Guo and Zeng [GZ]

proved that if m,n,s,t € N, m —n = 2°t and 2 1 ¢ then

Esm(q) = 4™ " E2a(q) (mod f[(l + qm))-

r=0

This is a partial g-analogue of Stern’s result.
Using our g-analogue of Euler numbers, we are able to give below a
complete g-analogue of the classical result of Stern.

Theorem 1.1. Let n,s,t € N and 2+tt. Then

E2(q) — Eantast(q) = [2°]r (mod (1 + q)[2%]4¢) . (1.3)

23!)/2(_1)71 (2:;!‘

The Salié numbers S,, (n € N) are given by

ZSnx_zcosha:: (? +e—-)/2 :(Z
n=0 n! n:O(

cosr (e +e7i)/2




4 H. PAN AND Z. W. SUN

Multiplying both sides by > (—1)"2?" /(2n)! we get the recursion

i (Z)( 1)*28, # (n € N)

k=0
2|k

which implies that all Salié numbers are integers and Sox11 = 0 for all
k e N.

By a sophisticated use of some deep properties of Bernoulli numbers,
in 1965 Carlitz [C2] proved that 2™ | Sy, for any n € N (which was
first conjectured by Gandhi [G]). Recently Guo and Zeng [GZ] defined a
g-analogue of Salié numbers in the following way:

o 5 o0 q T
;Sﬂ@ -2 (4; Q)2n/

n=0
and hence

" [2n ~
Z {2]{} (_1)k52n—2k(Q) = q”2 for any n € N.
k=0 q

They conjectured that (—=¢; q)n = [gc <, (1 +¢") divides Sa,(q) (in Z[q]).
We define ¢-Salié numbers by

e " n(n 1)w2n )xZn
nzz;) Sn(Q)m / : (1.4)

n=0 qQQn

Multiplying both sides by Z;O:O(—l)”q(%;)x%/(q; q)2n one finds the re-
cursion

i {%} (~1)*¢(2) S5 _oi(q) = "™V (n € N). (1.5)

— 2k a

In this paper we are able to prove the following g-analogue of Carlitz’s
result concerning Salié numbers.

Theorem 1.2. Let n € N. Then (—¢;q)n = [[ocpcn(l + q*) divides
Son(q) in the ring Zlq|.

Corollary 1.1. For any n € N we have (—q;q),, | Son(q) in the ring Z[q]
as conjectured by Guo and Zeng.

Proof. By Theorem 1.2, So,,(q) = (—¢; q)nPn(q) for some P, (q) € Z[q]. Let
m be a natural number not smaller than deg P. Then ¢™P (¢ ') € Z[q].

Since
) I a+a™= T a+d.

0<k<n 0<k<n
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¢t (”“)52 (¢g~1) is in Z[q] and divisible by (—q; q),. If the equality

Son(q) = ¢(3) San(g™)

holds, then ¢S5, (q) is divisible by (—g¢; q), and hence so is Say,(q) since
q" is relatively prime to (—q;q).

Now let us explain why S, ( ) = q(;)S ( ~1) for any n € N. In fact,

SEOTe e
n;)q Snla™ ZS H0<k<n<1—q—k>

H0<k<n ]' - q
_ i q—n(n 1) 2n/ )( g )
n=0 H0<k<2n 1_q H0<k<2n(1 )
i n 2n Z 5
= = Sn(q )
n=0 H0<k<2n 1 o q H0<k<2n( n—0 n

This concludes our proof.
In 1956 Carlitz [C1] 1nvest1gated the coefficients of

o (e @]
sinh = "
L ey
sin n
n=0

) et _ o~ e r2ntl
sinhz = 5 = 2 CESIE
We call those numbers C,, (n € N) Carlitz numbers. In 1965 Carlitz
[C2] proved a conjecture of Gandhi [G] which states that 2" divides the
numerator of Cy,.
Now we define ¢g-Carlitz numbers C),(q) (n € N) by

n(n—1),.2n+1 n(2n+1) 2n+1
> Cut - =3 e / :
n=0

Multiplying both sides by ano(—l)”q”@”“)w%“/(q; q)2n+1 We get the
recursion

n 2n+1 n(n—
Z {2]{ + 1} (_1)qu(2k+1)c2n—2k(Q) =q (n—1) (n S N). (1_7)
k=0 q

By (1.7) and induction,

[1q[3]g - - [2n 4+ 1]4Can(q) € Z]g];
in particular, (2n + 1)!!Cs,, € Z. If j,k € N and ¢/ = —1, then ¢7(?k+1) =
—1 and hence ¢?**! # 1. Thus ¢’ + 1 is relatively prime to 1 — ¢2**! for
any 7,k € N, and hence (—¢;q), = H0<j<n(1 + ¢7) is relatively prime to
the denominator of Cy,(¢). This basic property will be used later.

Here is our g-analogue of Carlitz’s divisibility result concerning Carlitz
numbers.

where
X

(1.6)

2n+1 2n+1
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Theorem 1.3. For any n € N, (—q; q),, divides the numerator of Ca,(q).
Note that Eog11(q) = Sor+1(q) = Cak11(q) = 0 for all k € N because

,;) B G 7;) D G ,;) DG

are even functions.

Our approach to ¢g-Euler numbers, ¢g-Salié numbers and ¢-Carlitz num-
bers is quite different from that of Guo and Zeng [GZ]. The proofs of
Theorems 1.1-1.3 depend on new recursions for ¢g-Euler numbers, g-Salié
numbers and g-Carlitz numbers. In the next section we will prove Theo-
rem 1.1. In Section 3 we establish an auxiliary theorem which essentially
says that if [ € Z and n € N then

2n
1)k gk(k—1)
> (D' 2%k +1),

kez
2k+1>0

0 (mod (—q;q)n)- (1.8)

(We can also substitute 2n + 1 for 2n in (1.8).) Section 4 is devoted to the
proofs of Theorems 1.2 and 1.3 on the basis of Section 3.

2. ProOOF OF THEOREM 1.1

Lemma 2.1. For any n € N we have

Bul=1- Y oo || Bool@ @1

0<k<n

Proof. Let us recall the following three known identities (cf. Theorem
10.2.1 and Corollary 10.2.2 of [AAR])):

= (@ Dn = (&0
where (2;¢)o0 = [[—o(1 — 2¢™),
e b ELger” (70
;(q;q)n T (59) o d ,;) @d)n (@

Observe that

Iy 2 (Sg@an &) ()
2 ;En@ (4 9)n _<nz:% (@ )n +,;) (@ )n )
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and hence

(X om0+ )

- 1 29| _ ;: ik
(@)oo + (71 @)o0 <1+ (5 4) oo ) (5 4) oo nzzo(q;q)n'

Comparing the coefficients of ™ we obtain that

n

$Po(0) + 5 3Lk f] P =1,

k=0

ie.,
n

Eu) =1~ 3 (aiahs )| Buslo)

0<k<n

Substituting 2n for n in the last equality and recalling that Fs;41(q) =0
for j € N, we immediately obtain the desired (2.1). O

Corollary 2.1. For any n € N we have

Es,(q) =1 (mod 1+ q). (2.2)

Proof. This follows from (2.1) because 1 + ¢ divides (—¢; q), for all m =
1,2,3,.... O

The following trick is simple but useful.

n

H(l + q2k) = [2"*1], for any n € N. (2.3)
k=0

In fact,

" k
- JJa+)=0-¢» [] t+¢)
k=0 0<k<n
2n+1

= =(1-¢")(1+¢)=1—¢
Lemma 2.2. Let m,n,s,t be positive integers with 2m > n and 2 1 t.

Then (—q;q)m [2;t]q is divisible by (14q)Lm=1/2112%] . where we use |a]
to denote the greatest integer not exceeding a real number a.

Proof. Write n = 2*] with k,l € N and 211. Then

1_qn 1_q2kl 1_ql
= = [2¥] 1 [1]-

1-q 1-¢ 1-—¢q

[n]q =
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Obviously [2¥], = H0<j<k(1+q2jl) divides (—¢; q)m = H;’Ll(l—i—qj) since
m > n/2 =271, Thus [2°], = [2°t],/[t], divides

el—gin [2;15] - %[ﬂ]q {2% _ 1} )

ql

Note that [2°]4 = Hi;é(l%—qyt) is relatively prime to [I], = (1—¢")/(1—q)
since [ =1 (mod 2). Therefore [2°],: divides (—q; q)m [QSt}q,
Clearly (1 + ¢)Lm+D/2) divides

L(m+1)/2] ' Lm/2] ‘
[T a+a@ < I] a+¢) = (~aa)m.
j=1 j=1
Since
s—1
1 — q2t 1 — qQSt -1 ‘2 -1 ot
2°]gr = t 2t (1+4q) (—q)’ q"

1-¢ 1-g¢ j=0 r=0

and Zogjq(_Q)j D 0gr<as1 q>t takes value 2571t # 0 at ¢ = —1, the
polynomial [25], is divisible by 1 + ¢ but not by (1 + ¢)?>. Therefore
(1 + q)Lm=1/21129] . divides (—¢; q)m [Z:ﬂq by the above. [

Proof of Theorem 1.1. The case s = 0 is easy. In fact,
E2n(q) — Eant201(q) = Ean(q) =1 =[2" (mod (1 + ¢)[2%]4)

by Corollary 2.1.
Below we handle the case s > 0 and use induction on nn. Assume that

Eo(q)—Eom+2:t(q) = [2°] 4+ (mod (14q)[2°]4¢) whenever 0 < m < n. (x)
(This holds trivially in the case n = 0.) In view of Lemma 2.1, we have

E2n(q) — Eanyost(q)

n+2°"'¢
2n + 25t 2n
= Z (—=q @)2k—1 Eontost—21(q) — Eon—2k(q) |,

k=1 2k 1 2k],

where we set Ej(q) =0 for [ < 0.
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Let 0 < k < n+2°"'t. Applying a g-analogue of the Chu-Vandermonde
identity (cf. [AAR, Exercise 10.4(b)]), we find that

2n + 25t 2n
Eo 05— — FEs,,_
{ ok L 2n+25¢ 2k(Q) [%L 2 2k(Q)

2k on] [ 25t o
=Fopyost_ (2n=7)(2k—7) - Fop_
2n-+201 2k(¢1)j§:0q i1 Lok 5], Lok P2 2k(q)

2k on] [ 25
:E n St_ (2n—j)(2k_j)
2n+25¢ Qk(Q) jE_Oq j , % — ,

+ EZ} q(E2n+2St—2k(Q) — Ean—2k(q))-

In view of the hypothesis (x),

2n

(—¢; 9261 {2/&:

| Bavsca@) - Eaoofa) =0 (mod 1+ 920

By Lemma 2.2, if 0 < j < 2k then (—¢;q)ak—1[5; ;]
q

(14 ¢)*~1[2%],+. Therefore, if k> 1 then (1 + ¢)[2%],¢ divides

2n + 25t 2n
(—4;q)2k-1 ({ o) LEzn+23t—2k(CI) - [2]{:] qEQn—zk(Q))

is divisible by

by the above. In the case k =1,

ey ] =0 0R, = 00 R,
and hence
(=g 0 < Fn ; 281 qE2n+2St—2(Q) - {2271} qE2n—2(Q)>

=(1 4 q)Banyast—2(q)g* =00 ﬁﬂ [2;15] (mod (14 ¢)[2%]4¢)

an 1 +q
2]
=Font2et—2(q)q""[2°]

=FEon+2:t—2(4)q [2°t]4[2°t — 1] (mod (1 + q)[2°]4¢)
gt [tlq(1 +q[2° — 2]¢) = [2°]¢+ (mod (1 + ¢)[2°]4¢);

in the last step we have noted that ¢** — 1, [t], — 1, [25t — 2], are divisible
by 1+ ¢, and Ea,12s¢2(q) =1 (mod 1+ ¢) by Corollary 2.1.
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Combining the above we obtain that

Ezn(q) = Banyoe(@) = ) 0ral2%]yr = [2°] (mod (1+¢)[2°] ).

This concludes the induction.
The proof of Theorem 1.1 is now complete. [

Remark 2.1. With a bit more efforts we can prove the following more
general result: For k =1,2,3,... let
) —1

oo

> s = (X9

n=0

Given positive integers k, s,t with 2 1 ¢, we have
2k’ 2k s ! s
S (a) = B o) (@) = (2K = 1)[27 o (mod (14 ¢5)[27] )

for all n € N, where k' = 2¥~!. This is a g-analogue of Conjecture 5.5 in
[GZ].

3. AN AUXILIARY THEOREM

Theorem 3.1. For all m,n € N, both

m - - m(n—k) | 21
7= S (Dt [ 5.)
k=0 q
and )
7™ . _1)kgk(k=1)+2m(n—1-k) n 3.9
wi= )L (D' o1 (3.2
0<k<n q

are divisible by (—q;q)n = H0<k<n(1 +q%) in the ring Zlq]. Also, for any
m,n € N and § € {0,1} we have the congruence

n

— 2n B _
St ] =0 e ) 69

Proof. (i) We use induction on n to prove the first part.

For any m € N, clearly both S§* = 1 and Tj* = 0 are divisible by
(—q;q)o = 1, also both S7* = ¢*™ — 1 and T{" = [2], = 1 + ¢ are multiples
of (—¢;q)1 =1+4q.
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Now let n > 1 be an integer and assume that (—q;¢q),—1 divides both
S and T | for all m € N.
For each m € Z we have

- 2n
mo_ 1 n—1_(n—=1l)(n—1—1)+2ml

. 2n
:(_1)nqn(n—1) Z(_l)lql(l-i-l)—an—l—le |: :|
=0 21 q
:(_l)nqn(n—l)—2n(n—1—m)S;L—l—m — (_1)nqn(2m—n+1)571;—1—m‘
In particular,
Sr = (_1)nqn(n+1)‘5’;1 and S;zfl _ (_1)nqn(n71)5«2'

Similarly, for every m € Z we have

n—1
2n
T — -1 n—1—1 (n—1-1)(n—1—2)4+2ml
n z;( )" 2(n—1-1)+1],

n—1
2n
—(—1)"1 (n—1)(n—2) —1)! I(I+1)=2i(n—1)+2lm
(1) > (-1 i),

:(_1)n—lq(n—l)(Qm—n+2)T7?_2_m.

In particular,

Tn—1 _ (_1)n—1qn(n—l)Tn—1 and TS—Z — (_1)n—1q(n—l)(n—2)T3‘

n

For any m € N, clearly

- 2n
Sm+1 —_gm — 1 k _k(k—1)+2m(n—=k)/ 2(n—k) _ 1

k=0
- — m(n— n 2n—1
:Z(_l)qu(k 1)+2m( k)(q2 _ 1)
2k
k=0 q
— 2 — 2
:(q2n _ 1) Z(_l)qu(k—1)+2m(n—k)q2k |: o :|
k=0 q

n—1
2n — 2
= 1) 3 (1) [

k=1 q

2n 1)q2(m—|—n—1)5;n_—11 o (q2n - 1)q2(m+n—2)T:L_—11

=(¢"" — 1)@t (Psrn - T
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and

n—1
qT;InJrl _ T:Ln _ Z(_l)qu(k71)+2m(nflfk) (q2(n717k)+1 _ 1) 2n
P 2k +1 q

2n —1

— k kk +2m(n—1— k)( _1)|: :|
E q

2k +1 a

n—2
Z Jrgh(k=D)+2m(n—1-k) (2k-+1 2n —2
2k’+1
=0
n—1
1)

2n — 2
1k: k(k—1)4+2m(n—1—k)
(-1 .

+ ("~

k=0
=(¢*" — 1)g*" "~ 3Tm1 + (" - 1)S" 4,

therefore by the induction hypothesis we have
Smtl = 8™ (mod (—q;q),) and ¢TI =T (mod (—q;q)n).

(Note that both ¢"»~Vs-1 = (—1)»718""1 and V=271 =
(—1)"T" =2 are divisible by (—¢; ¢),_1 by the induction hypothesis.) Thus,
if (—¢;q), divides both SY and T? then it divides both S™ and T'™ for
every m=0,1,2,....

Observe that

n 2n
0 _ )k gk(E=1)
Sp=> (~1)*q on — 9,

k=0
n n—1
2n —1 2n —1

— -1 k k(k—1)+2n—2k 1 k _k(k—1)

2 (-1’ on— ok T 2.1 o — 2%k — 1

k=1 q k=0 q

& )
_ 1)k F(k—1) ,2(2n—2k)

k:l( )a 4 2n — 2k

— oM — 2
_ 1)k k(k=1)( 2n—2k | 2n—2k—1 -
+k2::1( )eq D (@ 1 g Non— 21,

! om — 2
1)k (=1 -
+ ;;)( )"a 2n — 2k — 2],
=" 8 — "L+ T+ Sp

and hence (—q;q),_1 divides SO by the induction hypothesis. Similarly,
(—q; @)n_1 divides T? = —¢**~ 2T1 L+ +q)SE  +T0
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Since
(—1)"g" 1S9 = 5r7t = S0 (mod (—q;q)n)

and
1= (—1)"q"" D = 1 (=1)"(=1)""" = 2 (mod 1+ "),

we must have S°/(—q¢;¢)n—1 = 0 (mod 1 + ¢") and hence (—q;q), | S°.
Similarly, as

g A~ gm0 — =22 = 70 (mod (—g; q)n)

and 1 — (=1)""1¢"("»=2) = 2 (mod 1 + ¢"), we have T0/(—q;q)n_1 =
0 (mod 1+ ¢") and hence (—¢q; q),, | TC. This concludes our induction step
and proves the first part.

(ii) Now fix m,n € N and § € {0,1}. We can verify (3.3) directly if
n < 2.

Below we assume n > 2. By a previous argument,

- n(2m+n— —m n(n— - m— 2n
(_1)n5;n+n 1 _ q (2m+ 1)Sn =g (n—1) Z(_l)qu(k—l—Q 1) |:2k:|
k=0 )

and

(_1)n—1TTrln+n—2 :q(n—l)(2m+n—2)Tn—m

n—1
2n
—,(n—=1)(n—2) 1 k _k(k+2m—1) )
q g—o( )*q [2k+1]q

Thus, applying the first part we immediately get (3.3).
The proof of Theorem 3.1 is now complete. [

Remark 3.1. Theorem 3.1 is somewhat difficult and sophisticated, however
it is easy to evaluate the sums

Do) -5 ()=

k=0 k=0

and
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Now let us explain why (1.8) holds for any | € Z and n € N. Write
l=2m+ 6 withm € Z and ¢ € {0,1}. Then

2n
1Yk R(E—1)
> (D' 2k +1],

1 2n
= 2, (DN )[2(k:+m)+5L

_Z (k=) (k=m=1) 2n
2k—|—5q

keN
n—~4

2n
—(—1)™ 1 k k(k—1)—2km+m(m-+1) )
RUDIEW sers).

So (1.8) follows from Theorem 3.1. Note also that

2n + 1
1)k k(k—l){ }
kzez (=1)%¢ 2k +1],
2k+1>0

2n
B )k gk(E=1)
> (D' 2%k +1-1],

ke
2k+1—1>0

2n
_ -1 k k(k—1)+2k+I
2 (-1 2%k +1],

kezZ
2k+1>0

2n
_ 1)k k(k=1)
D DR 2k +1-2|,

kezZ
2k-+1—2>0

and thus

ST (~1)kgktD [222:;1 0 (mod (—¢;¢)n)- (3.4)

keZ
2k—+1>0
4. PROOFS OF THEOREMS 1.2 AND 1.3

Lemma 4.1. We have

1+Z —¢; @)2n—1 (_1)“ o iq(i’“) (_1)%%%(_1)%% (4.1)

Ga)om = (@2 = (G0
and
oo oo
1 nl.Qn—l—l 2k+1 k: 2k—|—1 -1 leZ
> (—g:9)2n ) —Zq : 1) (4.2)
n—0 (q q)2n+1 )2k+1 —o (45 @)
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Proof. Let § € {0,1}. Then

oo (_1)kq(2k+5) 2k+§ (—1)l$2l

D

=0 (4 @)2k+6 —0 (4 9)21

Z n 2n+§ i (2k2+5) {27} —+ (5}
_ q )
oo (@ Dmis (= 2k +0],

By the g-binomial theorem (cf. [AAR, Corollary 10.2.2(c)]),

(23 @)m = zmj M q(—1)kq(§>xk for any m € N.

k
k=0
Thus
"L 2ete\ [2n 4+ O 2nto ) 2nto 2n+ 0
L] S el
k=0 2k +0 a  1=0 a  1=0 l q
=(—=1;9)2n+s + (=1)°(1;q)2n+s
and hence

% (_1)kq(2k+6) ok+s O (—l)lx2l

D

k=0 (4 @)2k+s —0 (¢:9)2
_ Z )" a? e (=L @)2n4s + (=1)°(1; @)2n4s
n— 2n+5 2

— 7'L27'L .
14+ 308 (=4 @)an 1 i 5 =0,

( l)n 2n+1

ZZO:O(_QQ Q)Qnm if 6 =1.

We are done. U]
Remark 4.1. (4.1) and (4.2) are g-analogues of the trigonometric identities

1 + cos(2x) 9

in(2
5 =cos“x and sin(2z)

=sinxcosx

respectively.

Lemma 4.2. Let n > k > 1 be integers. Then both (—g; Q)k[gmq and

(=@ )k [5311], are divisible by

k
(_qn—k—l—l; Q)k — H(l + qn—j—ﬁ—l)‘
Jj=1
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Proof. Observe that

2n 2]+1)(1 _ q2n7(2j71)+1)

R e
- _ 2 _ 2j—1
k|, 1+t 1-¢ et (1—=¢¥)(1—¢¥1)

f[ 1 _ qn j+1)(1 4 qn ]+1)(1 o q2n72j+1)
B 2 S R} R [ el

k 1+qn i+1y k 1 — @22+l

Jj=
n j=
[ e T

o

and hence

n—k+1

(—q s Ok

ot 1i[1<1 )

Recall that (—¢" ¥+l q), = [l rcicn( + q¢') is relatively prime to

Hj (1 = ¢?~1). Therefore (—¢"**1;¢) | (—q;9)k [Zk]
Since [2k + 1], is also relatively prime to (— q” k1. q)k, we have

S

2n+1 2n + 1], [Qn

2k+1} (_Q;Q)km } =0 (mod (—¢"~ L S Q)k)-

qu

This concludes the proof. [
Remark 4.2. Lemma 4.2 yields a trivial result as ¢ — 1.

Proof of Theorem 1.2. Clearly

- ( i S00(0);
Z San(q

On the other hand, by (4.1) we have

)( ! qqznlﬂ”n )

4 q)2

Z q)2k—1 BZ} qSQn—%(CI)-

(q; q)zn

qk(k—l)x% > (—l)lle

J@ ::gég (¢ @)2r = (¢:9)2

-3 RS e 3]

n=0 QQanO
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Therefore

SHURED DG C Wt AT
0<k<n q

= 0| =0 tmod (i)

with the help of (1.8) or Theorem 3.1. If (—¢;q); | S2:(q) for all 0 < I < n,
then

— k 2n —
Son(@) == Y (=D (=@:0)2-1 |, | Sen-20(q) =0 (mod (=g:q)n)
q

0<k<n

since [ x(1+ ¢’) divides Sa,,_2x(q) and [l kejcn(l+ ¢’) divides
(=4 9)2k-1 [gﬂq by Lemma 4.2. Thus we have the desired result by in-
duction. [J

Remark 4.3. As ¢ — 1 our new recursion for ¢-Salié numbers yields a
useful recursion for Salié numbers:

2n N 2n
Sont D, (F)M2 1<2k:)52”‘2’“:(_1> Z(_l)k<2k)’
0<k<n k=0

from which the Carlitz result 2" | Sy, follows by induction.

Proof of Theorem 1.3. It is apparent that

<ZC2n 2n) (i(_QW)Q’lM)

o (4 @)2n+1
—Z > (=DM (—q: q)2n {2k+ 1] Caon—2k(q)-
D2nt1 i 0 g
On the other hand, (4.2) implies that
o qk(k—l)x2k+1 ° (_1)Zx2l
=2 ) (@0
o \&q)2k+1 =5 (454)21
S
— q)2n+1 —o 2k+1],

Therefore we have the recurrence relation

pRCVREVN W ENRMUES ST e

— 2k +1 — 2k +1 ¢
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The right-hand side of the last equality is a multiple of (—g;q), by (3.4).
So we have

> (=1F(=g; q)ax BZ:[ 1

] Con—2x(g) =0 (mod (~g;q)n).
k=0 q

Assume that (—g;¢); divides the numerator of Cy(q) for each 0 < [ <
n. Then (—q;q), divides the numerator of (—¢; q)2x BZIH(IC%—%(Q) for

each 0 < k < n, because HO<_j<n—k(1 + ¢’) divides the numerator of
Con—2k(q) and [],, 4 _;<,(1+¢’) divides (—q;q)2 BZIH(] by Lemma 4.2.
Thus (—¢; q), must also divide the numerator of [2”1+ 1} Con(q) = 2n +

q
1]4C2n(q). Recall that [2n + 1], is relatively prime to (—g;q),. So the
numerator of Cy,,(q) is divisible by (—¢; q)y.-

In view of the above, the desired result follows by induction on n. [

Remark 4.4. As ¢ — 1 our new recursion for g-Carlitz numbers yields the
following recurrence relation for Carlitz numbers:

S (G e = o e (1)

k=0 k=0
From this one can easily deduce the Carlitz congruence Cs,, = 0 (mod 2").
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