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Abstract

For a sequence S of elements from an additive abelian group G,
let f(S) denote the number of subsequences of S the sum of whose
terms is zero. In this paper we characterize all sequences S in G with
f(S) > 219172 where |S| denotes the number of terms of S.
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1 Introduction

Let G be an additive abelian group. Let m be a positive integer. Throughout
this paper, we use (2, to denote the set of sequences of elements from G of
length m. For S = (a1, az,...,0n) € Qp, set o(S) = > a;. Wesay S is
zero-sum if o(S) = 0. Let f(.S) denote the number of zero-sum subsequences
of S. Obviously we have f(S) < 2™ with equality if and only if each term
of S is zero. Bulman-Fleming and Wang [1] proved that if S € 2, and
f(S) < 2™ then f(S) < 2™, and characterized all sequences for which the
equality holds. Guichard [3] proved the following theorem.

Theorem 1. Let m > 2 and S € Q,,,. If f(S) < 2™71 then f(S) <3 x 2m~3
with equality if and only if there is an element a with 2a # 0 such that S is
an arrangement of (0,...,0,a,a,—a) or (0,...,0,a,a, —a, —a).

Thus all sequences S with f(.5) > 3 x 2/%1=3 were determined completely.
In [4] F. Li and W. D. Gao obtained the following result.
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Theorem 2. Let m > 2. If S € Q, and 35 x 2™ < f(S) < 2™ then there
1s an arrangement of S of the form

with e > f > 0,2a # 0 and 3a =0 ore < 2.

In this paper we shall characterize all sequences S with 215172 < f(9) <
3 x 25173 in the following theorem.

Theorem Let m > 2 and S € Q,, with 2% < f(S) < 3 x 2™73. Then
e f

there is an arrangement of S of the form (0,...,0,a,...,a,—a,...,—a) with

e>f>0,e>0anda#0. Letd be the order of a. Then

(1) & x2m < f(S) < 2 x2™ if and only if d = 3, e > 3 and (e, f) &
{(3,0),(3,1),(4,0),(4, 1)}

(2) f(S) = & x 2™ if and only if d = 3, (e, f) € {(3,1),(4,0), (4,1)} or
d>4,(e f) €{(3,2),(3,3)};

(3) %58 x 2™ < f(S) < 1% x 2™ if and only if f(S) = 3% x 2™ and
d=4, (6, f) € {(47 3)7 (474)7 (77 0)7 (870)};

(4) F(S) = 2% x 2™ if and only if d > 5 and (e, f) € {(4,3), (4,4)};

(5) 2m72 < f(S) < 22 x 2™ if and only if d = 4 and e — f = 0, %1

128
(mod 8),e+ f > 8.

2 Proof of Theorem

Lemma 1. (Li and Gao [4]) Let S € Q,, with f(S) > 2™2. Then there is
an arrangement of S of the form (0,...,0,a,...,a,—a,...,—a).

Proof. 1t is true for m = 1,2. Now assume that m > 3. Suppose that there
is an arrangement of S of the form (ay, as, . .., amn_9,x,y) where 0, z,y,z+y
are distinct. Set 7' = (ay, a9, ..., am—2). Then

f(S)=|{W : W is a subsequence of T' & o(W) =0, —x,—y or —z — y}|

< {W : W is a subsequence of T'}|
=2m 2

This is a contradiction. O



Let N ={0,1,2,...} and Z* = {1,2,...}. Following Z. W. Sun [5], for
deZ" neNandr e Z, we set

-z G)

k=r (mod d)

(1) =() = () =6) ()
I A P e e P

as observed in Sun [5]. The following formula can be found in H. W. Gould’s
book (cf.[2]).

Using

we have

d . \n .
nl 1 g (n —2r)jm
Lﬁ} = E <2 cos E) cos g

d j=1

Thus, in the case d = 2, 3,4, the combinatorial sum m can be obtained.

rld
Z . = % (1 + 2" cos (n=2r)w —327")7r> (3)
7: ) = % (1 + 2172 cos (n=2r)m _42T)7T> (4)

Furthermore, Z. W. Sun [5] even determined [] , in terms of linear recur-
rences.

Lemma 2. Let d and ng be positive integers. If [’ﬂd <272 for 0 < r <
no/2 then md <22 for alln > ng and r € Z.

Proof. Since [Tﬂd = [ 1o ]d, we have [Zﬂd < 2m072 for 0 < r < ngy. Observe

no—r

that [Tﬂd = (") =0forny<r<d-1and [ﬁo]d = [Zo]d for r =t (mod d).
As a result, [Tﬂ 0 < 2m0~2 for r € Z. Using (1), the inequality can be proved
by induction on n immediately. ]



e f
Lemma 3. Let S = (0,...,0,a,...,a,—a,...,—a) € Q,, withe > f >0,
and a # 0. Let d be the order of a. Then

9) = m—e—f €—|—f:| )
s =zt ]
e f
Proof. Set T = (m, —a,...,—a). Then
e\(f
-3 ()1
dlk—1
e e ~1\f & (L 2)e(l+ )
:‘_Z[:c J(1+2)(1+z7h) :’_Z[a:] —
i1=-+00
_ Z [:Cf+di](1 —|—:C)e+f
:_ e—l—f):[e—kf}.
0S§+f ( K I la
k=f (mod d)
So we have f(S) = 2m=<~/f(T) = 2m~e/ [ejif}d. O

Proof of Theorem. By Lemma 1, there is an arrangement of S of the form

e

0,...,0,a,...,a,—a,...,—a) with e > f > 0 and a # 0. Obviously we

have e > 0. Let d be the order of a. Then Lemma 3 implies that f(S5) =
anmel[H] e,

2—mf(s):2—(e+f) |:€—|—f:| .
Fola

By (2), 27 (¢+) [e;fb =1/2 > 3/8. So we have d > 3. Since



we also have e > 3. To determine 2~ (¢+/) [e;f } e shall consider the following
cases .

Case 1. e = 3.
,3[3] <1 2_44:%d_3
0], 4 1], Lod>4’
2_5{5} :{5—; d=3 2_6[6] :{;—; =3
5 ’ 5
Case 2. d=3 and e > 4. By (3),
(1+ 21+ /3 e—f=0 (mod 6)
e 1) JE2es e p= ol
fols Y —27rNy3 e—f=42 (mod6)
(1 —21(+)/3 e—f=3 (mod 6)
Since e > 4, we have
3<2—(6+f)6+f <E<§
16 — fly732 8
and 27(¢+f) [e;f]g = 5/16 if and only if (e, f) € {(4,0),(4,1)}.
Case 3. d =4 and e > 4. By (4),
(1 + 21-(etN/2) /4 e—f=0 (mod?8)
Ly (14 20=e=N/2) /4 e—f==%1 (mod 8)
2—<e+f>{ef } =<{1/4 e—f=%2 (mod8).
Yo —20-eNr2y g e—f=+3 (mod 8)
[ (1—217(D/2) /4 e—f=4 (mod8)

Therefore 2~ (¢+/) [EJ}th > 1/4ifand onlyife— f = 0,41 (mod 8). Ase >4,

we have
g-ern|etf] 9 _ 5
f 1,732 16

with equality if and only if (e, f) € {(4,3), (4,4),(7,0),(8,0)}. Furthermore,
if 2-(c+7) [erth < 3 then

yern[e+ ] 17 _ 35
fol, T 64 128
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and e + f > 8.
Case 4. d>5and e > 4. If e+ f < 8 then one can check [e;f]d directly.

4] 5 5]
=1<2t? <2< 272 =5< 272
_0_ d -O_ d _1_ d
6] 6] 6]
<7< 2572 <7< 2572 =15 < 2672,
_0_ d _1_ d _2- d
(7] 7] 7]
<22 <272 <14 <272, <22 <272
_0_ d _1- d _2- d
N 35 = 35 27, 8 <57 < 2872, 8 <36 < 2872,
3], 128 0], 1],
8] 8] 8] 35
<36 < 2872 <57 < 2872, =70=— x 25
2], 3], 4], 128
Since

ﬂ <127 < 2972, m = m +{ ; ] <127 < 2972
0], rl, rl, r—1],

for 1 < r < 4, by Lemma 2, we have [e;f}d <2t/ 2 fore+ f>9 Asa

result, in this case, 27 (¢*7) [e;f}d < 1/4 except that

]+l
3], 128 4],

In view of the above discussion, the proof is now complete. O

References

[1] S. Bulman Fleming and E. T. H. Wang, On n-divisible subsequences,
preprint, 1986.

[2] H. W. Gould, Combinatorial Identities, Morgantown, W. Va., 1972,

[3] D. R. Guichard, Two theorems on the addition of residue classes, Dis-
crete Math., 81(1990) 11-18.



[4] F. Li, W. D. Gao, Note addition theorems on Z,, Discrete Math.,
137(1995) 371-376.

[5] Z. W. Sun, On the sum 37— (noq m) (%) and related congruences, Israel
J. Math. 128(2002) 135-156.



