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An Extension of a Curious Binomial Identity

Zhi-Wei Sun and Ke-Jian Wu

Abstract

In 2002 Z. W. Sun published a curious identity involving binomial coefficients. In this
paper we obtain the following generalization of the identity:
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1 Introduction
In 2002 Z. W. Sun [9] established the following combinatorial identity:
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wherem € N = {0,1,2,...}. Later A. Panholzer and H. Prodinger [8] gave a new proof
using generating functions, D. Merlini and R. Sprugnoli [7] obtained another proof by
means of Riordan arrays, S. B. Ekhad and M. Mohammed [4] presented a WZ proof of
the identity, and W. Chu and L.V.D. Claudio [3] re-proved the identity by using Jensen’s
formula.

In this paper we aim to extend the curious identity as follows.

Theorem 1.1. For anym = 0,1, 2, ..., we have
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equivalently,
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Remark1.1. Soon after the initial version of this paper was posted as a preprint
(arXiv:imath.C0O/0401057 ), D. Callan [C] found a nice combinatorial interpretation
of the identity (1.1) (which was called “Sun’s identity” by him) and also a slightly more
complicated combinatorial proof of our generalization (1.2).

Clearly, (1.2) in the case = 1 gives Sun'’s identity (1.1), and (1.3) in the case- 1
yields the following equivalent form of (1.1).

Corollary 1.2. Letm € N. Then
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Remarkl.2. (1.4) in the special case— m € N andy = 1, was ever conjectured by Z. H.
Sun.

Corollary 1.3. For anym € N we have
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Proof. Just take: = —(m + 1)z in (1.2) and then replaceby —z.

2 Proof of Theorem 1.1

The starting point of our proof of Theorem 1.1 is the following known identity:
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It appeared as (9) of H. W. Gould [5], and dates back to an identity of Lambert (cf. (E.3.1)
of [1]). Both (2.1) and Lambert’s identity can be proved by Lagrange’s inversion formula
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(see pp. 631-632 of [1]). In 2005 V. J. W. Guo and J. Zeng [6] applied (2.1) to deduce some
combinatorial identities originally motivated by the enumeration of convex polyominoes.
Let C be the complex field. For a formal power serig$) € C[t], the coefficient of
t™ in f(¢) will be denoted byjt™] f ().
Proof of Theorem 1.1In the casen = 0, both (1.2) and (1.3) are trivial. Below we assume
thatm is a positive integer.
Puttinga =y, 8 = z 4+ 1landz = 1/(1 + t) in (2.1), we find that
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(As pointed out by one of the referees, this identity can be reproved by a mixed use of
Lagrange’s inversion formula and the Riordan array method.) On the other hand,
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by the above we have
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From this we immediately see that (1.2) and (1.3) are equivalent.

Observe that
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e
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and hence
It follows that
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This, together with the previous arguments, yields the identity (1.2).
The proof of Theorem 1.1 is now complete.
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