Discrete Math. 307(2007), no. 13, 1687–1691.

On the number of zero-sum subsequences

Hui-Qin Cao^{1,2} and Zhi-Wei Sun¹

¹Department of Mathematics, Nanjing University Nanjing 210093, People's Republic of China

²Department of Applied Mathematics, Nanjing Audit University Nanjing 210029, People's Public of China

Abstract

For a sequence S of elements from an additive abelian group G, let f(S) denote the number of subsequences of S the sum of whose terms is zero. In this paper we characterize all sequences S in G with $f(S) > 2^{|S|-2}$, where |S| denotes the number of terms of S.

MSC Classification : Primary 11B50, Secondary 11B65, 11B75. Keywords: zero-sum sequence, combinatorial sum

1 Introduction

Let G be an additive abelian group. Let m be a positive integer. Throughout this paper, we use Ω_m to denote the set of sequences of elements from G of length m. For $S = (a_1, a_2, \ldots, a_m) \in \Omega_m$, set $\sigma(S) = \sum_{i=1}^m a_i$. We say S is zero-sum if $\sigma(S) = 0$. Let f(S) denote the number of zero-sum subsequences of S. Obviously we have $f(S) \leq 2^m$ with equality if and only if each term of S is zero. Bulman-Fleming and Wang [1] proved that if $S \in \Omega_m$ and $f(S) < 2^m$ then $f(S) \leq 2^{m-1}$, and characterized all sequences for which the equality holds. Guichard [3] proved the following theorem.

Theorem 1. Let m > 2 and $S \in \Omega_m$. If $f(S) < 2^{m-1}$ then $f(S) \le 3 \times 2^{m-3}$ with equality if and only if there is an element a with $2a \ne 0$ such that S is an arrangement of $(0, \ldots, 0, a, a, -a)$ or $(0, \ldots, 0, a, a, -a, -a)$.

Thus all sequences S with $f(S) \ge 3 \times 2^{|S|-3}$ were determined completely. In [4] F. Li and W. D. Gao obtained the following result. **Theorem 2.** Let m > 2. If $S \in \Omega_m$ and $\frac{5}{16} \times 2^m < f(S) < 2^{m-1}$ then there is an arrangement of S of the form

$$(0,\ldots,0,\overbrace{a,\ldots,a}^{e},\overbrace{-a,\ldots,-a}^{f})$$

with $e \ge f \ge 0, 2a \ne 0$ and 3a = 0 or $e \le 2$.

In this paper we shall characterize all sequences S with $2^{|S|-2} < f(S) < 3 \times 2^{|S|-3}$ in the following theorem.

Theorem Let m > 2 and $S \in \Omega_m$ with $2^{m-2} < f(S) < 3 \times 2^{m-3}$. Then there is an arrangement of S of the form $(0, \ldots, 0, \overline{a, \ldots, a}, -a, \ldots, -a)$ with $e \ge f \ge 0, e > 0$ and $a \ne 0$. Let d be the order of a. Then

 $\begin{array}{l} (1) \ \frac{5}{16} \times 2^m < f(S) < \frac{3}{8} \times 2^m \ if \ and \ only \ if \ d = 3, \ e \geq 3 \ and \ (e, f) \not\in \{(3, 0), (3, 1), (4, 0), (4, 1)\}; \end{array}$

(2) $f(S) = \frac{5}{16} \times 2^m$ if and only if $d = 3, (e, f) \in \{(3, 1), (4, 0), (4, 1)\}$ or $d \ge 4, (e, f) \in \{(3, 2), (3, 3)\};$

 $\begin{array}{l} (3) \ \frac{35}{128} \times 2^m < f(S) < \frac{5}{16} \times 2^m \ if \ and \ only \ if \ f(S) = \frac{9}{32} \times 2^m \ and \ d = 4, (e, f) \in \{(4, 3), (4, 4), (7, 0), (8, 0)\}; \end{array}$

(4) $f(S) = \frac{35}{128} \times 2^m$ if and only if $d \ge 5$ and $(e, f) \in \{(4, 3), (4, 4)\}$;

(5) $2^{m-2} < f(S) < \frac{35}{128} \times 2^m$ if and only if d = 4 and $e - f \equiv 0, \pm 1 \pmod{8}, e + f > 8.$

2 Proof of Theorem

Lemma 1. (Li and Gao [4]) Let $S \in \Omega_m$ with $f(S) > 2^{m-2}$. Then there is an arrangement of S of the form $(0, \ldots, 0, a, \ldots, a, -a, \ldots, -a)$.

Proof. It is true for m = 1, 2. Now assume that $m \ge 3$. Suppose that there is an arrangement of S of the form $(a_1, a_2, \ldots, a_{m-2}, x, y)$ where 0, x, y, x + y are distinct. Set $T = (a_1, a_2, \ldots, a_{m-2})$. Then

$$f(S) = |\{W : W \text{ is a subsequence of } T \& \sigma(W) = 0, -x, -y \text{ or } -x - y\}|$$

$$\leq |\{W : W \text{ is a subsequence of } T\}|$$

$$= 2^{m-2}.$$

This is a contradiction.

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{Z}^+ = \{1, 2, \ldots\}$. Following Z. W. Sun [5], for $d \in \mathbb{Z}^+, n \in \mathbb{N}$ and $r \in \mathbb{Z}$, we set

$$\begin{bmatrix} n \\ r \end{bmatrix}_d = \sum_{\substack{0 \le k \le n \\ k \equiv r \pmod{d}}} \binom{n}{k}$$

Using

$$\binom{n}{k} = \binom{n}{n-k}$$
 and $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$,

we have

$$\begin{bmatrix} n \\ r \end{bmatrix}_{d} = \begin{bmatrix} n \\ n-r \end{bmatrix}_{d} \quad \text{and} \quad \begin{bmatrix} n+1 \\ r \end{bmatrix}_{d} = \begin{bmatrix} n \\ r \end{bmatrix}_{d} + \begin{bmatrix} n \\ r-1 \end{bmatrix}_{d} \tag{1}$$

as observed in Sun [5]. The following formula can be found in H. W. Gould's book (cf.[2]).

$$\begin{bmatrix} n \\ r \end{bmatrix}_d = \frac{1}{d} \sum_{j=1}^d \left(2\cos\frac{j\pi}{d} \right)^n \cos\frac{(n-2r)j\pi}{d}.$$

Thus, in the case d = 2, 3, 4, the combinatorial sum $\begin{bmatrix} n \\ r \end{bmatrix}_d$ can be obtained.

$$\begin{bmatrix} n \\ r \end{bmatrix}_2 = 2^{n-1} \tag{2}$$

$$\begin{bmatrix} n \\ r \end{bmatrix}_3 = \frac{2^n}{3} \left(1 + 2^{1-n} \cos \frac{(n-2r)\pi}{3} \right)$$
(3)

$$\begin{bmatrix} n \\ r \end{bmatrix}_4 = \frac{2^n}{4} \left(1 + 2^{1-n/2} \cos \frac{(n-2r)\pi}{4} \right) \tag{4}$$

Furthermore, Z. W. Sun [5] even determined $\binom{n}{r}_{12}$ in terms of linear recurrences.

Lemma 2. Let d and n_0 be positive integers. If $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d < 2^{n_0-2}$ for $0 \le r \le n_0/2$ then $\begin{bmatrix} n \\ r \end{bmatrix}_d < 2^{n-2}$ for all $n \ge n_0$ and $r \in \mathbb{Z}$.

Proof. Since $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d = \begin{bmatrix} n_0 \\ n_0 - r \end{bmatrix}_d$, we have $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d < 2^{n_0-2}$ for $0 \le r \le n_0$. Observe that $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d = \begin{pmatrix} n_0 \\ r \end{bmatrix} = 0$ for $n_0 < r \le d-1$ and $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d = \begin{bmatrix} n_0 \\ t \end{bmatrix}_d$ for $r \equiv t \pmod{d}$. As a result, $\begin{bmatrix} n_0 \\ r \end{bmatrix}_d < 2^{n_0-2}$ for $r \in \mathbb{Z}$. Using (1), the inequality can be proved by induction on n immediately.

Lemma 3. Let $S = (0, \ldots, 0, a, \ldots, a, -a, \ldots, -a) \in \Omega_m$ with $e \ge f \ge 0$, and $a \ne 0$. Let d be the order of a. Then

$$f(S) = 2^{m-e-f} \begin{bmatrix} e+f\\ f \end{bmatrix}_d.$$

Proof. Set $T = (\overbrace{a, \ldots, a}^{e}, \overbrace{-a, \ldots, -a}^{f})$. Then

$$\begin{split} f(T) &= \sum_{d|k-l} \binom{e}{k} \binom{f}{l} \\ &= \sum_{i=-\infty}^{i=+\infty} [x^{di}](1+x)^e (1+x^{-1})^f = \sum_{i=-\infty}^{i=+\infty} [x^{di}] \frac{(1+x)^e (1+x)^f}{x^f} \\ &= \sum_{\substack{i=-\infty\\i=-\infty}}^{i=+\infty} [x^{f+di}](1+x)^{e+f} \\ &= \sum_{\substack{0 \le k \le e+f\\k \equiv f \pmod{d}}} \binom{e+f}{k} = \binom{e+f}{f}_d. \end{split}$$

So we have $f(S) = 2^{m-e-f} f(T) = 2^{m-e-f} {e+f \brack f}_d.$

Proof of Theorem. By Lemma 1, there is an arrangement of S of the form $(0, \ldots, 0, \overbrace{a, \ldots, a}^{e}, \overbrace{-a, \ldots, -a}^{f})$ with $e \ge f \ge 0$ and $a \ne 0$. Obviously we have e > 0. Let d be the order of a. Then Lemma 3 implies that $f(S) = 2^{m-e-f} {e+f \brack f}_{d}$, i.e.

$$2^{-m}f(S) = 2^{-(e+f)} \begin{bmatrix} e+f \\ f \end{bmatrix}_{d}.$$

By (2), $2^{-(e+f)} {e+f \brack f}_2 = 1/2 > 3/8$. So we have $d \ge 3$. Since

$$2^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{d} = \frac{1}{2}, \qquad 2^{-2} \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{d} = \frac{1}{2}, \\ 2^{-2} \begin{bmatrix} 2 \\ 0 \end{bmatrix}_{d} = \frac{1}{4}, \qquad 2^{-3} \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{d} = \frac{3}{8}, \qquad 2^{-4} \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{d} = \frac{3}{8},$$

we also have $e\geq 3.$ To determine $2^{-(e+f)}{e+f\brack f}_d$ we shall consider the following cases .

$$\begin{array}{ll} \textbf{Case 1. } e = 3. \\ 2^{-3} \begin{bmatrix} 3 \\ 0 \end{bmatrix}_{d} \leq \frac{1}{4}, \\ 2^{-5} \begin{bmatrix} 5 \\ 2 \end{bmatrix}_{d} = \begin{cases} \frac{11}{32} & d = 3 \\ \frac{5}{16} & d \geq 4 \end{cases}, \\ 2^{-6} \begin{bmatrix} 6 \\ 3 \end{bmatrix}_{d} = \begin{cases} \frac{11}{32} & d = 3 \\ \frac{5}{16} & d \geq 4 \end{cases}, \\ 2^{-6} \begin{bmatrix} 6 \\ 3 \end{bmatrix}_{d} = \begin{cases} \frac{11}{32} & d = 3 \\ \frac{5}{16} & d \geq 4 \end{cases}. \end{array}$$

Case 2. d = 3 and $e \ge 4$. By (3),

$$2^{-(e+f)} \begin{bmatrix} e+f\\ f \end{bmatrix}_3 = \begin{cases} (1+2^{1-(e+f)})/3 & e-f \equiv 0 \pmod{6} \\ (1+2^{-(e+f)})/3 & e-f \equiv \pm 1 \pmod{6} \\ (1-2^{-(e+f)})/3 & e-f \equiv \pm 2 \pmod{6} \\ (1-2^{1-(e+f)})/3 & e-f \equiv 3 \pmod{6} \end{cases}$$

Since $e \geq 4$, we have

$$\frac{5}{16} \le 2^{-(e+f)} \begin{bmatrix} e+f\\ f \end{bmatrix}_3 \le \frac{11}{32} < \frac{3}{8}$$

and $2^{-(e+f)} {e+f \brack f}_3 = 5/16$ if and only if $(e, f) \in \{(4, 0), (4, 1)\}$. Case 3. d = 4 and $e \ge 4$. By (4),

$$2^{-(e+f)} \begin{bmatrix} e+f\\ f \end{bmatrix}_4 = \begin{cases} (1+2^{1-(e+f)/2})/4 & e-f \equiv 0 \pmod{8} \\ (1+2^{(1-e-f)/2})/4 & e-f \equiv \pm 1 \pmod{8} \\ 1/4 & e-f \equiv \pm 2 \pmod{8} \\ (1-2^{(1-e-f)/2})/4 & e-f \equiv \pm 3 \pmod{8} \\ (1-2^{1-(e+f)/2})/4 & e-f \equiv 4 \pmod{8} \end{cases}$$

Therefore $2^{-(e+f)} {e+f \brack f}_4 > 1/4$ if and only if $e - f \equiv 0, \pm 1 \pmod{8}$. As $e \ge 4$, we have

$$2^{-(e+f)} \begin{bmatrix} e+f\\ f \end{bmatrix}_4 \le \frac{9}{32} < \frac{5}{16}$$

with equality if and only if $(e, f) \in \{(4, 3), (4, 4), (7, 0), (8, 0)\}$. Furthermore, if $2^{-(e+f)} {e+f \brack f}_4 < \frac{9}{32}$ then

$$2^{-(e+f)} \begin{bmatrix} e+f\\ f \end{bmatrix}_4 \le \frac{17}{64} < \frac{35}{128}$$

and e + f > 8.

Case 4. $d \ge 5$ and $e \ge 4$. If $e + f \le 8$ then one can check $\begin{bmatrix} e+f\\ f \end{bmatrix}_d$ directly.

$$\begin{bmatrix} 4\\0 \end{bmatrix}_{d} = 1 < 2^{4-2}, \qquad \begin{bmatrix} 5\\0 \end{bmatrix}_{d} \le 2 < 2^{5-2}, \qquad \begin{bmatrix} 5\\1 \end{bmatrix}_{d} = 5 < 2^{5-2}, \\ \begin{bmatrix} 6\\0 \end{bmatrix}_{d} \le 7 < 2^{6-2}, \qquad \begin{bmatrix} 6\\1 \end{bmatrix}_{d} \le 7 < 2^{6-2}, \qquad \begin{bmatrix} 6\\2 \end{bmatrix}_{d} = 15 < 2^{6-2}, \\ \begin{bmatrix} 7\\0 \end{bmatrix}_{d} \le 22 < 2^{7-2}, \qquad \begin{bmatrix} 7\\1 \end{bmatrix}_{d} \le 14 < 2^{7-2}, \qquad \begin{bmatrix} 7\\2 \end{bmatrix}_{d} \le 22 < 2^{7-2}, \\ \begin{bmatrix} 7\\3 \end{bmatrix}_{d} = 35 = \frac{35}{128} \times 2^{7}, \qquad \begin{bmatrix} 8\\0 \end{bmatrix}_{d} \le 57 < 2^{8-2}, \qquad \begin{bmatrix} 8\\1 \end{bmatrix}_{d} \le 36 < 2^{8-2}, \\ \begin{bmatrix} 8\\2 \end{bmatrix}_{d} \le 36 < 2^{8-2}, \qquad \begin{bmatrix} 8\\3 \end{bmatrix}_{d} \le 57 < 2^{8-2}, \qquad \begin{bmatrix} 8\\4 \end{bmatrix}_{d} = 70 = \frac{35}{128} \times 2^{8}.$$

Since

$$\begin{bmatrix} 9\\0 \end{bmatrix}_d \le 127 < 2^{9-2}, \quad \begin{bmatrix} 9\\r \end{bmatrix}_d = \begin{bmatrix} 8\\r \end{bmatrix}_d + \begin{bmatrix} 8\\r-1 \end{bmatrix}_d \le 127 < 2^{9-2}$$

for $1 \leq r \leq 4$, by Lemma 2, we have ${e+f \brack f}_d < 2^{e+f-2}$ for $e+f \geq 9$. As a result, in this case, $2^{-(e+f)} {e+f \brack f}_d < 1/4$ except that

$$2^{-7} \begin{bmatrix} 7\\3 \end{bmatrix}_d = \frac{35}{128} = 2^{-8} \begin{bmatrix} 8\\4 \end{bmatrix}_d.$$

In view of the above discussion, the proof is now complete.

References

- S. Bulman Fleming and E. T. H. Wang, On n-divisible subsequences, preprint, 1986.
- [2] H. W. Gould, Combinatorial Identities, Morgantown, W. Va., 1972.
- [3] D. R. Guichard, Two theorems on the addition of residue classes, Discrete Math., 81(1990) 11-18.

- [4] F. Li, W. D. Gao, Note addition theorems on \mathbb{Z}_n , Discrete Math., 137(1995) 371-376.
- [5] Z. W. Sun, On the sum $\sum_{k\equiv r \pmod{m}} {n \choose k}$ and related congruences, Israel J. Math. 128(2002) 135-156.