Acta Arith. 124(2006), no. 1, 41–57.

ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS

HAO PAN AND ZHI-WEI SUN (NANJING)

ABSTRACT. Let $(a;q)_n = \prod_{0 \leq k < n} (1 - aq^k)$ for $n = 0, 1, 2, \ldots$ Define q-Euler numbers $E_n(q)$, q-Salié numbers $S_n(q)$ and q-Carlitz numbers $C_n(q)$ as follows:

$$\sum_{n=0}^{\infty} E_n(q) \frac{x^n}{(q,q)_n} = \left(\sum_{n=0}^{\infty} \frac{q^{n(2n-1)}x^{2n}}{(q;q)_{2n}}\right)^{-1},$$
$$\sum_{n=0}^{\infty} S_n(q) \frac{x^n}{(q;q)_n} = \sum_{n=0}^{\infty} \frac{q^{n(n-1)}x^{2n}}{(q;q)_{2n}} \Big/ \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(2n-1)}x^{2n}}{(q;q)_{2n}}$$

and

$$\sum_{n=0}^{\infty} C_n(q) \frac{x^n}{(q;q)_n} = \sum_{n=0}^{\infty} \frac{q^{n(n-1)} x^{2n+1}}{(q;q)_{2n+1}} \Big/ \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(2n+1)} x^{2n+1}}{(q;q)_{2n+1}}$$

We show that

$$E_{2n}(q) - E_{2n+2^{s}t}(q) \equiv [2^{s}]_{q^{t}} \pmod{(1+q)[2^{s}]_{q^{t}}}$$

for any nonnegative integers n, s, t with $2 \nmid t$, where $[k]_q = (1-q^k)/(1-q)$; this is a q-analogue of Stern's congruence $E_{2n+2^s} \equiv E_{2n} + 2^s \pmod{2^{s+1}}$. We also prove that $(-q;q)_n = \prod_{0 < k \leq n} (1+q^k)$ divides $S_{2n}(q)$ and the numerator of $C_{2n}(q)$; this extends Carlitz's result that 2^n divides the Salié number S_{2n} and the numerator of the Carlitz number C_{2n} . Our result on q-Salié numbers implies a conjecture of Guo and Zeng.

1. INTRODUCTION

The Euler numbers E_0, E_1, E_2, \ldots are defined by

$$\sum_{n=0}^{\infty} E_n \frac{x^n}{n!} = \frac{2e^x}{e^{2x} + 1} = \left(\frac{e^x + e^{-x}}{2}\right)^{-1} = \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}\right)^{-1};$$

2000 Mathematics Subject Classifications: Primary 11B65; Secondary 05A30, 11A07, 11B68.

The second author is responsible for communications, and supported by the National Science Fund for Distinguished Young Scholars (no. 10425103) and a Key Program of NSF in P. R. China.

they are all integers because there holds the recursion

$$\sum_{\substack{k=0\\2|k}}^{n} \binom{n}{k} E_{n-k} = \delta_{n,0} \quad (n \in \mathbb{N} = \{0, 1, 2, \dots\}),$$

where the Kronecker symbol $\delta_{n,m}$ is 1 or 0 according as n = m or not. It is easy to see that $E_{2k+1} = 0$ for every $k = 0, 1, 2, \ldots$ In 1871 Stern [St] obtained an interesting arithmetic property of the Euler numbers:

$$E_{2n+2^s} \equiv E_{2n} + 2^s \pmod{2^{s+1}} \text{ for any } n, s \in \mathbb{N}; \tag{1.1}$$

equivalently we have

$$E_{2m} \equiv E_{2n} \pmod{2^{s+1}} \iff m \equiv n \pmod{2^s} \text{ for any } m, n, s \in \mathbb{N}.$$
 (1.1')

Later Frobenius amplified Stern's proof in 1910, and several different proofs of (1.1) or (1.1') were given by Ernvall [E], Wagstaff [W] and Sun [Su]. Our first goal is to provide a complete q-analogue of the Stern congruence.

As usual we let $(a;q)_n = \prod_{0 \leq k < n} (1 - aq^k)$ for every $n \in \mathbb{N}$, where an empty product is regarded to have value 1 and hence $(a;q)_0 = 1$. For $n \in \mathbb{N}$ we set

$$[n]_q = \frac{1 - q^n}{1 - q} = \sum_{0 \leqslant k < n} q^k,$$

this is the usual q-analogue of n. For any $n, k \in \mathbb{N}$, if $k \leq n$ then we call

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{\prod_{0 < r \le n} [r]_q}{(\prod_{0 < s \le k} [s]_q)(\prod_{0 < t \le n-k} [t]_q)} = \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}$$

a *q*-binomial coefficient; if k > n then we let $\begin{bmatrix} n \\ k \end{bmatrix}_q = 0$. Obviously we have $\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}$. It is easy to see that

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q \quad \text{for all } k, n = 1, 2, 3, \dots$$

By this recursion, each q-binomial coefficient is a polynomial in q with integer coefficients.

We define q-Euler numbers $E_n(q)$ $(n \in \mathbb{N})$ by

$$\sum_{n=0}^{\infty} E_n(q) \frac{x^n}{(q;q)_n} = \left(\sum_{n=0}^{\infty} \frac{q^{\binom{2n}{2}} x^{2n}}{(q;q)_{2n}}\right)^{-1}.$$
 (1.2)

Multiplying both sides by $\sum_{n=0}^{\infty} q^{\binom{2n}{2}} x^{2n} / (q;q)_{2n}$, we obtain the recursion

$$\sum_{\substack{k=0\\2|k}}^{n} {n \brack k}_{q} q^{\binom{k}{2}} E_{n-k}(q) = \delta_{n,0} \quad (n \in \mathbb{N})$$

which implies that $E_n(q) \in \mathbb{Z}[q]$. Observe that

$$\sum_{n=0}^{\infty} E_n(q) \frac{x^n}{\prod_{0 < k \le n} [k]_q} = \sum_{n=0}^{\infty} E_n(q) \frac{((1-q)x)^n}{(q;q)_n}$$
$$= \left(\sum_{n=0}^{\infty} \frac{q^{\binom{2n}{2}} ((1-q)x)^{2n}}{(q;q)_{2n}}\right)^{-1} = \left(\sum_{n=0}^{\infty} \frac{q^{\binom{2n}{2}} x^{2n}}{\prod_{0 < k \le 2n} [k]_q}\right)^{-1}$$

and hence $\lim_{q\to 1} E_n(q) = E_n$.

The usual way to define a q-analogue of Euler numbers is as follows:

$$\sum_{n=0}^{\infty} \tilde{E}_n(q) \frac{x^n}{(q;q)_n} = \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{(q;q)_{2n}}\right)^{-1}.$$

(See, e.g., [GZ].) We assert that $\tilde{E}_n(q) = q^{\binom{n}{2}} E_n(1/q)$. In fact,

$$\sum_{n=0}^{\infty} q^{\binom{n}{2}} E_n(q^{-1}) \frac{x^n}{\prod_{0 < k \le n} (1-q^k)} = \sum_{n=0}^{\infty} E_n(q^{-1}) \frac{(-q^{-1}x)^n}{\prod_{0 < k \le n} (1-q^{-k})}$$
$$= \left(\sum_{n=0}^{\infty} \frac{q^{-\binom{2n}{2}} (-q^{-1}x)^{2n}}{\prod_{0 < k \le 2n} (1-q^{-k})}\right)^{-1} = \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{\prod_{0 < k \le 2n} (1-q^k)}\right)^{-1}.$$

Recently, with the help of cyclotomic polynomials, Guo and Zeng [GZ] proved that if $m, n, s, t \in \mathbb{N}$, $m - n = 2^{s}t$ and $2 \nmid t$ then

$$\tilde{E}_{2m}(q) \equiv q^{m-n} \tilde{E}_{2n}(q) \left(\mod \prod_{r=0}^{s} (1+q^{2^{r_t}}) \right).$$

This is a partial q-analogue of Stern's result.

Using our q-analogue of Euler numbers, we are able to give below a complete q-analogue of the classical result of Stern.

Theorem 1.1. Let $n, s, t \in \mathbb{N}$ and $2 \nmid t$. Then

$$E_{2n}(q) - E_{2n+2^s t}(q) \equiv [2^s]_{q^t} \pmod{(1+q)[2^s]_{q^t}}.$$
 (1.3)

The Salié numbers S_n $(n \in \mathbb{N})$ are given by

$$\sum_{n=0}^{\infty} S_n \frac{x^n}{n!} = \frac{\cosh x}{\cos x} = \frac{(e^x + e^{-x})/2}{(e^{ix} + e^{-ix})/2} = \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}\right) \Big/ \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Multiplying both sides by $\sum_{n=0}^{\infty} (-1)^n x^{2n} / (2n)!$ we get the recursion

$$\sum_{\substack{k=0\\2|k}}^{n} \binom{n}{k} (-1)^{k/2} S_{n-k} = \frac{1+(-1)^n}{2} \quad (n \in \mathbb{N})$$

which implies that all Salié numbers are integers and $S_{2k+1} = 0$ for all $k \in \mathbb{N}$.

By a sophisticated use of some deep properties of Bernoulli numbers, in 1965 Carlitz [C2] proved that $2^n \mid S_{2n}$ for any $n \in \mathbb{N}$ (which was first conjectured by Gandhi [G]). Recently Guo and Zeng [GZ] defined a q-analogue of Salié numbers in the following way:

$$\sum_{n=0}^{\infty} \tilde{S}_n(q) \frac{x^n}{(q;q)_n} = \sum_{n=0}^{\infty} \frac{q^{n^2} x^{2n}}{(q;q)_{2n}} \bigg/ \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(q;q)_{2n}}$$

and hence

$$\sum_{k=0}^{n} \begin{bmatrix} 2n \\ 2k \end{bmatrix}_{q} (-1)^{k} \tilde{S}_{2n-2k}(q) = q^{n^{2}} \text{ for any } n \in \mathbb{N}.$$

They conjectured that $(-q;q)_n = \prod_{0 < k \leq n} (1+q^k)$ divides $\tilde{S}_{2n}(q)$ (in $\mathbb{Z}[q]$).

We define q-Salié numbers by

$$\sum_{n=0}^{\infty} S_n(q) \frac{x^n}{(q;q)_n} = \sum_{n=0}^{\infty} \frac{q^{n(n-1)} x^{2n}}{(q;q)_{2n}} \bigg/ \sum_{n=0}^{\infty} \frac{(-1)^n q^{\binom{2n}{2}} x^{2n}}{(q;q)_{2n}}.$$
 (1.4)

Multiplying both sides by $\sum_{n=0}^{\infty} (-1)^n q^{\binom{2n}{2}} x^{2n} / (q;q)_{2n}$ one finds the recursion

$$\sum_{k=0}^{n} \begin{bmatrix} 2n\\2k \end{bmatrix}_{q} (-1)^{k} q^{\binom{2k}{2}} S_{2n-2k}(q) = q^{n(n-1)} \quad (n \in \mathbb{N}).$$
(1.5)

In this paper we are able to prove the following q-analogue of Carlitz's result concerning Salié numbers.

Theorem 1.2. Let $n \in \mathbb{N}$. Then $(-q;q)_n = \prod_{0 < k \leq n} (1+q^k)$ divides $S_{2n}(q)$ in the ring $\mathbb{Z}[q]$.

Corollary 1.1. For any $n \in \mathbb{N}$ we have $(-q;q)_n \mid \tilde{S}_{2n}(q)$ in the ring $\mathbb{Z}[q]$ as conjectured by Guo and Zenq.

Proof. By Theorem 1.2, $S_{2n}(q) = (-q;q)_n P_n(q)$ for some $P_n(q) \in \mathbb{Z}[q]$. Let m be a natural number not smaller than deg P. Then $q^m P(q^{-1}) \in \mathbb{Z}[q]$. Since

$$q^{\binom{n+1}{2}} \prod_{0 < k \leq n} (1+q^{-k}) = \prod_{0 < k \leq n} (1+q^k),$$

$$q^{m+\binom{n+1}{2}}S_{2n}(q^{-1})$$
 is in $\mathbb{Z}[q]$ and divisible by $(-q;q)_n$. If the equality $\tilde{S}_{2n}(q) = q^{\binom{2n}{2}}S_{2n}(q^{-1})$

holds, then $q^m \tilde{S}_{2n}(q)$ is divisible by $(-q;q)_n$ and hence so is $\tilde{S}_{2n}(q)$ since q^m is relatively prime to $(-q;q)_n$.

Now let us explain why $\tilde{S}_n(q) = q^{\binom{n}{2}} S_n(q^{-1})$ for any $n \in \mathbb{N}$. In fact,

$$\sum_{n=0}^{\infty} q^{\binom{n}{2}} S_n(q^{-1}) \frac{x^n}{\prod_{0 < k \le n} (1-q^k)} = \sum_{n=0}^{\infty} S_n(q^{-1}) \frac{(-q^{-1}x)^n}{\prod_{0 < k \le n} (1-q^{-k})}$$
$$= \sum_{n=0}^{\infty} \frac{q^{-n(n-1)}(-q^{-1}x)^{2n}}{\prod_{0 < k \le 2n} (1-q^{-k})} \Big/ \sum_{n=0}^{\infty} \frac{(-1)^n q^{-\binom{2n}{2}}(-q^{-1}x)^{2n}}{\prod_{0 < k \le 2n} (1-q^{-k})}$$
$$= \sum_{n=0}^{\infty} \frac{q^{n^2} x^{2n}}{\prod_{0 < k \le 2n} (1-q^k)} \Big/ \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{\prod_{0 < k \le 2n} (1-q^k)} = \sum_{n=0}^{\infty} \tilde{S}_n(q) \frac{x^n}{(q;q)_n}.$$

This concludes our proof. \Box

In 1956 Carlitz [C1] investigated the coefficients of

$$\frac{\sinh x}{\sin x} = \sum_{n=0}^{\infty} C_n \frac{x^n}{n!},$$

where

$$\sinh x = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}.$$

We call those numbers C_n $(n \in \mathbb{N})$ Carlitz numbers. In 1965 Carlitz [C2] proved a conjecture of Gandhi [G] which states that 2^n divides the numerator of C_{2n} .

Now we define q-Carlitz numbers $C_n(q)$ $(n \in \mathbb{N})$ by

$$\sum_{n=0}^{\infty} C_n(q) \frac{x^n}{(q;q)_n} = \sum_{n=0}^{\infty} \frac{q^{n(n-1)} x^{2n+1}}{(q;q)_{2n+1}} \Big/ \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(2n+1)} x^{2n+1}}{(q;q)_{2n+1}}.$$
 (1.6)

Multiplying both sides by $\sum_{n=0}^{\infty}(-1)^nq^{n(2n+1)}x^{2n+1}/(q;q)_{2n+1}$ we get the recursion

$$\sum_{k=0}^{n} \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_{q} (-1)^{k} q^{k(2k+1)} C_{2n-2k}(q) = q^{n(n-1)} \quad (n \in \mathbb{N}).$$
(1.7)

By (1.7) and induction,

$$1]_q[3]_q \cdots [2n+1]_q C_{2n}(q) \in \mathbb{Z}[q];$$

in particular, $(2n+1)!!C_{2n} \in \mathbb{Z}$. If $j,k \in \mathbb{N}$ and $q^j = -1$, then $q^{j(2k+1)} = -1$ and hence $q^{2k+1} \neq 1$. Thus $q^j + 1$ is relatively prime to $1 - q^{2k+1}$ for any $j,k \in \mathbb{N}$, and hence $(-q;q)_n = \prod_{0 < j \leq n} (1+q^j)$ is relatively prime to the denominator of $C_{2n}(q)$. This basic property will be used later.

Here is our q-analogue of Carlitz's divisibility result concerning Carlitz numbers.

Theorem 1.3. For any $n \in \mathbb{N}$, $(-q;q)_n$ divides the numerator of $C_{2n}(q)$.

Note that $E_{2k+1}(q) = S_{2k+1}(q) = C_{2k+1}(q) = 0$ for all $k \in \mathbb{N}$ because

$$\sum_{n=0}^{\infty} E_n(q) \frac{x^n}{(q;q)_n}, \ \sum_{n=0}^{\infty} S_n(q) \frac{x^n}{(q;q)_n}, \ \sum_{n=0}^{\infty} C_n(q) \frac{x^n}{(q;q)_n}$$

are even functions.

Our approach to q-Euler numbers, q-Salié numbers and q-Carlitz numbers is quite different from that of Guo and Zeng [GZ]. The proofs of Theorems 1.1–1.3 depend on new recursions for q-Euler numbers, q-Salié numbers and q-Carlitz numbers. In the next section we will prove Theorem 1.1. In Section 3 we establish an auxiliary theorem which essentially says that if $l \in \mathbb{Z}$ and $n \in \mathbb{N}$ then

$$\sum_{\substack{k \in \mathbb{Z} \\ 2k+l \ge 0}} (-1)^k q^{k(k-1)} {2n \\ 2k+l}_q \equiv 0 \pmod{(-q;q)_n}.$$
(1.8)

(We can also substitute 2n + 1 for 2n in (1.8).) Section 4 is devoted to the proofs of Theorems 1.2 and 1.3 on the basis of Section 3.

2. Proof of Theorem 1.1

Lemma 2.1. For any $n \in \mathbb{N}$ we have

$$E_{2n}(q) = 1 - \sum_{0 < k \leq n} (-q;q)_{2k-1} \begin{bmatrix} 2n\\2k \end{bmatrix}_q E_{2(n-k)}(q).$$
(2.1)

Proof. Let us recall the following three known identities (cf. Theorem 10.2.1 and Corollary 10.2.2 of [AAR]):

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}(-x)^n}{(q;q)_n} = (x;q)_{\infty}$$

where $(x;q)_{\infty} = \prod_{n=0}^{\infty} (1 - xq^n),$

$$\sum_{n=0}^{\infty} \frac{x^n}{(q;q)_n} = \frac{1}{(x;q)_{\infty}} \text{ and } \sum_{n=0}^{\infty} \frac{(-1;q)_n x^n}{(q;q)_n} = \frac{(-x;q)_{\infty}}{(x;q)_{\infty}}.$$

Observe that

$$\frac{1}{2}\sum_{n=0}^{\infty} E_n(q)\frac{x^n}{(q;q)_n} = \left(\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}x^n}{(q;q)_n} + \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}(-x)^n}{(q;q)_n}\right)^{-1} = \frac{1}{(x;q)_{\infty} + (-x;q)_{\infty}}$$

and hence

$$\frac{1}{2} \left(\sum_{n=0}^{\infty} E_n(q) \frac{x^n}{(q;q)_n} \right) \left(1 + \sum_{n=0}^{\infty} \frac{(-1;q)_n x^n}{(q;q)_n} \right)$$
$$= \frac{1}{(x;q)_\infty + (-x;q)_\infty} \left(1 + \frac{(-x;q)_\infty}{(x;q)_\infty} \right) = \frac{1}{(x;q)_\infty} = \sum_{n=0}^{\infty} \frac{x^n}{(q;q)_n}.$$

Comparing the coefficients of x^n we obtain that

$$\frac{1}{2}E_n(q) + \frac{1}{2}\sum_{k=0}^n (-1;q)_k {n \brack k}_q E_{n-k}(q) = 1,$$

i.e.,

$$E_n(q) = 1 - \sum_{0 < k \leq n} (-q; q)_{k-1} {n \brack k}_q E_{n-k}(q).$$

Substituting 2n for n in the last equality and recalling that $E_{2j+1}(q) = 0$ for $j \in \mathbb{N}$, we immediately obtain the desired (2.1). \Box

Corollary 2.1. For any $n \in \mathbb{N}$ we have

$$E_{2n}(q) \equiv 1 \pmod{1+q}.$$
 (2.2)

Proof. This follows from (2.1) because 1 + q divides $(-q;q)_m$ for all $m = 1, 2, 3, \ldots$

The following trick is simple but useful.

$$\prod_{k=0}^{n} (1+q^{2^k}) = [2^{n+1}]_q \quad \text{for any } n \in \mathbb{N}.$$
(2.3)

In fact,

$$(1-q)\prod_{k=0}^{n} (1+q^{2^{k}}) = (1-q^{2})\prod_{0 < k \le n} (1+q^{2^{k}})$$
$$= \dots = (1-q^{2^{n}})(1+q^{2^{n}}) = 1-q^{2^{n+1}}.$$

Lemma 2.2. Let m, n, s, t be positive integers with $2m \ge n$ and $2 \nmid t$. Then $(-q; q)_m {2^s t \brack n}_q$ is divisible by $(1+q)^{\lfloor (m-1)/2 \rfloor} [2^s]_{q^t}$, where we use $\lfloor \alpha \rfloor$ to denote the greatest integer not exceeding a real number α .

Proof. Write $n = 2^k l$ with $k, l \in \mathbb{N}$ and $2 \nmid l$. Then

$$[n]_q = \frac{1-q^n}{1-q} = \frac{1-q^{2^k l}}{1-q^l} \cdot \frac{1-q^l}{1-q} = [2^k]_{q^l}[l]_q.$$

Obviously $[2^k]_{q^l} = \prod_{0 \le j < k} (1+q^{2^j l})$ divides $(-q;q)_m = \prod_{j=1}^m (1+q^j)$ since $m \ge n/2 = 2^{k-1}l$. Thus $[2^s]_{q^t} = [2^s t]_q/[t]_q$ divides

$$[l]_q(-q;q)_m \begin{bmatrix} 2^s t \\ n \end{bmatrix}_q = \frac{(-q;q)_m}{[2^k]_{q^l}} [2^s t]_q \begin{bmatrix} 2^s t - 1 \\ n - 1 \end{bmatrix}_q.$$

Note that $[2^s]_{q^t} = \prod_{r=0}^{s-1} (1+q^{2^r t})$ is relatively prime to $[l]_q = (1-q^l)/(1-q)$ since $l \equiv 1 \pmod{2}$. Therefore $[2^s]_{q^t}$ divides $(-q;q)_m \begin{bmatrix} 2^{s_t} \\ n \end{bmatrix}_q$.

Clearly $(1+q)^{\lfloor (m+1)/2 \rfloor}$ divides

$$\prod_{j=1}^{\lfloor (m+1)/2 \rfloor} (1+q^{2j-1}) \times \prod_{j=1}^{\lfloor m/2 \rfloor} (1+q^{2j}) = (-q;q)_m$$

Since

$$[2^{s}]_{q^{t}} = \frac{1 - q^{2t}}{1 - q^{t}} \cdot \frac{1 - q^{2^{s}t}}{1 - q^{2t}} = (1 + q) \sum_{j=0}^{t-1} (-q)^{j} \sum_{r=0}^{2^{s-1}-1} q^{2rt}$$

and $\sum_{0 \leq j < t} (-q)^j \sum_{0 \leq r < 2^{s-1}} q^{2rt}$ takes value $2^{s-1}t \neq 0$ at q = -1, the polynomial $[2^s]_{q^t}$ is divisible by 1 + q but not by $(1 + q)^2$. Therefore $(1 + q)^{\lfloor (m-1)/2 \rfloor} [2^s]_{q^t}$ divides $(-q;q)_m [\frac{2^s t}{n}]_q$ by the above. \Box

Proof of Theorem 1.1. The case s = 0 is easy. In fact,

$$E_{2n}(q) - E_{2n+2^0t}(q) = E_{2n}(q) \equiv 1 = [2^0]_{q^t} \pmod{(1+q)[2^0]_{q^t}}$$

by Corollary 2.1.

Below we handle the case s > 0 and use induction on n. Assume that

$$E_{2m}(q) - E_{2m+2^s t}(q) \equiv [2^s]_{q^t} \pmod{(1+q)[2^s]_{q^t}}$$
 whenever $0 \leq m < n$. (*)

(This holds trivially in the case n = 0.) In view of Lemma 2.1, we have

$$E_{2n}(q) - E_{2n+2^{s}t}(q) = \sum_{k=1}^{n+2^{s-1}t} (-q;q)_{2k-1} \left(\begin{bmatrix} 2n+2^{s}t\\2k \end{bmatrix}_{q} E_{2n+2^{s}t-2k}(q) - \begin{bmatrix} 2n\\2k \end{bmatrix}_{q} E_{2n-2k}(q) \right),$$

where we set $E_l(q) = 0$ for l < 0.

Let $0 < k \leq n + 2^{s-1}t$. Applying a *q*-analogue of the Chu-Vandermonde identity (cf. [AAR, Exercise 10.4(b)]), we find that

$$\begin{bmatrix} 2n+2^{s}t\\2k \end{bmatrix}_{q} E_{2n+2^{s}t-2k}(q) - \begin{bmatrix} 2n\\2k \end{bmatrix}_{q} E_{2n-2k}(q)$$

$$= E_{2n+2^{s}t-2k}(q) \sum_{j=0}^{2k} q^{(2n-j)(2k-j)} \begin{bmatrix} 2n\\j \end{bmatrix}_{q} \begin{bmatrix} 2^{s}t\\2k-j \end{bmatrix}_{q} - \begin{bmatrix} 2n\\2k \end{bmatrix}_{q} E_{2n-2k}(q)$$

$$= E_{2n+2^{s}t-2k}(q) \sum_{j=0}^{2k-1} q^{(2n-j)(2k-j)} \begin{bmatrix} 2n\\j \end{bmatrix}_{q} \begin{bmatrix} 2^{s}t\\2k-j \end{bmatrix}_{q}$$

$$+ \begin{bmatrix} 2n\\2k \end{bmatrix}_{q} (E_{2n+2^{s}t-2k}(q) - E_{2n-2k}(q)).$$

In view of the hypothesis (*),

$$(-q;q)_{2k-1} \begin{bmatrix} 2n\\2k \end{bmatrix}_q (E_{2n+2^s t-2k}(q) - E_{2(n-k)}(q)) \equiv 0 \pmod{(1+q)[2^s]_{q^t}}.$$

By Lemma 2.2, if $0 \leq j < 2k$ then $(-q;q)_{2k-1} \begin{bmatrix} 2^{s_t} \\ 2k-j \end{bmatrix}_q$ is divisible by $(1+q)^{k-1} [2^s]_{q^t}$. Therefore, if k > 1 then $(1+q) [2^s]_{q^t}$ divides

$$(-q;q)_{2k-1}\left(\begin{bmatrix}2n+2^{s}t\\2k\end{bmatrix}_{q}E_{2n+2^{s}t-2k}(q)-\begin{bmatrix}2n\\2k\end{bmatrix}_{q}E_{2n-2k}(q)\right)$$

by the above. In the case k = 1,

$$(-q;q)_{2k-1} \begin{bmatrix} 2^{s}t\\2k-1 \end{bmatrix}_{q} = (1+q)[2^{s}t]_{q} = (1+q)[2^{s}]_{q^{t}}[t]_{q}$$

and hence

$$(-q;q)_{1} \left(\begin{bmatrix} 2n+2^{s}t\\2 \end{bmatrix}_{q}^{E_{2n+2^{s}t-2}(q)} - \begin{bmatrix} 2n\\2 \end{bmatrix}_{q}^{E_{2n-2}(q)} \right)$$

$$\equiv (1+q)E_{2n+2^{s}t-2}(q)q^{(2n-0)(2-0)} \begin{bmatrix} 2n\\0 \end{bmatrix}_{q} \begin{bmatrix} 2^{s}t\\2 \end{bmatrix}_{q} \pmod{(1+q)[2^{s}]_{q^{t}}}$$

$$\equiv E_{2n+2^{s}t-2}(q)q^{4n}\frac{1+q}{[2]_{q}}[2^{s}t]_{q}[2^{s}t-1]_{q} \pmod{(1+q)[2^{s}]_{q^{t}}}$$

$$\equiv E_{2n+2^{s}t-2}(q)q^{4n}[2^{s}]_{q^{t}}[t]_{q}(1+q[2^{s}t-2]_{q}) \equiv [2^{s}]_{q^{t}} \pmod{(1+q)[2^{s}]_{q^{t}}};$$

in the last step we have noted that $q^{4n} - 1$, $[t]_q - 1$, $[2^s t - 2]_q$ are divisible by 1 + q, and $E_{2n+2^s t-2}(q) \equiv 1 \pmod{1+q}$ by Corollary 2.1. Combining the above we obtain that

$$E_{2n}(q) - E_{2n+2^{s}t}(q) \equiv \sum_{k=1}^{n+2^{s-1}t} \delta_{k,1}[2^{s}]_{q^{t}} = [2^{s}]_{q^{t}} \pmod{(1+q)[2^{s}]_{q^{t}}}.$$

This concludes the induction.

The proof of Theorem 1.1 is now complete. \Box

Remark 2.1. With a bit more efforts we can prove the following more general result: For k = 1, 2, 3, ... let

$$\sum_{n=0}^{\infty} E_n^{(k)}(q) \frac{x^n}{(q;q)_n} = \left(\sum_{n=0}^{\infty} q^{\binom{kn}{2}} \frac{x^{kn}}{(q;q)_{kn}}\right)^{-1}.$$

Given positive integers k, s, t with $2 \nmid t$, we have

$$E_{2k'n}^{(2k')}(q) - E_{2k'(n+2^{s-1}t)}^{(2k')}(q) \equiv (2k'-1)[2^s]_{q^{k't}} \pmod{(1+q^{k'})[2^s]_{q^{k't}}}$$

for all $n \in \mathbb{N}$, where $k' = 2^{k-1}$. This is a *q*-analogue of Conjecture 5.5 in [GZ].

3. AN AUXILIARY THEOREM

Theorem 3.1. For all $m, n \in \mathbb{N}$, both

$$S_n^m := \sum_{k=0}^n (-1)^k q^{k(k-1)+2m(n-k)} \begin{bmatrix} 2n\\2k \end{bmatrix}_q$$
(3.1)

and

$$T_n^m := \sum_{0 \le k < n} (-1)^k q^{k(k-1) + 2m(n-1-k)} \begin{bmatrix} 2n\\ 2k+1 \end{bmatrix}_q$$
(3.2)

are divisible by $(-q;q)_n = \prod_{0 < k \leq n} (1+q^k)$ in the ring $\mathbb{Z}[q]$. Also, for any $m, n \in \mathbb{N}$ and $\delta \in \{0,1\}$ we have the congruence

$$\sum_{k=0}^{n} (-1)^{k} q^{k(k+2m-1)} {2n \choose 2k+\delta}_{q} \equiv 0 \pmod{(-q;q)_{n}}.$$
 (3.3)

Proof. (i) We use induction on n to prove the first part.

For any $m \in \mathbb{N}$, clearly both $S_0^m = 1$ and $T_0^m = 0$ are divisible by $(-q;q)_0 = 1$, also both $S_1^m = q^{2m} - 1$ and $T_1^m = [2]_q = 1 + q$ are multiples of $(-q;q)_1 = 1 + q$.

Now let n > 1 be an integer and assume that $(-q;q)_{n-1}$ divides both S_{n-1}^m and T_{n-1}^m for all $m \in \mathbb{N}$. For each $m \in \mathbb{Z}$ we have

$$S_n^m = \sum_{l=0}^n (-1)^{n-l} q^{(n-l)(n-l-1)+2ml} \begin{bmatrix} 2n\\ 2(n-l) \end{bmatrix}_q$$
$$= (-1)^n q^{n(n-1)} \sum_{l=0}^n (-1)^l q^{l(l+1)-2ln+2lm} \begin{bmatrix} 2n\\ 2l \end{bmatrix}_q$$
$$= (-1)^n q^{n(n-1)-2n(n-1-m)} S_n^{n-1-m} = (-1)^n q^{n(2m-n+1)} S_n^{n-1-m}.$$

In particular,

$$S_n^n = (-1)^n q^{n(n+1)} S_n^{-1}$$
 and $S_n^{n-1} = (-1)^n q^{n(n-1)} S_n^0$.

Similarly, for every $m \in \mathbb{Z}$ we have

$$\begin{split} T_n^m &= \sum_{l=0}^{n-1} (-1)^{n-1-l} q^{(n-1-l)(n-l-2)+2ml} \begin{bmatrix} 2n\\ 2(n-1-l)+1 \end{bmatrix}_q \\ &= (-1)^{n-1} q^{(n-1)(n-2)} \sum_{l=0}^{n-1} (-1)^l q^{l(l+1)-2l(n-1)+2lm} \begin{bmatrix} 2n\\ 2l+1 \end{bmatrix}_q \\ &= (-1)^{n-1} q^{(n-1)(2m-n+2)} T_n^{n-2-m}. \end{split}$$

In particular,

$$T_n^{n-1} = (-1)^{n-1} q^{n(n-1)} T_n^{-1}$$
 and $T_n^{n-2} = (-1)^{n-1} q^{(n-1)(n-2)} T_n^0.$

For any $m \in \mathbb{N}$, clearly

$$\begin{split} S_n^{m+1} - S_n^m &= \sum_{k=0}^n (-1)^k q^{k(k-1)+2m(n-k)} (q^{2(n-k)}-1) \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q \\ &= \sum_{k=0}^n (-1)^k q^{k(k-1)+2m(n-k)} (q^{2n}-1) \begin{bmatrix} 2n-1 \\ 2k \end{bmatrix}_q \\ &= (q^{2n}-1) \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)+2m(n-k)} q^{2k} \begin{bmatrix} 2n-2 \\ 2k \end{bmatrix}_q \\ &+ (q^{2n}-1) \sum_{k=1}^{n-1} (-1)^k q^{k(k-1)+2m(n-k)} \begin{bmatrix} 2n-2 \\ 2k-1 \end{bmatrix}_q \\ &= (q^{2n}-1) q^{2(m+n-1)} S_{n-1}^{m-1} - (q^{2n}-1) q^{2(m+n-2)} T_{n-1}^{m-1} \\ &= (q^{2n}-1) q^{2(m+n-2)} (q^2 S_{n-1}^{m-1} - T_{n-1}^{m-1}) \end{split}$$

and

$$\begin{split} qT_n^{m+1} - T_n^m &= \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)+2m(n-1-k)} (q^{2(n-1-k)+1} - 1) \begin{bmatrix} 2n \\ 2k+1 \end{bmatrix}_q \\ &= \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)+2m(n-1-k)} (q^{2n} - 1) \begin{bmatrix} 2n-1 \\ 2k+1 \end{bmatrix}_q \\ &= (q^{2n} - 1) \sum_{k=0}^{n-2} (-1)^k q^{k(k-1)+2m(n-1-k)} q^{2k+1} \begin{bmatrix} 2n-2 \\ 2k+1 \end{bmatrix}_q \\ &+ (q^{2n} - 1) \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)+2m(n-1-k)} \begin{bmatrix} 2n-2 \\ 2k \end{bmatrix}_q \\ &= (q^{2n} - 1) q^{2m+2n-3} T_{n-1}^{m-1} + (q^{2n} - 1) S_{n-1}^m, \end{split}$$

therefore by the induction hypothesis we have

$$S_n^{m+1} \equiv S_n^m \pmod{(-q;q)_n}$$
 and $qT_n^{m+1} \equiv T_n^m \pmod{(-q;q)_n}$

(Note that both $q^{n(n-1)}S_{n-1}^{-1} = (-1)^{n-1}S_{n-1}^{n-1}$ and $q^{(n-1)(n-2)}T_{n-1}^{-1} = (-1)^n T_{n-1}^{n-2}$ are divisible by $(-q;q)_{n-1}$ by the induction hypothesis.) Thus, if $(-q;q)_n$ divides both S_n^0 and T_n^0 then it divides both S_n^m and T_n^m for every $m = 0, 1, 2, \ldots$

Observe that

$$\begin{split} S_n^0 &= \sum_{k=0}^n (-1)^k q^{k(k-1)} \begin{bmatrix} 2n\\ 2n-2k \end{bmatrix}_q \\ &= \sum_{k=1}^n (-1)^k q^{k(k-1)+2n-2k} \begin{bmatrix} 2n-1\\ 2n-2k \end{bmatrix}_q + \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n-1\\ 2n-2k-1 \end{bmatrix}_q \\ &= \sum_{k=1}^n (-1)^k q^{k(k-1)} q^{2(2n-2k)} \begin{bmatrix} 2n-2\\ 2n-2k \end{bmatrix}_q \\ &+ \sum_{k=1}^{n-1} (-1)^k q^{k(k-1)} (q^{2n-2k} + q^{2n-2k-1}) \begin{bmatrix} 2n-2\\ 2n-2k-1 \end{bmatrix}_q \\ &+ \sum_{k=0}^{n-1} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n-2\\ 2n-2k-2 \end{bmatrix}_q \\ &= -q^{2n-2} S_{n-1}^1 - q^{2n-3} (1+q) T_{n-1}^0 + S_{n-1}^0 \end{split}$$

and hence $(-q;q)_{n-1}$ divides S_n^0 by the induction hypothesis. Similarly, $(-q;q)_{n-1}$ divides $T_n^0 = -q^{2n-2}T_{n-1}^1 + (1+q)S_{n-1}^1 + T_{n-1}^0$.

12

Since

$$(-1)^n q^{n(n-1)} S_n^0 = S_n^{n-1} \equiv S_n^0 \pmod{(-q;q)_n}$$

and

$$1 - (-1)^n q^{n(n-1)} \equiv 1 - (-1)^n (-1)^{n-1} = 2 \pmod{1+q^n},$$

we must have $S_n^0/(-q;q)_{n-1} \equiv 0 \pmod{1+q^n}$ and hence $(-q;q)_n \mid S_n^0$. Similarly, as

$$q^{n-2}(-1)^{n-1}q^{(n-1)(n-2)}T_n^0 = q^{n-2}T_n^{n-2} \equiv T_n^0 \pmod{(-q;q)_n}$$

and $1 - (-1)^{n-1}q^{n(n-2)} \equiv 2 \pmod{1+q^n}$, we have $T_n^0/(-q;q)_{n-1} \equiv 0 \pmod{1+q^n}$ and hence $(-q;q)_n \mid T_n^0$. This concludes our induction step and proves the first part.

(ii) Now fix $m, n \in \mathbb{N}$ and $\delta \in \{0, 1\}$. We can verify (3.3) directly if n < 2.

Below we assume $n \ge 2$. By a previous argument,

$$(-1)^n S_n^{m+n-1} = q^{n(2m+n-1)} S_n^{-m} = q^{n(n-1)} \sum_{k=0}^n (-1)^k q^{k(k+2m-1)} \begin{bmatrix} 2n\\2k \end{bmatrix}_q$$

and

$$\begin{split} (-1)^{n-1}T_n^{m+n-2} =& q^{(n-1)(2m+n-2)}T_n^{-m} \\ =& q^{(n-1)(n-2)}\sum_{k=0}^{n-1}(-1)^k q^{k(k+2m-1)} {2n \brack 2k+1}_q. \end{split}$$

Thus, applying the first part we immediately get (3.3).

The proof of Theorem 3.1 is now complete. \Box

Remark 3.1. Theorem 3.1 is somewhat difficult and sophisticated, however it is easy to evaluate the sums

$$\sum_{k=0}^{n} (-1)^k \binom{2n}{2k} = \sum_{k=0}^{2n} \binom{2n}{k} \frac{i^k + (-i)^k}{2}$$

and

$$\sum_{0 \le k < n} (-1)^k \binom{2n}{2k+1} = \sum_{k=0}^{2n} \binom{2n}{k} \frac{i^k - (-i)^k}{2i}.$$

Now let us explain why (1.8) holds for any $l \in \mathbb{Z}$ and $n \in \mathbb{N}$. Write $l = 2m + \delta$ with $m \in \mathbb{Z}$ and $\delta \in \{0, 1\}$. Then

$$\sum_{\substack{k \in \mathbb{Z} \\ 2k+l \ge 0}} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n \\ 2k+l \end{bmatrix}_q$$

=
$$\sum_{\substack{k+m \in \mathbb{N} \\ k+m \in \mathbb{N}}} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n \\ 2(k+m) + \delta \end{bmatrix}_q$$

=
$$\sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} (-1)^{k-m} q^{(k-m)(k-m-1)} \begin{bmatrix} 2n \\ 2k+\delta \end{bmatrix}_q$$

=
$$(-1)^m \sum_{\substack{k=0} \\ k=0}^{n-\delta} (-1)^k q^{k(k-1)-2km+m(m+1)} \begin{bmatrix} 2n \\ 2k+\delta \end{bmatrix}_q.$$

So (1.8) follows from Theorem 3.1. Note also that

$$\begin{split} &\sum_{\substack{k \in \mathbb{Z} \\ 2k+l \ge 0}} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n+1\\ 2k+l \end{bmatrix}_q \\ &- \sum_{\substack{k \in \mathbb{Z} \\ 2k+l-1 \ge 0}} (-1)^k q^{k(k-1)} \begin{bmatrix} 2n\\ 2k+l-1 \end{bmatrix}_q \\ &= \sum_{\substack{k \in \mathbb{Z} \\ 2k+l \ge 0}} (-1)^k q^{k(k-1)+2k+l} \begin{bmatrix} 2n\\ 2k+l \end{bmatrix}_q \\ &= q^l \sum_{\substack{k \in \mathbb{Z} \\ 2k+l-2 \ge 0}} (-1)^{k-1} q^{k(k-1)} \begin{bmatrix} 2n\\ 2k+l-2 \end{bmatrix}_q \end{split}$$

and thus

$$\sum_{\substack{k \in \mathbb{Z} \\ 2k+l \ge 0}} (-1)^k q^{k(k-1)} {2n+1 \brack 2k+l}_q \equiv 0 \pmod{(-q;q)_n}.$$
(3.4)

4. Proofs of Theorems 1.2 and 1.3

Lemma 4.1. We have

$$1 + \sum_{n=1}^{\infty} (-q;q)_{2n-1} \frac{(-1)^n x^{2n}}{(q;q)_{2n}} = \sum_{k=0}^{\infty} q^{\binom{2k}{2}} \frac{(-1)^k x^{2k}}{(q;q)_{2k}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}}$$
(4.1)

and

$$\sum_{n=0}^{\infty} (-q;q)_{2n} \frac{(-1)^n x^{2n+1}}{(q;q)_{2n+1}} = \sum_{k=0}^{\infty} q^{\binom{2k+1}{2}} \frac{(-1)^k x^{2k+1}}{(q;q)_{2k+1}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}}.$$
 (4.2)

Proof. Let $\delta \in \{0, 1\}$. Then

$$\sum_{k=0}^{\infty} \frac{(-1)^k q^{\binom{2k+\delta}{2}} x^{2k+\delta}}{(q;q)_{2k+\delta}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+\delta}}{(q;q)_{2n+\delta}} \sum_{k=0}^n q^{\binom{2k+\delta}{2}} \begin{bmatrix} 2n+\delta\\2k+\delta \end{bmatrix}_q.$$

By the q-binomial theorem (cf. [AAR, Corollary 10.2.2(c)]),

$$(x;q)_m = \sum_{k=0}^m \begin{bmatrix} m \\ k \end{bmatrix}_q (-1)^k q^{\binom{k}{2}} x^k \text{ for any } m \in \mathbb{N}.$$

Thus

$$2\sum_{k=0}^{n} q^{\binom{2k+\delta}{2}} \begin{bmatrix} 2n+\delta\\2k+\delta \end{bmatrix}_{q} = \sum_{l=0}^{2n+\delta} q^{\binom{l}{2}} \begin{bmatrix} 2n+\delta\\l \end{bmatrix}_{q} + \sum_{l=0}^{2n+\delta} (-1)^{\delta+l} q^{\binom{l}{2}} \begin{bmatrix} 2n+\delta\\l \end{bmatrix}_{q} = (-1;q)_{2n+\delta} + (-1)^{\delta} (1;q)_{2n+\delta}$$

and hence

$$\begin{split} &\sum_{k=0}^{\infty} \frac{(-1)^k q^{\binom{2k+\delta}{2}} x^{2k+\delta}}{(q;q)_{2k+\delta}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+\delta}}{(q;q)_{2n+\delta}} \cdot \frac{(-1;q)_{2n+\delta} + (-1)^{\delta} (1;q)_{2n+\delta}}{2} \\ &= \begin{cases} 1 + \sum_{n=1}^{\infty} (-q;q)_{2n-1} \frac{(-1)^n x^{2n}}{(q;q)_{2n}} & \text{if } \delta = 0, \\ \sum_{n=0}^{\infty} (-q;q)_{2n} \frac{(-1)^n x^{2n+1}}{(q;q)_{2n+1}} & \text{if } \delta = 1. \end{cases} \end{split}$$

We are done. \Box

Remark 4.1. (4.1) and (4.2) are q-analogues of the trigonometric identities

$$\frac{1+\cos(2x)}{2} = \cos^2 x \quad \text{and} \quad \frac{\sin(2x)}{2} = \sin x \cos x$$

respectively.

Lemma 4.2. Let $n \ge k \ge 1$ be integers. Then both $(-q;q)_k \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q$ and $(-q;q)_k \begin{bmatrix} 2n+1 \\ 2k+1 \end{bmatrix}_q$ are divisible by

$$(-q^{n-k+1};q)_k = \prod_{j=1}^k (1+q^{n-j+1}).$$

Proof. Observe that

$$\begin{split} \begin{bmatrix} 2n\\ 2k \end{bmatrix}_q &= \prod_{j=1}^{2k} \frac{1-q^{2n-j+1}}{1-q^j} = \prod_{j=1}^k \frac{(1-q^{2n-2j+1})(1-q^{2n-(2j-1)+1})}{(1-q^{2j})(1-q^{2j-1})} \\ &= \prod_{j=1}^k \frac{(1-q^{n-j+1})(1+q^{n-j+1})(1-q^{2n-2j+1})}{(1-q^j)(1+q^j)(1-q^{2j-1})} \\ &= \begin{bmatrix} n\\ k \end{bmatrix}_q \frac{\prod_{j=1}^k (1+q^{n-j+1})}{(-q;q)_k} \prod_{j=1}^k \frac{1-q^{2n-2j+1}}{1-q^{2j-1}} \end{split}$$

and hence

$$(-q^{n-k+1};q)_k \mid (-q;q)_k \begin{bmatrix} 2n\\2k \end{bmatrix}_q \prod_{j=1}^k (1-q^{2j-1}).$$

Recall that $(-q^{n-k+1};q)_k = \prod_{n-k < l \le n} (1+q^l)$ is relatively prime to $\prod_{j=1}^k (1-q^{2j-1})$. Therefore $(-q^{n-k+1};q)_k \mid (-q;q)_k \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q$. Since $[2k+1]_q$ is also relatively prime to $(-q^{n-k+1};q)_k$, we have

$$(-q;q)_k \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_q = (-q;q)_k \frac{[2n+1]_q}{[2k+1]_q} \begin{bmatrix} 2n\\2k \end{bmatrix}_q \equiv 0 \pmod{(-q^{n-k+1};q)_k}.$$

This concludes the proof. \Box

Remark 4.2. Lemma 4.2 yields a trivial result as $q \to 1$.

Proof of Theorem 1.2. Clearly

$$f(x) := \left(\sum_{n=0}^{\infty} S_{2n}(q) \frac{x^{2n}}{(q;q)_{2n}}\right) \left(1 + \sum_{n=1}^{\infty} (-q;q)_{2n-1} \frac{(-1)^n x^{2n}}{(q;q)_{2n}}\right)$$
$$= \sum_{n=0}^{\infty} S_{2n}(q) \frac{x^{2n}}{(q;q)_{2n}} + \sum_{n=1}^{\infty} \frac{x^{2n}}{(q;q)_{2n}} \sum_{k=1}^{n} (-1)^k (-q;q)_{2k-1} \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q S_{2n-2k}(q).$$

On the other hand, by (4.1) we have

$$f(x) = \sum_{k=0}^{\infty} \frac{q^{k(k-1)} x^{2k}}{(q;q)_{2k}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q;q)_{2n}} \sum_{k=0}^n (-1)^k q^{k(k-1)} \begin{bmatrix} 2n\\2k \end{bmatrix}_q.$$

Therefore

$$S_{2n}(q) + \sum_{0 < k \leq n} (-1)^k (-q;q)_{2k-1} \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q S_{2n-2k}(q)$$
$$= (-1)^n \sum_{k=0}^n (-1)^k q^{k(k-1)} \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q \equiv 0 \pmod{(-q;q)_n}$$

with the help of (1.8) or Theorem 3.1. If $(-q;q)_l \mid S_{2l}(q)$ for all $0 \leq l < n$, then

$$S_{2n}(q) \equiv -\sum_{0 < k \leq n} (-1)^k (-q;q)_{2k-1} \begin{bmatrix} 2n\\2k \end{bmatrix}_q S_{2n-2k}(q) \equiv 0 \pmod{(-q;q)_n}$$

since $\prod_{0 < j \le n-k} (1+q^j)$ divides $S_{2n-2k}(q)$ and $\prod_{n-k < j \le n} (1+q^j)$ divides $(-q;q)_{2k-1} \begin{bmatrix} 2n \\ 2k \end{bmatrix}_q$ by Lemma 4.2. Thus we have the desired result by induction. \Box

Remark 4.3. As $q \to 1$ our new recursion for q-Salié numbers yields a useful recursion for Salié numbers:

$$S_{2n} + \sum_{0 < k \leq n} (-1)^k 2^{2k-1} \binom{2n}{2k} S_{2n-2k} = (-1)^n \sum_{k=0}^n (-1)^k \binom{2n}{2k},$$

from which the Carlitz result $2^n | S_{2n}$ follows by induction.

Proof of Theorem 1.3. It is apparent that

$$g(x) := \left(\sum_{n=0}^{\infty} C_{2n}(q) \frac{x^{2n}}{(q;q)_{2n}}\right) \left(\sum_{n=0}^{\infty} (-q;q)_{2n} \frac{(-1)^n x^{2n+1}}{(q;q)_{2n+1}}\right)$$
$$= \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(q;q)_{2n+1}} \sum_{k=0}^{n} (-1)^k (-q;q)_{2k} \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_q C_{2n-2k}(q).$$

On the other hand, (4.2) implies that

$$\begin{split} g(x) &= \sum_{k=0}^{\infty} \frac{q^{k(k-1)} x^{2k+1}}{(q;q)_{2k+1}} \sum_{l=0}^{\infty} \frac{(-1)^l x^{2l}}{(q;q)_{2l}} \\ &= \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(q;q)_{2n+1}} \sum_{k=0}^n (-1)^{n-k} q^{k(k-1)} \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_q. \end{split}$$

Therefore we have the recurrence relation

$$\sum_{k=0}^{n} (-1)^{k} (-q;q)_{2k} \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_{q} C_{2n-2k}(q) = \sum_{k=0}^{n} (-1)^{n-k} q^{k(k-1)} \begin{bmatrix} 2n+1\\2k+1 \end{bmatrix}_{q}.$$

The right-hand side of the last equality is a multiple of $(-q;q)_n$ by (3.4). So we have

$$\sum_{k=0}^{n} (-1)^{k} (-q;q)_{2k} \begin{bmatrix} 2n+1\\ 2k+1 \end{bmatrix}_{q} C_{2n-2k}(q) \equiv 0 \pmod{(-q;q)_{n}}.$$

Assume that $(-q;q)_l$ divides the numerator of $C_{2l}(q)$ for each $0 \leq l < n$. Then $(-q;q)_n$ divides the numerator of $(-q;q)_{2k} {\binom{2n+1}{2k+1}}_q C_{2n-2k}(q)$ for each $0 < k \leq n$, because $\prod_{0 < j \leq n-k} (1+q^j)$ divides the numerator of $C_{2n-2k}(q)$ and $\prod_{n-k < j \leq n} (1+q^j)$ divides $(-q;q)_{2k} {\binom{2n+1}{2k+1}}_q$ by Lemma 4.2. Thus $(-q;q)_n$ must also divide the numerator of ${\binom{2n+1}{1}}_q C_{2n}(q) = [2n+1]_q C_{2n}(q)$. Recall that $[2n+1]_q$ is relatively prime to $(-q;q)_n$. So the numerator of $C_{2n}(q)$ is divisible by $(-q;q)_n$.

In view of the above, the desired result follows by induction on n. \Box

Remark 4.4. As $q \to 1$ our new recursion for q-Carlitz numbers yields the following recurrence relation for Carlitz numbers:

$$\sum_{k=0}^{n} (-1)^{k} 2^{2k} \binom{2n+1}{2k+1} C_{2n-2k} = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} \binom{2n+1}{2k+1}.$$

From this one can easily deduce the Carlitz congruence $C_{2n} \equiv 0 \pmod{2^n}$.

Acknowledgments. The second author is indebted to Prof. Jiang Zeng at University of Lyon-I for showing Carlitz's paper [C2] and the preprint [GZ] during Sun's visit to the Institute of Camille Jordan. This paper was finished during Sun's visit to the University of California at Irvine; he would like to thank Prof. Daqing Wan for the invitation.

References

- [AAR] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
- [C1] L. Carlitz, The coefficients of $\sinh x / \sin x$, Math. Mag. 29 (1956), 193-197.
- [C2] L. Carlitz, The coefficients of $\cosh x / \cos x$, Monatsh. Math. **69** (1965), 129-135.
- [E] R. Ernvall, Generalized Bernoulli numbers, generalized irregular primes, and class number, Ann. Univ. Turku. Ser. A, I(178), 1979, 72 pp.
- [G] J. M. Gandhi, The coefficients of $\cosh x / \cos x$ and a note on Carlitz's coefficients of $\sinh x / \sin x$, Math. Mag. **31** (1958), 185-191.
- [GZ] Victor J. W. Guo and J. Zeng, Some arithmetic properties of the q-Euler numbers and q-Salié numbers, European J. Combin. 27 (2006), 884–895.
- [St] M. A. Stern, Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math. 79 (1875), 67-98.
- [Su] Z. W. Sun, On Euler numbers modulo powers of two, J. Number Theory 115 (2005), 371–380.
- [W] S. S. Wagstaff, Jr., Prime divisors of the Bernoulli and Euler numbers, in: Number Theory for the Millennium, III (Urbana, IL, 2000), 357–374, A K Peters, Natick, MA, 2002.

Department of Mathematics Nanjing University Nanjing 210093 People's Republic of China E-mail: (Hao Pan) haopan79@yahoo.com.cn (Zhi-Wei Sun) zwsun@nju.edu.cn