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Abstract. By a very simple argument, we prove that if l, m, n ∈ {0, 1, 2, . . . } then

l∑
k=0

(−1)m−k
( l

k

)(m− k

n

)( 2k

k − 2l + m

)
=

l∑
k=0

( l

k

)(2k

n

)( n− l

m + n− 3k − l

)
.

On the basis of this identity, for d, r ∈ {0, 1, 2, . . . } we construct explicit F (d, r) and
G(d, r) such that for any prime p > max{d, r} we have

p−1∑
k=1

krCk+d ≡
{

F (d, r) (mod p) if p ≡ 1 (mod 3),

G(d, r) (mod p) if p ≡ 2 (mod 3),

where Cn denotes the Catalan number 1
n+1

(2n
n

)
. For example, when p > 5 is a

prime, we have

p−1∑
k=1

k2Ck ≡
{
−2/3 (mod p) if p ≡ 1 (mod 3),

−1/3 (mod p) if p ≡ 2 (mod 3);

and ∑
0<k<p−4

Ck+4

k
≡

{
503/30 (mod p) if p ≡ 1 (mod 3),

−100/3 (mod p) if p ≡ 2 (mod 3).

This paper also contains some new recurrence relations for Catalan numbers.
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1. Introduction

As usual, for k ∈ Z we define the binomial coefficient
(
x
k

)
as follows:

(
x

k

)
=


1
k!

∏k−1
j=0 (x− j) if k > 0,

1 if k = 0,
0 if k < 0.

There are many combinatorial identities involving binomial coefficients. (See, e.g.,
[GJ], [GKP] and [PWZ].) A nice identity of Dixon (cf. [PWZ, p. 43]) states that∑

k∈Z
(−1)k

(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=

(a+ b+ c)!
a!b!c!

for any a, b, c ∈ N = {0, 1, 2, . . . }.
During the second author’s visit (January–March, 2005) to the Institute of

Camille Jordan at Univ. Lyon-I, Dr. Victor J. W. Guo told Sun that he had
made the following “conjecture”: Given l,m ∈ N one has

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

l

)(
2k

k − 2l +m

)
=

{ (
2m/3
m/3

)(
m/3

l−m/3

)
if 3 | m,

0 otherwise;

in other words,

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

l

)(
2k

k − 2l +m

)
= [3 | m]

(
l

dm/3e

)(
2dm/3e

l

)
, (1.0)

where d·e is the ceiling function, and for an assertion A we adopt the notation

[A] =
{

1 if A holds,
0 otherwise.

The above conjecture is similar to Dixon’s identity in some sense; of course it can
be proved with the aid of computer via the WZ method or Zeilberger’s algorithm (cf.
[PWZ]). After we showed (1.0) in a preliminary version of this paper by Lagrange’s
inversion formula (cf. [GJ, p. 17]), Prof. C. Krattenthaler at Univ. Lyon-I kindly
told us that (1.0) can also be proved by letting a = m− 3l, b = 1/2− l and x→ 1
in Bailey’s hypergeometric series identity (cf. [B] or Ex. 38(a) of [AAR, p. 185])

3F2

(
a, 2b− a− 1, a− 2b+ 2

b, a− b+ 3/2 ;
x

4

)
=

1
(1− x)a 3F2

(
a/3, (a+ 1)/3, (a+ 2)/3

b, a− b+ 3/2 ; − 27x
4(1− x)3

)
.

In this paper, by a simple argument we show the following combinatorial identity
the special case n = l of which yields (1.0).
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Theorem 1.1. Provided that l,m, n ∈ N, we have

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

n

)(
2k

k − 2l +m

)
=

l∑
k=0

(
l

k

)(
2k
n

)(
n− l

m+ n− 3k − l

)
.

(1.1)

Remark 1.1. (a) The preceding hypergeometric series identity of Bailey does not
imply (1.1) which involves three parameters l, m and n. However, Prof. C. Krat-
tenthaler informed us that (1.1) can also be deduced by putting a = m/3 − l,
b = d = 1−2l+m and e = 1− l+m−n in the complicated hypergeometric identity
(3.26) of [KR] (which was obtained on the basis of Bailey’s identity). Neverthe-
less, (1.1) has not been pointed out explicitly before, and our proof of (1.1) is very
elementary and particularly simple.

(b) The identity (1.1) might have a combinatorial interpretation related to
Callan’s idea (cf. [C]) in his combinatorial proof of a curious identity due to Sun.

Corollary 1.1. Let l and m be nonnegative integers. Then

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

l + 1

)(
2k

k − 2l +m

)
= (1− [3 | m− 1])

(
l

dm/3e

)(
2dm/3e
l + 1

)
(1.2)

and

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

l + 2

)(
2k

k − 2l +m

)
= (1 + [3 | m+ 1])

(
l

dm/3e

)(
2dm/3e
l + 2

)
.

(1.3)

Proof. Putting n = l + j in (1.1) with j ∈ {1, 2}, we get that

l∑
k=0

(−1)m−k

(
l

k

)(
m− k

l + j

)(
2k

k − 2l +m

)
=

l∑
k=0

(
l

k

)(
2k
l + j

)(
j

j − (3k −m)

)
.

If 0 6 3k −m 6 j, then m/3 6 k 6 (m+ 2)/3 and hence k = dm/3e. Note that(
1

1− (3dm/3e −m)

)
= 1− [3 | m−1] and

(
2

2− (3dm/3e −m)

)
= 1+[3 | m+1].

So we have (1.2) and (1.3). �

From (1.0), (1.2) and (1.3) we can deduce the following result.

Theorem 1.2. Let p be a prime and d ∈ {0, . . . , p}. Then

p−1∑
k=0

(
2k
k + d

)
≡

(
p− d

3

)
(mod p), (1.4)
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where the Legendre symbol (a
3 ) coincides with the unique integer in {0,±1} satisfy-

ing a ≡ (a
3 ) (mod 3). Also,

p−1∑
k=1

k

(
2k
k + d

)
≡

(
[3 | p− d]− 1

3

) (
2

(
p− d

3

)
− d

)
− [p = 3] (mod p), (1.5)

and
p−1∑
k=1

(
2k

k+d

)
k

≡
{
d−1(−1 + 2(−1)d + 3[3 | p− d]) (mod p) if d 6= 0,
−[p = 3] (mod p) if d = 0.

(1.6)

The well-known Catalan numbers given by

Cn =
1

n+ 1

(
2n
n

)
=

(
2n
n

)
−

(
2n
n− 1

)
(n = 0, 1, 2, . . . )

play important roles in combinatorics. For n ∈ N and j = 0, 1, . . . , n+1, we define

Cn,j = 2
(

2n
n− j

)
−

(
2n

n− 1− j

)
−

(
2n

n+ 1− j

)
and view Cn,j/2 as a generalized Catalan number; it is clear that Cn,0/2 = Cn.
From (1.6) we can deduce the following result.

Corollary 1.2. Let p be a prime. Then, for any d = 0, . . . , p− 1 we have

p−1∑
k=1

Ck+d

k
≡ −[p = 3]Cd +

d+1∑
j=1

(
−1 + 2(−1)j + 3[3 | p− j]

) Cd,j

j
(mod p). (1.7)

Consequently, if p > 5 then

p−1∑
k=1

Ck

k
≡ 3

2

(
1−

(p
3

))
(mod p), (1.8)

p−2∑
k=1

Ck+1

k
≡ 3

4

(
1 +

(p
3

))
(mod p), (1.9)

p−3∑
k=1

Ck+2

k
≡ 3

(p
3

)
(mod p), (1.10)

p−4∑
k=1

Ck+3

k
≡

207(p
3 )− 47
24

(mod p), (1.11)

p−5∑
k=1

Ck+4

k
≡

1503(p
3 )− 497
60

(mod p). (1.12)
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Proof. Let d ∈ {0, . . . , p− 1} and k ∈ N. With the help of the Chu-Vandermonde
identity (cf. [GKP, (5.27)]),

Ck+d =
(

2k + 2d
k + d

)
−

(
2k + 2d
k + d− 1

)
=

d∑
j=−d

(
2d
d− j

)(
2k
k + j

)
−

d∑
j=−d

(
2d
d− j

)(
2k

k + j − 1

)

=
d∑

j=−d

(
2d
d− j

)(
2k
k + j

)
−

d+1∑
i=−d−1

(
2d

d− 1− i

)(
2k
k + i

)

=
∑

0<j6d

((
2d
d− j

)(
2k
k + j

)
+

(
2d
d+ j

)(
2k
k − j

))

−
∑

0<j6d+1

((
2d

d− 1− j

)(
2k
k + j

)
+

(
2d

d− 1 + j

)(
2k
k − j

))

+
(

2d
d

)(
2k
k

)
−

(
2d
d− 1

)(
2k
k

)
.

Thus

Ck+d +
((

2d
d− 1

)
−

(
2d
d

))(
2k
k

)
=

∑
0<j6d

2
(

2d
d− j

)(
2k
k + j

)
−

d+1∑
j=1

((
2d

d− 1− j

)
+

(
2d

d+ 1− j

))(
2k
k + j

)
and hence

Ck+d = Cd

(
2k
k

)
+

d+1∑
j=1

Cd,j

(
2k
k + j

)
. (1.13)

In view of (1.13),

p−1∑
k=1

Ck+d

k
= Cd

p−1∑
k=1

(
2k
k

)
k

+
d+1∑
j=1

Cd,j

p−1∑
k=1

(
2k

k+j

)
k

.

Combining this with (1.6), we immediately get (1.7).
Observe that

Cp+k ≡ 2Ck (mod p) for every k = 0, . . . , p− 2; (1.14)

in fact,

Cp+k =

(
2p+2k
p+k

)
p+ k + 1

=

(
2p
p

)
p+ k + 1

·
∏

0<j62k(2p+ j)∏
0<i6k(p+ i)2

≡ 2
k + 1

(
2k
k

)
(mod p)
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since
1
2

(
2p
p

)
=

(
2p− 1
p− 1

)
=

p−1∏
j=1

2p− j

j
≡ (−1)p−1 ≡ 1 (mod p).

Thus ∑
p−d6k<p

Ck+d

k
=

∑
0<k6d

Cp−k+d

p− k
≡ −2

∑
0<k6d

Cd−k

k
(mod p).

(Note that if 0 < k 6 d then 0 6 d− k < d 6 p− 1.)
Now assume that p > 5. Clearly

d+1∑
j=1

[3 | p− j]
Cd,j

j
=

1 + (p
3 )

2

∑
16j6d+1

j≡1 (mod 3)

Cd,j

j
+

1− (p
3 )

2

∑
16j6d+1

j≡2 (mod 3)

Cd,j

j

=
1
2

d+1∑
j=1
3-j

Cd,j

j
+

(p
3

) 1
2

d+1∑
j=1

(
j

3

)
Cd,j

j
.

Therefore, by applying the above and (1.7) we obtain that

∑
0<k<p−d

Ck+d

k
− 2

∑
0<k6d

Cd−k

k

≡
p−1∑
k=0

Ck+d

k
≡

d+1∑
j=1

(
2(−1)j − 1

) Cd,j

j
+

3
2

d+1∑
j=1
3-j

Cd,j

j
+

(p
3

) 3
2

d+1∑
j=1

(
j

3

)
Cd,j

j
(mod p).

When d = 0, 1, 2, 3, 4, this yields (1.8)–(1.12) after some trivial computations. �

As usual we let b·c be the greatest integer function. On the basis of Theorem
1.1, we also establish the following general theorem concerning Catalan numbers.

Theorem 1.3. Let p be a prime and d, r ∈ {0, . . . , p− 1}. Then

(−1)r

p−1∑
k=0

(
k + r

r

)
Ck+d ≡

∑
06k<d

(
d− 1− k

r

)
Ck +

r∑
i=0

(−1)i

(
d

r − i

)
fi(εi) (mod p),

(1.15)
where εi = (p−i−1

3 ) and

fi(εi) =
b(i+1−εi)/3c∑

k=0

(−1)k+εi

(
i+ 2

3k + 1 + εi

)(
k + (i− 2 + εi)/3

i

)
+ [εi = 0 & 3 | i+ 1] + [i = 0](3[εi = −1]− 1).
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Remark 1.2. (a) (1.15) in the case d = 0 yields the congruence

p−1∑
k=0

(
k + r

r

)
Ck

≡


∑b(r+2)/3c

k=0 (−1)k−1
(
r+2
3k

)(
k+(r−3)/3

r

)
(mod p) if p− r ≡ 0 (mod 3),∑b(r+1)/3c

k=0 (−1)k
(

r+2
3k+1

)(
k+(r−2)/3

r

)
+ [p = 3] (mod p) if p− r ≡ 1 (mod 3),∑br/3c

k=0 (−1)k−1
(

r+2
3k+2

)(
k+(r−1)/3

r

)
(mod p) if p− r ≡ 2 (mod 3).

(b) Let p be a prime and d ∈ {0, . . . , p− 1}. For each r = 0, . . . , p− 1, clearly

(−1)r

p∑
k=1

krCk+d−1 =
p−1∑
k=0

(−k − 1)rCk+d =
p−1∑
k=0

Ck+d

r∑
s=0

s!S(r, s)
(
−k − 1
s

)

=
r∑

s=0

(−1)ss!S(r, s)
p−1∑
k=0

(
k + s

s

)
Ck+d,

where

S(r, s) =
1
s!

s∑
t=0

(−1)s−t

(
s

t

)
tr (0 6 s 6 r)

are Stirling numbers of the second kind (cf. [GKP]). This, together with Theorem
1.3, shows that if P (x) is a polynomial of degree at most p− 1 with p-adic integer
coefficients then

p−1∑
k=0

P (k)Ck+d ≡ ψP (d; p mod 3) (mod p)

for a suitable function ψP which can be constructed explicitly. This is general
enough, because any integer r can be written in the form (p− 1)q + r0 with q ∈ Z
and r0 ∈ {0, . . . , p− 2}, and by Fermat’s little theorem we have kr ≡ kr0 (mod p)
for all k = 1, . . . , p− 1.

Corollary 1.3. Let p be a prime, and let d ∈ {0, 1, . . . , p− 1}. Then we have

p−1∑
k=0

Ck+d ≡
3(p

3 )− 1
2

+
∑

06k<d

Ck (mod p), (1.16)

p−1∑
k=0

kCk+d ≡
d+ 1

2

(
1−

(p
3

))
−

(p
3

)
d−

d∑
k=0

kCd−k (mod p), (1.17)

p−1∑
k=0

k2Ck+d ≡
9d2 + 6d− 1

6

(p
3

)
− (d+ 1)2

2
− [p = 3] +

∑
0<k6d

k2Cd−k (mod p).
(1.18)
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Proof. For i = 0, 1, 2 let εi and fi(εi) be as in Theorem 1.3. It is easy to verify that

f0(ε0) = (−1)ε0

(
2

1 + ε0

)
+ 3[ε0 = −1]− 1 ≡

3(p
3 )− 1
2

(mod p)

and f1(ε1) = (p
3 ) and f2(ε2) = 2

3 (p
3 ) + [p = 3]. Thus (1.15) in the case r = 0 is

actually equivalent to (1.16). Putting r = 1 in (1.15) we get that

−
p−1∑
k=0

(k + 1)Ck+d ≡
∑

06k<d

(d− 1− k)Ck + df0(ε0)− f1(ε1)

≡−
∑

06k<d

Ck +
d∑

k=0

(d− k)Ck + d
3(p

3 )− 1
2

−
(p

3

)
(mod p).

This, together with (1.16), yields (1.17). By (1.15) in the case r = 2,

p−1∑
k=0

(k + 1)(k + 2)
2

Ck+d ≡
∑

06k<d

(d− k − 1)(d− k − 2)
2

Ck

+
d(d− 1)

2
f0(ε0)− df1(ε1) + f2(ε2) (mod p)

and hence

p−1∑
k=0

(k2 + 3k + 2)Ck+d ≡
∑

06k<d

((d− k)2 − 3(d− k) + 2)Ck + d(d− 1)
3(p

3 )− 1
2

− 2d
(p

3

)
+

4
3

(p
3

)
+ 2[p = 3] (mod p).

Combining this with (1.16) and (1.17) we immediately get (1.18). �

The Catalan numbers can also be defined by C0 = 1 and the recursion Cn+1 =∑n
k=0 CkCn−k (n = 0, 1, 2, . . . ). Below we provide some new recursions for Catalan

numbers by using our previous congruences.

Theorem 1.4. Let d ∈ N and δ ∈ {0, 1}. Then we have

Cd =(1− 2δ)
∑

06k<d

Ck + (−1)δ
d∑

i=0

(
i− δ

3

)
Cd,i+1 + 1 + δ

=
1
2

d+1∑
j=1

(1− 3[3 | j])Cd,j +
3
2
.

(1.19)



A COMBINATORIAL IDENTITY WITH APPLICATION TO CATALAN NUMBERS 9

Also,

d∑
k=0

kCd−k =
d+1∑
j=1

(
j − 1

3

) (
2
(

2d
d− j

)
− (d+ 1)Cd,j

)
− d

=
d+1∑
j=1

(
j + 1

3

) (
2
(

2d
d− j

)
− (d+ 1)Cd,j

)
+ 2d+ 1

(1.20)

and ∑
0<k6d

(
k − 2

3

)
Cd−k +

1
3

d+1∑
j=1

jCd,j

=
∑

16j6d+1
j≡1 (mod 3)

jCd,j − d+
2
3

=
∑

16j6d+1
j≡2 (mod 3)

jCd,j + 2d− 1
3
.

(1.21)

Remark 1.3. A referee of this paper noted that some identities in Theorem 1.4,
such as (1.19), can also be established by generating function manipulations and
the observation

Cd,j = C
(2j)
d−j − C

(2j−2)
d−(j−1) (j = 1, . . . , d+ 1),

where C(k)
n =

(
2n+k

n

)
−

(
2n+k
n−1

)
for k, n ∈ Z.

In Sections 2-5 we are going to show Theorems 1.1-1.4 respectively.

2. Proof of Theorem 1.1

Let R be a commutative ring with identity. For a formal power series f(t) ∈ R[[t]]
and a nonnegative integer n, by [tn]f(t) we mean the coefficient of tn in f(t).

Proof of Theorem 1.1. We fix l, n ∈ N. By the Chu-Vandermonde identity, we have

∞∑
m=0

sm
l∑

k=0

(−1)m−k

(
l

k

)(
m− k

n

)(
2k

k − 2l +m

)

=
∞∑

m=0

sm
l∑

k=0

(−1)m−k

(
l

k

) n∑
j=0

(
2(l − k)
n− j

)(
k − 2l +m

j

)(
2k

k − 2l +m

)

=
l∑

k=0

(−1)k

(
l

k

) n∑
j=0

(
2(l − k)
n− j

)(
2k
j

) ∞∑
m=0

(
2k − j

k − 2l +m− j

)
(−s)m

=
l∑

k=0

(−1)k

(
l

k

) n∑
j=0

(
2(l − k)
n− j

)(
2k
j

)
(−s)2l−k+j(1− s)2k−j
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and hence

∞∑
m=0

sm
l∑

k=0

(−1)m−k

(
l

k

)(
m− k

n

)(
2k

k − 2l +m

)

=
l∑

k=0

(−1)k

(
l

k

)
(−s)2l−k[tn](1 + t)2(l−k)((1− s)− st)2k

=[tn]sl
l∑

k=0

(
l

k

) (
s(1 + t)2

)l−k
(1− s(1 + t))2k

=[tn]sl
(
s(1 + t)2 + (1− s(1 + t))2

)l

=[tn]
(
(s+ st)2 + s(1− s− st)2

)l
.

Clearly

[tn](1 + s)l
(
(s+ t)2 + s(1− s− t)2

)l

=[tn]
(
(1 + s)((1 + s)t2 + 2s2t+ s2 + s(1− s)2)

)l

=[tn]
(
((1 + s)t+ s2)2 + s

)l

=
l∑

k=0

(
l

k

)
[tn]

(
(1 + s)t+ s2

)2k
sl−k

=
l∑

k=0

(
l

k

)(
2k
n

)
(1 + s)n(s2)2k−nsl−k.

Replacing t by st we obtain that

[tn]
(
(s+ st)2 + s(1− s− st)2

)l

=sn
l∑

k=0

(
l

k

)(
2k
n

)
s3k+l−2n(1 + s)n−l

=
∞∑

m=0

sm
l∑

k=0

(
l

k

)(
2k
n

)(
n− l

m+ n− 3k − l

)
.

In view of the above, we immediately get (1.1) for any m ∈ N by equating
coefficients of sm. �

3. Proof of Theorem 1.2

Lemma 3.1. Let p be any prime, and k, r ∈ {0, . . . , p− 1}. Then(
p− 1
k

)
≡ (−1)k (mod p) and

(
p+ k + r

p+ r

)
≡

(
p+ k + r

r

)
≡

(
k + r

r

)
(mod p).
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Proof. Clearly(
p− 1
k

)
=

∏
0<j6k

p− j

j
=

∏
0<j6k

(
p

j
− 1

)
≡ (−1)k (mod p)

and(
p+ k + r

p+ r

)
=

(
p+ k + r

k

)
=

∏
0<j6k

(
p

j
+ 1

)
×

∏
0<s6r

p+ k + s

p+ s

≡
∏

0<s6r

p+ k + s

s
=

(
p+ k + r

r

)
≡

∏
0<s6r

k + s

s
=

(
k + r

r

)
(mod p).

So we have the desired congruences. �

Proof of Theorem 1.2. In the case d = p, (1.4)–(1.6) hold trivially. Below we assume
d < p.

(i) Let m = 2(p− 1) + d. Applying (1.2) and (1.3) with l = p− 1 we obtain that

p−1∑
k=0

(−1)d−k

(
p− 1
k

)(
m− k

p

)(
2k
k + d

)
= (1− [3 | m− 1])

(
p− 1
dm/3e

)(
2dm/3e

p

)
and

p−1∑
k=0

(−1)d−k

(
p− 1
k

)(
m− k

p+ 1

)(
2k
k + d

)
= (1 + [3 | m+ 1])

(
p− 1
dm/3e

)(
2dm/3e
p+ 1

)
.

If d 6 k 6 p − 1, then 0 6 (m − k) − p = p − 2 − (k − d) < p unless d = 0 and
k = p− 1, in which case

(
2k

k+d

)
=

(
2p−2
p−1

)
≡ 0 (mod p); also, m− k = p ≡ 0 (mod p)

when m− k − 1 < p. Thus, by applying Lemma 3.1, we have

p−1∑
k=0

(−1)k

(
p− 1
k

)(
m− k

p

)(
2k
k + d

)
≡

p−1∑
k=0

(
2k
k + d

)
(mod p)

and

p−1∑
k=0

(−1)k

(
p− 1
k

)(
m− k

p+ 1

)(
2k
k + d

)
≡

p−1∑
k=0

(m− k)
(

2k
k + d

)
(mod p).

Let ε = (p−d
3 ). Then p− ε ≡ d (mod 3). Clearly

0 <
m

3
6

⌈m
3

⌉
=

2(p− ε) + d

3
− [3 | p− d+ 1] 6

m+ 2
3

=
2p+ d

3
< p.
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If p > 5 then dm/3e > m/3 > p/2; if p = 3 then dm/3e > d4/3e = 2 > p/2. So

0 < 2
⌈m

3

⌉
− p < 2p− p = p

unless p = 2 in which case dm/3e = 1. Therefore, with the help of Lemma 3.1,

(1− [3 | m− 1])
(
p− 1
dm/3e

)(
2dm/3e

p

)
≡(1− [3 | p− d])(−1)dm/3e = (1− [3 | p− d])(−1)d−[3|p−d+1] = (−1)dε (mod p)

and

(1 + [3 | m+ 1])
(
p− 1
dm/3e

)(
2dm/3e
p+ 1

)
≡(1 + [3 | p− d+ 1])(−1)dm/3e

(
2dm/3e

1

)
[p 6= 2]

≡(1 + [3 | p− d+ 1])(−1)d−[3|p−d+1]2
(

2(p− ε) + d

3
− [3 | p− d+ 1]

)
[p 6= 2]

≡
{

(−1)d 4
3 (1− d) + (−1)d[p = 3] (mod p) if ε = −1 (i.e., 3 | p− d+ 1),

(−1)d 2
3 (d− 2ε) + (−1)d[p = 3] (mod p) otherwise.

In view of the above,

p−1∑
k=0

(
2k
k + d

)
≡ (−1)d(1− [3 | m− 1])

(
p− 1
dm/3e

)(
2dm/3e

p

)
≡ ε (mod p),

and

p−1∑
k=0

k

(
2k
k + d

)

=m
p−1∑
k=0

(
2k
k + d

)
−

p−1∑
k=0

(m− k)
(

2k
k + d

)
≡mε− (−1)d(1 + [3 | m+ 1])

(
p− 1
dm/3e

)(
2dm/3e
p+ 1

)
≡

{
(d− 2)ε− 4

3 (1− d)− [p = 3] = d+2
3 − [p = 3] if ε = −1,

(d− 2)ε− 2
3 (d− 2ε)− [p = 3] = εd− 2

3 (d+ ε)− [p = 3] otherwise,

≡
(

[3 | p− d]− 1
3

)
(2ε− d)− [p = 3] (mod p).

This proves (1.4) and (1.5).
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(ii) Our strategy to deduce (1.6) is to compute S mod p2 in two different ways,
where

S =
p∑

k=0

(−1)k

(
p

k

)(
2p+ d− k

p

)(
2k
k + d

)
.

Observe that
(
2p
p

)
≡ 2 (mod p2). In the case p 6= 2, this is because

1
2

(
2p
p

)
=

(
2p− 1
p− 1

)
=

p−1∏
k=1

2p− k

k
=

p−1∏
k=1

(
1− 2p

k

)

≡1− 2p
p−1∑
k=1

1
k

= 1− p

p−1∑
k=1

(
1
k

+
1

p− k

)
≡ 1 (mod p2).

(Moreover, by Wolstenholme’s theorem,
(
2p−1
p−1

)
≡ 1 (mod p3) if p > 3.) Therefore

S =
p∑

k=d

(−1)k

(
p

k

)(
2p+ d− k

p

)(
2k
k + d

)
≡2(−1)d

(
p

d

)
−

(
p+ d

p

)(
2p
p+ d

)
+

∑
d<k<p

(−1)k

(
p

k

)(
2k
k + d

)
(mod p2).

(Note that if d < k < p then p |
(

p
k

)
and

(
p+(p−(k−d))

p

)
≡ 1 (mod p).) If d 6= 0, then(

p

d

)
=
p

d

(
p− 1
d− 1

)
≡ (−1)d−1 p

d
(mod p2)

and (
p+ d

p

)(
2p
p+ d

)
=

(
p+ d

p

)
2p
p− d

(
2p− 1
p− d− 1

)
=

2p
p− d

(
p+ d

p

) ∏
0<j<p−d

(
2p
j
− 1

)

≡ 2p
p− d

(
d

0

)
(−1)p−d−1 ≡ (−1)d−1 2p

d
(mod p2).

Thus

S −
p−1∑
k=d

(−1)k

(
p

k

)(
2k
k + d

)
≡(−1)d

(
p

d

)
−

(
p+ d

d

)(
2p
p+ d

)
≡

{ −p
d − (−1)d−1 2p

d = (2(−1)d − 1)p
d (mod p2) if d 6= 0,

1− 2 = −1 (mod p2) if d = 0.
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Set m = 2p+ d. Applying (1.0) with l = p we get that

(−1)dS =

{ (
p

m/3

)(
2m/3

p

)
if 3 | m (i.e., p ≡ d (mod 3)),

0 otherwise.

In the case 3 | m,(
p

m/3

)(
2m/3
p

)
=

p

m/3

(
p− 1

m/3− 1

)(
p+ (p+ 2d)/3

p

)
≡ p

m/3
(−1)m/3−1 ≡ (−1)d−1 3p

m
(mod p2).

Therefore

S ≡
{ −3p/m (mod p2) if p ≡ d (mod 3),

0 (mod p2) otherwise.

Comparing the two congruences for S mod p2, we finally obtain that

p−1∑
k=0

(−1)k

(
p

k

)(
2k
k + d

)
≡

{ −[3 | p− d] 3p
d − (2(−1)d − 1)p

d (mod p2) if d 6= 0,

[p = 3]− (−1) (mod p2) if d = 0.

This is equivalent to (1.6) since
(

p
k

)
≡ p

k (−1)k−1 (mod p2) for k = 1, . . . , p− 1.
The proof of Theorem 1.2 is now complete. �

4. Proof of Theorem 1.3

Lemma 4.1. Let r be a positive integer, and let p > 4r + 7 be a prime. Then∑p−1
k=0

(
k+r

r

)
Ck is congruent to

b(r+1−εr)/3c∑
k=0

(−1)k+εr

(
r + 2

3k + 1 + εr

)(
k + (r − 2 + εr)/3

r

)
modulo p with εr = (p−r−1

3 ).

Proof. Let l = p− r− 1 and δ ∈ {0, 1}. Applying (1.1) with m = 2l− δ and n = p,
we obtain that

l∑
k=0

(−1)k+δ

(
l

k

)(
2l − δ − k

p

)(
2k
k − δ

)
=

l∑
k=0

(
l

k

)(
2k
p

)(
r + 1

l + p− δ − 3k

)
.

For k = 0, . . . , l it is apparent that(
l

k

)
=

(
p− r − 1

k

)
=

(p− 1) · · · (p− k − r)
(k + r)!

× (k + 1) · · · (k + r)
(p− 1) · · · (p− r)

≡(−1)k+r(−1)r (k + 1) · · · (k + r)
r!

= (−1)k

(
k + r

r

)
(mod p).
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Thus

(−1)δ
l∑

k=0

(
k + r

r

)(
2l − δ − k

p

)(
2k
k − δ

)

≡
l∑

k=0

(−1)k

(
k + r

r

)(
2k
p

)(
r + 1

l + p− δ − 3k

)
(mod p).

If 0 6 k 6 2l − δ − p = p− 2r − 2− δ, then 2l − δ − k ∈ [p, 2p) and hence(
2l − δ − k

p

)
≡

(
2l − δ − k

0

)
= 1 (mod p)

by Lemma 3.1. For k ∈ {0, . . . , l}, clearly

r + 1 > l + p− δ − 3k ⇐⇒ 3k > 2l − δ ⇐⇒ k >
2l − δ

3
.

If l > k > d(2l − δ)/3e, then

2p > 2k >
2
3
(2p− 2r − 2− δ) = p+

p− 4r − 4− 2δ
3

> p+
p− 4r − 7

3
> p

and hence
(
2k
p

)
≡

(
2k
0

)
= 1 (mod p) by Lemma 3.1. Therefore

(−1)δ

p−2r−2−δ∑
k=0

(
k + r

r

)(
2k
k − δ

)
≡

∑
d 2l−δ

3 e6k6b l+p
3 c

(−1)k

(
k + r

r

)(
r + 1

l + p− δ − 3k

)
(mod p).

When p− 2r− 2 6 k 6 p− 2, we have 2k > 2(p− 2r− 2) > p > k+ 1 and hence

Ck =
(2k)!

k!(k + 1)!
≡ 0 (mod p) and

(
2k
k

)
= (k + 1)Ck ≡ 0 (mod p).

Note also that
(
p−1+r

r

)
= p · · · (p+ r − 1)/r! ≡ 0 (mod p). So, by the above,

p−1∑
k=0

(
k + r

r

)
Ck ≡

p−2r−3∑
k=0

(
k + r

r

)
Ck

≡
p−2r−2∑

k=0

(
k + r

r

)(
2k
k

)
−

p−2r−3∑
k=0

(
k + r

r

)(
2k
k − 1

)
≡

∑
2l63k6l+p

(−1)k

(
k + r

r

)(
r + 1

l + p− 3k

)

+
∑

2l−163k6l+p

(−1)k

(
k + r

r

)(
r + 1

l + p− 1− 3k

)
(mod p)
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and hence
p−1∑
k=0

(
k + r

r

)
Ck ≡ S(r) (mod p),

where

S(r) =
∑

2l−163k6l+p

(−1)k

(
k + r

r

)(
r + 2

l + p− 3k

)

=
∑

3k>2l−1

(−1)k

(
k + r

r

)(
r + 2

3k − 2l + 1

)
.

Clearly ⌈
2l − 1

3

⌉
=

2l − ( 2l
3 )

3
=

2l + εr

3

and thus

S(r) =
∑
k∈N

(−1)k+(2l+εr)/3

(
k + (2l + εr)/3 + r

r

)(
r + 2

3k + 2l + εr − 2l + 1

)
=

∑
k∈N

(−1)k+εr

(
r + 2

3k + 1 + εr

)(
k + (2p+ r − 2 + εr)/3

r

)

≡
b(r+1−εr)/3c∑

k=0

(−1)k+εr

(
r + 2

3k + 1 + εr

)(
k + (r − 2 + εr)/3

r

)
(mod p).

(Note that
(
x
r

)
is a polynomial in x with p-adic integer coefficients.) So we have

the desired result. �

Proof of Theorem 1.3. With the help of (1.14),

p−1∑
k=0

(
k + r

r

)
Ck+d =

p−1∑
k=d

(
k − d+ r

r

)
Ck +

∑
06k<d

(
p+ k − d+ r

r

)
Cp+k

≡
p−1∑
k=d

(
k − d+ r

r

)
Ck + 2

∑
06k<d

(
k − d+ r

r

)
Ck (mod p).

By the transformation (−1)r
(−x

r

)
=

(
x+r−1

r

)
and the Chu-Vandermonde identity,

for any k ∈ {0, . . . , p− 1} we have

(−1)r

(
k − d+ r

r

)
=

(
d− k − 1

r

)
=

r∑
i=0

(
d

r − i

)(
−k − 1

i

)

=
r∑

i=0

(
d

r − i

)
(−1)i

(
k + i

i

)
.
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Therefore

(−1)r

p−1∑
k=0

(
k + r

r

)
Ck+d

≡
r∑

i=0

(−1)i

(
d

r − i

) p−1∑
k=0

(
k + i

i

)
Ck +

∑
06k<d

(
d− 1− k

r

)
Ck (mod p).

So, it suffices to show that
∑p−1

k=0

(
k+i

i

)
Ck ≡ fi(εi) (mod p) for all i = 0, . . . , p− 1.

As r is an arbitrarily chosen element of {0, . . . , p− 1}, below we only need to show
the congruence

p−1∑
k=0

(
k + r

r

)
Ck ≡ fr(εr) (mod p). (4.1)

To prove (4.1) we further extend the idea in the proofs of (1.4) and (1.5).
Let δ ∈ {0, 1}. Applying (1.1) with l = p− 1, m = 2p− 1− δ and n = p+ r we

get that

(−1)δ+1Sδ =
p−1∑
k=0

(
p− 1
k

)(
2k
p+ r

)(
r + 1

2p− δ + r − 3k

)
,

where

Sδ =
p−1∑
k=0

(−1)k

(
p− 1
k

)(
2p− 1− δ − k

p+ r

)(
2k

k + 1− δ

)
.

By Lemma 3.1, (−1)k
(
p−1

k

)
≡ 1 (mod p) for all k = 0, . . . , p − 1, and

(
K

p+r

)
≡(

K
r

)
(mod p) for any integer K ∈ [p+ r, 2p+ r). Thus

Sδ ≡
∑

06k<p−r−δ

(
2p− 1− δ − k

r

)(
2k

k + 1− δ

)
(mod p)

and
p−1∑
k=0

(
p− 1
k

)(
2k
p+ r

)(
r + 1

2p− δ + r − 3k

)
≡

∑
d p+r

2 e6k<p

(−1)k

(
2k
r

)(
r + 1

2p− δ + r − 3k

)
(mod p).

Therefore

(−1)δ+1
∑

06k<p−r−δ

(
2p− 1− δ − k

r

)(
2k

k + 1− δ

)

≡
∑

d p+r
2 e6k<p

(−1)k

(
2k
r

)(
r + 1

2p− δ + r − 3k

)
(mod p).

(4.2)
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If r ∈ {1, . . . , p− 1} then(
2p− 2− (p− 1− r)

r

)
=

(
p− 1 + r

r

)
=

(p+ r − 1)!
(p− 1)!r!

≡ 0 (mod p);

if r = 0 then (
2(p− 1− r)
p− 1− r

)
=

(p+ p− 2)!
(p− 1)!(p− 1)!

≡ 0 (mod p).

Thus, when k = p− 1− r we have(
2p− 2− k

r

)(
2k
k

)
≡ 0 (mod p).

In view of this and (4.2),
p−1−r∑

k=0

(
2p− 1− k

r

)
Ck

=
p−1−r∑

k=0

(
2p− 1− k

r

)((
2k
k

)
−

(
2k
k + 1

))

=−
p−1−r∑

k=0

(
2p− 1− k

r

)(
2k
k + 1

)

+
p−1−r∑

k=0

((
2p− 2− k

r

)
+

(
2p− 2− k

r − 1

))(
2k
k

)
≡

∑
d p+r

2 e6k<p

(−1)k

(
2k
r

)((
r + 1

2p+ r − 3k

)
+

(
r + 1

2p− 1 + r − 3k

))

+
∑

d p+r−1
2 e6k<p

(−1)k

(
2k
r − 1

)(
r

2p− 2 + r − 3k

)
(mod p).

Since(
2p− 1− k

r

)
=

∏
0<s6r

2p− k − s

s
≡ (−1)r

∏
0<s6r

k + s

s
= (−1)r

(
k + r

r

)
(mod p)

for every k = 0, . . . , p− 1− r, we have

(−1)r

p−1−r∑
k=0

(
k + r

r

)
Ck

≡
∑

d p+r
2 e6k<p

(−1)k

(
2k
r

)(
r + 2

2p+ r − 3k

)

+
∑

d p+r−1
2 e6k<p

(−1)k

(
2k
r − 1

)(
r

2p− 2 + r − 3k

)
(mod p).
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When 0 6 2p + r − 3k 6 r + 2 (i.e., 2p − 2 6 3k 6 2p + r), if k < (p + r)/2 then
p− 1 < (4p− 4)/3 6 2k 6 p+ r − 1 and hence(

2k
r

)
=

2k(2k − 1) · · · (2k − r + 1)
r!

≡ 0 (mod p).

Similarly, when 0 6 2p − 2 + r − 3k 6 r (i.e., 2p − 2 6 3k 6 2p − 2 + r), if
k < (p+ r − 1)/2 then p 6 2k 6 p+ r − 2 and hence(

2k
r − 1

)
=

2k(2k − 1) · · · (2k − r + 2)
(r − 1)!

≡ 0 (mod p).

Therefore

(−1)r

p−1−r∑
k=0

(
k + r

r

)
Ck

≡
∑

2p−263k62p+r

(−1)k

(
2k
r

)(
r + 2

2p+ r − 3k

)

+
∑

2p−263k62p−2+r

(−1)k

(
2k
r − 1

)(
r

2p− 2 + r − 3k

)

≡
∑
k>h

(−1)k

((
2k
r

)(
r + 2

3k − 2p+ 2

)
+

(
2k
r − 1

)(
r

3k − 2p+ 2

))
(mod p),

where

h =
⌈

2p− 2
3

⌉
=

2p− 1 + ε1
3

.

(Recall that ε1 = (p−2
3 ) ≡ p− 2 (mod 3).)

If p− r 6 k 6 p− 1, then k + 1 6 p 6 k + r and hence(
k + r

r

)
=

r∏
s=1

k + s

s
≡ 0 (mod p).

Note also that 2h ≡ 2(ε1 − 1)/3 + [p = 3] (mod p). Thus, by the above we have

(−1)r

p−1∑
k=0

(
k + r

r

)
Ck

≡
∑
k∈N

(−1)k+h

((
2k + 2h

r

)(
r + 2

3k + 3h− 2p+ 2

)
+

(
2k + 2h
r − 1

)(
r

3k + 3h− 2p+ 2

))
≡Ψr(p mod 3) (mod p),
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where

Ψr(p mod 3) =
∑
k∈N

(−1)k+ε1−1

(
2k + 2(ε1 − 1)/3 + [p = 3]

r

)(
r + 2

3k + 1 + ε1

)
+

∑
k∈N

(−1)k+ε1−1

(
2k + 2(ε1 − 1)/3 + [p = 3]

r − 1

)(
r

3k + 1 + ε1

)
.

(Note that both ε1 and [p = 3] only depend on p mod 3.)
As

Ψ0(p mod 3) = (−1)ε1−1

(
2

1 + ε1

)
= f0(ε0),

(4.1) holds when r = 0. If p = 3 then

−Ψ1(p mod 3) = −3 ≡ 0 = f1(ε1) (mod 3) and Ψ2(p mod 3) = 1 = f2(ε2).

So (4.1) is also valid in the case p = 3.
Below we assume that r 6= 0 and p 6= 3. Recall that

p−1∑
k=0

(
k + r

r

)
Ck ≡ (−1)rΨr(p mod 3) (mod p).

If p′ > 4r + 7 is a prime with p′ ≡ p (mod 3), then

(−1)rΨr(p mod 3) = (−1)rΨr(p′ mod 3) ≡
p′−1∑
k=0

(
k + r

r

)
Ck ≡ fr(εr) (mod p′)

with the help of Lemma 4.1. By Dirichlet’s theorem (cf. [IR, p. 251]), there are in-
finitely many primes p′ with p′ ≡ p (mod 3). So we must have (−1)rΨr(p mod 3) =
fr(εr) and hence (4.1) follows. We are done. �

5. Proof of Theorem 1.4

In this section we let p be an arbitrary prime greater than d.
In view of (1.13),

p−1∑
k=0

Ck+d = Cd

p−1∑
k=0

(
2k
k

)
+

d+1∑
j=1

Cd,j

p−1∑
k=0

(
2k
k + j

)

and
p−1∑
k=0

kCk+d = Cd

p−1∑
k=0

k

(
2k
k

)
+

d+1∑
j=1

Cd,j

p−1∑
k=0

k

(
2k
k + j

)
.
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Combining these with Theorem 1.2, we immediately get the congruences
p−1∑
k=0

Ck+d ≡
(p

3

)
Cd +

d+1∑
j=1

(
p− j

3

)
Cd,j (mod p) (5.1)

and
p−1∑
k=0

kCk+d ≡ −
(p

3

) 2
3
Cd +

d+1∑
j=1

Cd,j

(
[3 | p− j]− 1

3

) (
2

(
p− j

3

)
− j

)
(mod p).

(5.2)
(It is easy to check that Cd +

∑d+1
j=1 Cd,j = 0 if p = 3 (and hence d ∈ {0, 1, 2}).)

By (1.16) and (5.1),

3(p
3 )− 1
2

+
∑

06k<d

Ck ≡
(p

3

)
Cd +

d+1∑
j=1

(
p− j

3

)
Cd,j (mod p).

If p is congruent to 1 or 2 modulo 3, this gives

1 +
∑

06k<d

Ck ≡ Cd −
d+1∑
j=1

(
j − 1

3

)
Cd,j (mod p)

and

−2 +
∑

06k<d

Ck ≡ −Cd −
d+1∑
j=1

(
j − 2

3

)
Cd,j (mod p)

respectively. Note that both sides of these two congruences are independent of p.
Thus we have the first equality in (1.19) since the residue classes 1 (mod 3) and
2 (mod 3) both contain infinitely many primes by Dirichlet’s theorem. The second
equality in (1.19) also holds because

1∑
δ=0

(
(1− 2δ)

∑
06k<d

Ck + (−1)δ
d∑

i=0

(
i− δ

3

)
Cd,i+1 + 1 + δ

)

=
d∑

i=0

((
i

3

)
−

(
i− 1

3

))
Cd,i+1 + 1 + 2 =

d∑
i=0

(1− 3[3 | i+ 1])Cd,i+1 + 3.

Observe that
p−1∑
k=0

kCk+d + (d+ 1)
p−1∑
k=0

Ck+d

=
p−1∑
k=0

(
2k + 2d
k + d

)
=

d∑
j=−d

(
2d
d− j

) p−1∑
k=0

(
2k
k + j

)

=
(

2d
d

) p−1∑
k=0

(
2k
k

)
+ 2

∑
0<j6d

(
2d
d− j

) p−1∑
k=0

(
2k
k + j

)
.
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Applying Theorem 1.2 and (5.1), we get that
p−1∑
k=0

kCk+d ≡
(p

3

) (
2d
d

)
+ 2

∑
0<j6d

(
p− j

3

) (
2d
d− j

)

− (d+ 1)
(p

3

)
Cd − (d+ 1)

d+1∑
j=1

(
p− j

3

)
Cd,j

≡
d+1∑
j=1

(
p− j

3

) (
2
(

2d
d− j

)
− (d+ 1)Cd,j

)
(mod p).

Comparing this with (1.17) we obtain the identity (1.20) by applying Dirichlet’s
theorem.

It follows from (5.1) and (5.2) that
p−1∑
k=0

(
k +

2
3

)
Ck+d ≡

d+1∑
j=1

(
1
3
− [3 | p− j]

)
jCd,j (mod p). (5.3)

On the other hand, by (1.16) and (1.17) we have
p−1∑
k=1

(
k +

2
3

)
Ck+d ≡

d+ 1
2

(
1−

(p
3

))
−

(p
3

)
d−

d∑
k=0

kCd−k

+
2
3
·
3(p

3 )− 1
2

+
2
3

∑
06k<d

Ck (mod p).

Comparing this with (5.3) we finally get (1.21) by applying Dirichlet’s theorem.
The proof of Theorem 1.4 is now complete.
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