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Abstract

Additive number theory is currently an active field related to combinatorics. In this
paper we give a survey of problems and results concerning lower bounds for cardinalities of
various restricted sumsets with elements in a field or an abelian group.

1. Erdős-Heilbronn conjecture and the polynomial

method

Let A = {a1, . . . , ak} and B = {b1, . . . , bl} be two finite subsets of Z with a1 < · · · < ak and
b1 < · · · < bl. Observe that

a1 + b1 < a2 + b1 < · · · < ak + b1 < ak + b2 < · · · < ak + bl,

whence we see that the sumset

A + B = {a + b: a ∈ A and b ∈ B}

contains at least k + l − 1 elements. In particular, |2A| > 2|A| − 1, where |A| denotes the
cardinality of A, and 2A stands for A + A.

The following fundamental theorem was first proved by A. Cauchy [9] in 1813 and then
rediscovered by H. Davenport [11] in 1935.

Cauchy-Davenport Theorem. Let A and B be non-empty subsets of the field Z/pZ
where p is a prime. Then

|A + B| > min{p, |A|+ |B| − 1}. (1.1)

For lots of important results on sumsets over Z, the reader is referred to the recent book
[38] by T. Tao and V. H. Vu. In this paper we mainly focus our attention on restricted
sumsets with elements in a field or an abelian group.

In combinatorics, for a finite sequence {Ai}n
i=1 of sets, a sequence {ai}n

i=1 is called a
system of distinct representatives of {Ai}n

i=1 if a1 ∈ A1, . . . , an ∈ An and a1, . . . , an are
distinct. A fundamental theorem of P. Hall [17] states that {Ai}n

i=1 has a system of distinct
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representatives if and only if |
⋃

i∈I Ai| > |I| for all I ⊆ {1, . . . , n}. The reader may consult
[31] for a simple proof of Hall’s theorem.

In 1964 P. Erdős and H. Heilbronn [13] made the following challenging conjecture.
Erdős-Heilbronn Conjecture. Let p be a prime, and let A be a non-empty subset of

the field Z/pZ. Then |2∧A| > min{p, 2|A| − 3}, where

2∧A = {a + b : a, b ∈ A and a 6= b}.

This conjecture remained open until it was confirmed by Dias da Silva and Y. Hamidoune
[12] thirty years later, with the help of the representation theory of groups.

For a general field F , the additive order of the (multiplicative) identity of F is either
infinite or a prime, which we denote by p(F ). The characteristic of the field F is defined as
follows:

ch(F ) =

{
p if p(F ) is a prime p,

0 if p(F ) = ∞.
(1.2)

Now we state Dias da Silva and Y. Hamidoune’s extension of the Erdős-Heilbronn con-
jecture.

Dias da Silva–Hamidoune Theorem [12]. Let F be a field, and let n ∈ Z+ =
{1, 2, 3, . . .}. Then, for any finite subset A of F , we have

|n∧A| ≥ min{p(F ), n|A| − n2 + 1}, (1.3)

where n∧A denotes the set of all sums of n distinct elements of A.
If p is a prime, A ⊆ Z/pZ and |A| >

√
4p− 7, then by the Dias da Silva–Hamidoune

theorem, any element of Z/pZ can be written as a sum of b|A|/2c distinct elements of A (see
[12]), where b·c is the well-known floor function.

In 1995–1996 N. Alon, M. B. Nathanson and I. Z. Ruzsa ([4],[5]) developed a polynomial
method rooted in [6] to prove the Erdős-Heilbronn conjecture and some similar results. The
method turns out to be very powerful and has many applications in number theory and
combinatorics.

Now we introduce the above-mentioned polynomial method. We begin with a lemma.
Lemma 1.1 (Alon, Nathanson and Ruzsa [4][5]). Let F be a field and let A1, . . . , An

be non-empty finite subsets of F . Let f(x1, . . . , xn) ∈ F [x1, . . . , xn] have degree less than
ki = |Ai| in xi for each i = 1, . . . , n. If f(a1, . . . , an) = 0 for all a1 ∈ A1, . . . , an ∈ An, then
f(x1, . . . , xn) is identically zero.

This lemma can be proved by using induction on n and noting that a non-zero polynomial
P (x) ∈ F [x] of degree less than a positive integer k cannot have k distinct zeroes in F .

The central part of the polynomial method is the following important principle formu-
lated by Alon in 1999.

Combinatorial Nullstellensatz (Alon [1]). Let A1, . . . , An be finite subsets of a field
F , and let f(x1, . . . , xn) ∈ F [x1, . . . , xn].

(i) Set gi(x) =
∏

a∈Ai
(x− a) for i = 1, . . . , n. Then

f(a1, . . . , an) = 0 for all a1 ∈ A1, . . . , an ∈ An (1.4)

if and only if there are h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) ∈ F [x1, . . . , xn] with deg hi 6
deg f − deg gi for i = 1, . . . , n, such that

f(x1, . . . , xn) =
n∑

i=1

gi(xi)hi(x1, . . . , xn). (1.5)
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(ii) Suppose that deg f = k1 + · · ·+ kn where 0 6 ki < |Ai| for i = 1, . . . , n. If (1.4) holds
then

[xk1
1 · · ·xkn

n ]f(x1, . . . , xn) = 0,

where [xk1
1 · · ·xkn

n ]f(x1, . . . , xn) denotes the coefficient of xk1
1 · · ·xkn

n in f(x1, . . . , xn).
Proof. (i) If there are h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) ∈ F [x1, . . . , xn] such that (1.5)
holds, then for any a1 ∈ A1, . . . , an ∈ An we have

f(a1, . . . , an) =
n∑

i=1

gi(ai)hi(a1, . . . , an) = 0.

Now we consider the converse. Write

f(x1, . . . , xn) =
∑

j1,...,jn>0

fj1,...,jnxj1
1 . . . xjn

n

and
xj = gi(x)qij(x) + r

(j)
i (x),

where qij(x), r(j)
i (x) ∈ F [x] and deg r

(j)
i (x) < deg gi(x) = |Ai|. Note that both r

(j)
i (x) and

gi(x)qij(x) = xj − r
(j)
i (x) have degree not exceeding j. Clearly

f(x1, . . . , xn) =
∑

j1,...,jn>0
j1+···+jn6deg f

fj1,...,jn

n∏
i=1

(
gi(xi)qiji(xi) + r

(ji)
i (xi)

)

=f̄(x1, . . . , xn) +
n∑

i=1

gi(xi)hi(x1, . . . , xn),

where

f̄(x1, . . . , xn) =
∑

j1,...,jn>0

fj1,...,jn

n∏
i=1

r
(ji)
i (xi)

and each hi(x1, . . . , xn) is a suitable polynomial over F with deg gi + deg hi 6 deg f . If
a1 ∈ A1, . . . , an ∈ An, then

f̄(a1, . . . , an) =
∑

j1,...,jn>0

fj1,...,jn

n∏
i=1

aji
i = f(a1, . . . , an) = 0.

Since the degree of f̄(x1, . . . , xn) in xi is smaller than |Ai|, by Lemma 1.1 the polynomial
f̄(x1, . . . , xn) is identically zero. Therefore (1.5) holds.

(ii) By part (i) we can write

f(x1, . . . , xn) =
n∑

i=1

gi(xi)hi(x1, . . . , xn)

with hi(x1, . . . , xn) ∈ F [x1, . . . , xn] and deg hi 6 deg f − deg gi. Since k1 + · · ·+ kn = deg f
and ki < |Ai| for i = 1, . . . , n, we have

[xk1
1 · · ·xkn

n ]f(x1, . . . , xn) =
n∑

i=1

[xk1
1 · · ·xkn

n ]x|Ai|
i hi(x1, . . . , xn) = 0.
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This concludes the proof.
Here is a useful lemma implied by the Combinatorial Nullstellensatz.
ANR Lemma [5]. Let A1, . . . , An be finite subsets of a field F with ki = |Ai| > 0 for

i = 1, . . . , n. Let f(x1, . . . , xn) ∈ F [x1, . . . , xn] \ {0} and deg f 6
∑n

i=1(ki − 1). If

[xk1−1
1 · · ·xkn−1

n ]f(x1, . . . , xn)(x1 + · · ·+ xn)
∑n

i=1
(ki−1)−deg f 6= 0, (1.6)

then

|{a1 + · · ·+ an: ai ∈ Ai, f(a1, . . . , an) 6= 0}| >
n∑

i=1

(ki − 1)− deg f + 1. (1.7)

Proof. Assume that C = {a1 + · · · + an: ai ∈ Ai, f(a1, . . . , an) 6= 0} has cardinality not
exceeding K =

∑n
i=1(ki − 1)− deg f . Then the polynomial

P (x1, . . . , xn) := f(x1, . . . , xn)(x1 + · · ·+ xn)K−|C| ∏
c∈C

(x1 + · · ·+ xn − c)

is of degree
∑n

i=1(ki − 1) with the coefficient of xk1−1
1 · · ·xkn−1

n non-zero. Applying the
second part of the Combinatorial Nullstellensatz, we find that P (a1, . . . , an) 6= 0 for some
a1 ∈ A1, . . . , an ∈ An. This is impossible since a1 + · · ·+ an ∈ C if f(a1, . . . , an) 6= 0.

We remark that a variant of this lemma appeared in Q. H. Hou and Z. W. Sun [18].

Alon-Nathanson-Ruzsa Theorem [5]. Let A1, . . . , An be finite non-empty subsets
of a field F with |A1| < · · · < |An|. Then, for the set

A1 u · · · u An =
{ n∑

i=1

ai: ai ∈ Ai, and ai 6= aj if i 6= j

}
, (1.8)

we have

|A1 u · · · u An| > min
{

p(F ),
n∑

i=1

|Ai| −
n(n + 1)

2
+ 1

}
. (1.9)

This follows from the ANR lemma and the following fact. If k1, . . . , kn ∈ Z+, then

[xk1−1
1 · · ·xkn−1

n ]
∏

16i<j6n

(xj − xi)× (x1 + · · ·+ xn)
∑n

i=1
ki−n(n+1)/2

=
(k1 + · · ·+ kn − n(n + 1)/2)!

(k1 − 1)! · · · (kn − 1)!

∏
16i<j6n

(kj − ki).
(1.10)

The Dias da Silva–Hamidoune theorem can be deduced from the ANR theorem in the
following way: Suppose that |A| = k > n. Let A1, . . . , An be subsets of A with cardinalities
k − n + 1, k − n + 2, . . . , k respectively. By the ANR theorem,

|A1 u · · · u An| > min
{

p(F ),
n∑

i=1

(|Ai| − i) + 1
}

= min{p(F ), (k − n)n + 1}.

As n∧A ⊇ A1 u · · · u An, the desired inequality (1.3) follows.
In addition, the reader may also consult [24], [3] and [38] for the polynomial method,

and [34] for its connections with covers of Z by residue classes and zero-sum problems on
abelian p-groups.
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2. Various sumsets with polynomial restrictions

By a sophisticated induction argument (cf. [7] and [30]), it can be shown that if A1, . . . , An

are finite subsets of Z with |A1| 6 · · · 6 |An| and |Ai| > i for all i = 1, . . . , n, then

|A1 u · · · u An| > 1 +
n∑

i=1

min
i6j6n

(|Aj | − j).

Now we state a result on sumsets with linear restrictions over Z.
Theorem 2.1 (Z. W. Sun [30]). Let A1, . . . , An be finite subsets of Z, and let V be a

set of quin-tuples (s, t, µ, ν, w) with 1 6 s, t 6 n, s 6= t, µ, ν ∈ Z \ {0} and w ∈ Z. If each
Vi = {(s, t, µ, ν, w) ∈ V : i ∈ {s, t}} has cardinality less than |Ai|, then

|{a1 + . . . + an : ai ∈ Ai, and µai + νaj 6= w if (i, j, µ, ν, w) ∈ V }|

>
n∑

i=1

|Ai| − 2|V | − n + 1 = 1 +
n∑

i=1

(|Ai| − |Vi| − 1) > 0.
(2.1)

Clearly Theorem 2.1 has the following consequence.
Corollary 2.1 (Z. W. Sun [30]). Let A1, . . . , An be finite subsets of Z with |Ai| > 2n− 1

for all i = 1, . . . , n. Then∣∣∣∣{ n∑
i=1

ai : ai ∈ Ai, ai 6= ±aj if i 6= j

}∣∣∣∣ >
n∑

i=1

|Ai| − 2n2 + n + 1. (2.2)

All the remaining theorems in this section have been obtained via the polynomial method.
Preceding a theorem we usually state a lemma which makes the method applicable.

Lemma 2.1. Let k, m, n be integers with m > 0, n > 1 and k > m(n− 1).
(i) (Q. H. Hou and Z. W. Sun [18]) We have

[xk−1
1 · · ·xk−1

n ]
∏

1≤i<j≤n

(xi − xj)2m(x1 + · · ·+ xn)(k−1−m(n−1))n

= (−1)mn(n−1)/2 ((k − 1−m(n− 1))n)!
(m!)n

n∏
j=1

(jm)!
(k − 1− (j − 1)m)!

.
(2.3)

(ii) (Z. W. Sun and Y. N. Yeh [37]) If m > 0 then

[xk−n
1 · · ·xk−1

n ]
∏

16i<j6n

(xi − xj)2m−1(x1 + · · ·+ xn)(k−1−m(n−1))n

= (−1)(m−1)n(n−1)/2 ((k − 1−m(n− 1))n)!
(m!)nn!

n∏
j=1

(jm)!
(k − 1− (j − 1)m)!

.
(2.4)

Theorem 2.2. Let k, m ∈ N = {0, 1, 2, . . .} and n ∈ Z+. Let F be a field with p(F ) >
max{mn, (k−1−m(n−1))n}, and let A1, . . . , An be finite subsets of F with max16i6n |Ai| =
k. Set

C = {a1 + · · ·+ an: a1 ∈ A1, . . . , an ∈ An, ai − aj 6∈ Sij if i < j},

where Sij (1 6 i < j 6 n) are subsets of F .
(i) (Q. H. Hou and Z. W. Sun [18]) If |A1| = · · · = |An| = k, and |Sij | 6 2m for all

1 6 i < j 6 n, then we have |C| > (k − 1−m(n− 1))n + 1.
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(ii) (Z. W. Sun and Y. N. Yeh [37]) If |Ai| = k − n + i for i = 1, . . . , n, and |Sij | < 2m
for all 1 6 i < j 6 n, then |C| > (k − 1−m(n− 1))n + 1.

The following conjecture posed by Z. W. Sun in [18] is open even for the rational field.
Conjecture 2.1 (Z. W. Sun, 2002). Let A1, . . . , An be finite non-empty subsets of a

field F . For 1 6 i < j 6 n, let Sij and Sji be finite subsets of F with |Sij | ≡ |Sji| (mod 2).
Then

|{a1 + · · ·+ an: a1 ∈ A1, . . . , an ∈ An, ai − aj 6∈ Sij if i 6= j}|

> min
{

p(F ),
n∑

i=1

|Ai| −
∑

16i<j6n

(|Sij |+ |Sji|)− n + 1
}

.
(2.5)

Lemma 2.2 (J. X. Liu and Z. W. Sun [23]). Let k, m, n ∈ Z+ with k − 1 > m(n − 1).
Then

[xk−n
1 · · ·xk−1

n ]
∏

16i<j6n

(xm
j − xm

i )(x1 + · · ·+ xn)(k−1)n−(m+1)(n
2)

= (−m)(
n
2) ((k − 1)n− (m + 1)

(n
2

)
)!1!2! · · · (n− 1)!

(k − 1)!(k − 1−m)! · · · (k − 1− (n− 1)m)!
.

(2.6)

Theorem 2.3 (J. X. Liu and Z. W. Sun [23]). Let k, m, n ∈ Z+ with k > m(n− 1), and
let A1, . . . , An be subsets of a field F such that

|An| = k and |Ai+1| − |Ai| ∈ {0, 1} for i = 1, . . . , n− 1.

Let P1(x), . . . , Pn(x) ∈ F [x] be monic and of degree m. If p(F ) > (k − 1)n − (m + 1)
(n
2

)
,

then

|{a1 + · · ·+ an: ai ∈ Ai, and Pi(ai) 6= Pj(aj) if i 6= j}| > (k − 1)n− (m + 1)

(
n

2

)
+ 1. (2.7)

Here we pose the following conjecture.
Conjecture 2.2. Under the conditions of Theorem 2.3, we have

|{a1 + · · ·+ an: ai ∈ Ai, and Pi(ai) 6= Pj(aj) if i 6= j}| > p(F )

if p(F ) 6 (k − 1)n− (m + 1)
(n
2

)
.

Lemma 2.3 (Z. W. Sun [33]). Let R be a commutative ring with identity. Let A =
(aij)16i,j6n be a matrix over R, and let det(A) = |aij |16i,j6n be the determinant of A. Let
k, m1, . . . ,mn ∈ N.

(i) If m1 6 · · · 6 mn 6 k, then we have

[xk
1 · · ·xk

n]|aijx
mi
j |16i,j6n(x1 + · · ·+ xn)kn−

∑n

i=1
mi =

(kn−
∑n

i=1 mi)!∏n
i=1(k −mi)!

det(A). (2.8)

(ii) If m1 < · · · < mn 6 k then

[xk
1 · · ·xk

n]|aijx
mi
j |16i,j6n

∏
16i<j6n

(xj − xi) ·
( n∑

s=1

xs

)kn−(n
2)−
∑n

i=1
mi

= (−1)(
n
2) (kn−

(n
2

)
−
∑n

i=1 mi)!∏n
i=1

∏
mi<j6k

j 6=mi+1,...,mn

(j −mi)
per(A),

(2.9)
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where per(A) is the permanent ‖aij‖16i,j6n =
∑

σ∈Sn
a1,σ(1) · · · an,σ(n) and Sn is the sym-

metric group of all the permutations on {1, . . . , n}.
(iii) Suppose that K = kn−

∑n
i=1(li + mi) > 0 where l1, . . . , ln ∈ N. Then

[xk
1 · · ·xk

n]|aijx
li
j |16i,j6n|xmi

j |16i,j6n(x1 + · · ·+ xn)K

=[xk
1 · · ·xk

n]|aijx
mi
j |16i,j6n|xli

j |16i,j6n(x1 + · · ·+ xn)K .
(2.10)

Theorem 2.4 (Z. W. Sun [33]). Let k, m, n ∈ Z+ with k > m(n−1), and let A1, . . . , An

be subsets of a field F with cardinality k. Let P1(x), . . . , Pn(x) ∈ F [x] have degree m with
leading coefficients b1, . . . , bn respectively.

(i) Suppose that b1, . . . , bn are distinct. If p(F ) > (k − 1)n−m
(n
2

)
, then∣∣∣∣{ n∑

i=1

ai: a1 ∈ A1, . . . , an ∈ An, and Pi(ai) 6= Pj(aj) if i 6= j

}∣∣∣∣ > (k − 1)n−m

(
n

2

)
+ 1.

(2.11)
(ii) Assume that the permanent ‖bi−1

j ‖16i,j6n does not vanish. If p(F ) is greater than
(k − 1)n− (m + 1)

(n
2

)
, then∣∣∣∣{ n∑

i=1

ai: ai ∈ Ai, ai 6= aj and Pi(ai) 6= Pj(aj) if i 6= j

}∣∣∣∣ > (k−1)n−(m+1)

(
n

2

)
+1. (2.12)

(iii) We have ‖bi−1
j ‖16i,j6n 6= 0, if F is the complex field C, b1, . . . , bn are qth roots of

unity, and n! does not belong to the set

D(q) =
{∑

p|q
pxp: xp ∈ {0, 1, 2, . . .} for any prime divisor p of q

}
.

Now we raise the following conjecture.
Conjecture 2.3. When F is a field with p(F ) 6 (k − 1)n − m

(n
2

)
, the right-hand side

of the inequality (2.11) in Theorem 2.4(i) should be replaced by p(F ). Similarly, when F is
a field with p(F ) 6 (k − 1)n − (m + 1)

(n
2

)
, the right-hand side of the inequality (2.12) in

Theorem 2.4(ii) should be replaced by p(F ).
The following lemma has the same flavor as Lemma 2.3, but it was only recently noted

and applied by the author.
Lemma 2.4 (Z. W. Sun [35]). Let R be a commutative ring with identity. Let A =

(aij)16i,j6n be a matrix over R, and let per(A) = ‖aij‖16i,j6n be the permanent of A. Let
k, m1, . . . ,mn ∈ N.

(i) If m1 6 · · · 6 mn 6 k, then we have

[xk
1 · · ·xk

n]‖aijx
mi
j ‖16i,j6n(x1 + · · ·+ xn)kn−

∑n

i=1
mi

(kn−
∑n

i=1 mi)!∏n
i=1(k −mi)!

per(A). (2.13)

(ii) If m1 < · · · < mn 6 k then

[xk
1 · · ·xk

n]‖aijx
mi
j ‖16i,j6n

∏
16i<j6n

(xj − xi) ·
( n∑

s=1

xs

)kn−(n
2)−
∑n

i=1
mi

= (−1)(
n
2) (kn−

(n
2

)
−
∑n

i=1 mi)!∏n
i=1

∏
mi<j6k

j 6=mi+1,...,mn

(j −mi)
det(A).

(2.14)
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(iii) Suppose that K = kn −
∑n

i=1(li + mi) > 0 where l1, . . . , ln are also non-negative
integers. Then

[xk
1 · · ·xk

n]‖aijx
li
j ‖16i,j6n|xmi

j |16i,j6n(x1 + · · ·+ xn)K

=[xk
1 · · ·xk

n]‖aijx
mi
j ‖16i,j6n|xli

j |16i,j6n(x1 + · · ·+ xn)K
(2.15)

and also
[xk

1 · · ·xk
n]‖aijx

li
j ‖16i,j6n‖xmi

j ‖16i,j6n(x1 + · · ·+ xn)K

=[xk
1 · · ·xk

n]‖aijx
mi
j ‖16i,j6n‖xli

j ‖16i,j6n(x1 + · · ·+ xn)K
(2.16)

Theorem 2.5 (Z. W. Sun [35]). Let A1, . . . , An be finite subsets of a field F with
|A1| = · · · = |An| = k > m(n − 1) where m ∈ Z+, and let P1(x), . . . , Pn(x) ∈ F [x] have
degree at most m with [xm]P1(x), . . . , [xm]Pn(x) distinct. If p(F ) > (k − 1)n − (m + 1)

(n
2

)
,

then the restricted sumset{ n∑
i=1

ai : ai ∈ Ai, ai 6= aj for i 6= j, and ‖Pj(aj)i−1‖16i,j6n 6= 0
}

(2.17)

has cardinality at least (k − 1)n− (m + 1)
(n
2

)
+ 1 > (m− 1)

(n
2

)
.

Conjecture 2.4. Under the conditions of Theorem 2.5, if p(F ) 6 (k− 1)n− (m + 1)
(n
2

)
then the restricted sumset in (2.17) has cardinality at least p(F ).

Corollary 2.2 (Z. W. Sun [35]). Let A1, . . . , An and B = {b1, . . . , bn} be subsets of a field
with cardinality n. Then there are distinct a1 ∈ A1, . . . , an ∈ An such that the permanent
‖(ajbj)i−1‖16i,j6n is non-zero.

Theorem 2.6 (Z. W. Sun [35]). Let h, k, l, m, n be positive integers satisfying

k − 1 > m(n− 1) and l − 1 > h(n− 1).

Let F be a field with p(F ) > max{K, L}, where

K = (k − 1)n− (m + 1)

(
n

2

)
and L = (l − 1)n− (h + 1)

(
n

2

)
.

Assume that c1, . . . , cn ∈ F are distinct and A1, . . . , An, B1, . . . , Bn are subsets of F with

|A1| = · · · = |An| = k and |B1| = · · · = |Bn| = l.

Let P1(x), . . . , Pn(x), Q1(x), . . . , Qn(x) ∈ F [x] be monic polynomials with deg Pi(x) = m and
deg Qi(x) = h for i = 1, . . . , n. Then, for any S, T ⊆ F with |S| 6 K and |T | 6 L, there
exist a1 ∈ A1, . . . , an ∈ An, b1 ∈ B1, . . . , bn ∈ Bn such that a1+· · ·+an 6∈ S, b1+· · ·+bn 6∈ T ,
and also

aibici 6= ajbjcj , Pi(ai) 6= Pj(aj), Qi(bi) 6= Qj(bj) if 1 6 i < j 6 n. (2.18)

Lemma 2.5 (Z. W. Sun [35]). Let k, m, n ∈ Z+ with k − 1 > m(n− 1). Then

[xk−1
1 · · ·xk−1

n ]
∏

16i<j6n

(xj − xi)2m−1(xjyj − xiyi) · (x1 + · · ·+ xn)N

= (−1)m(n
2) (mn)!N !

(m!)nn!

n−1∏
r=0

(rm)!
(k − 1− rm)!

· ‖yi−1
j ‖16i,j6n,

(2.19)
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where N = (k − 1−m(n− 1))n.
Theorem 2.7 (Z. W. Sun [35]). Let k, m, n be positive integers with k − 1 > m(n− 1),

and let F be a field with p(F ) > max{mn, (k− 1−m(n− 1))n}. Assume that c1, . . . , cn ∈ F
are distinct, and A1, . . . , An, B1, . . . , Bn are subsets of F with |A1| = · · · = |An| = k and
|B1| = · · · = |Bn| = n. Let Sij ⊆ F with |Sij | < 2m for all 1 6 i < j 6 n. Then there are
distinct b1 ∈ B1, . . . , bn ∈ Bn such that the restricted sumset

S = {a1 + · · ·+ an : ai ∈ Ai, ai − aj 6∈ Sij and aibici 6= ajbjcj if i < j} (2.20)

has at least (k − 1−m(n− 1))n + 1 elements.

3. Snevily’s conjecture and additive theorems

Suppose that {a1, . . . , an}, {b1, . . . , bn} and {a1 + b1, . . . , an + bn} are complete systems of
residues modulo n. Let σ = 0 + 1 + · · · + (n − 1) = n(n − 1)/2. Since

∑n
i=1(ai + bi) =∑n

i=1 ai +
∑n

i=1 bi, we have σ ≡ σ + σ (mod n) and hence 2 - n.
In 1999 H. S. Snevily [28] made the following interesting conjecture.
Snevily’s Conjecture. Let G be an additive abelian group with |G| odd. Let A and B

be subsets of G with cardinality n > 0. Then there is a numbering {ai}n
i=1 of the elements of

A and a numbering {bi}n
i=1 of the elements of B such that a1 + b1, . . . , an + bn are distinct.

Theorem 3.1. (i) (N. Alon [2]) Let p be an odd prime and A be a non-empty subset
of Z/pZ with cardinality n < p. For any given b1, . . . , bn ∈ Z/pZ, we can find a numbering
{ai}n

i=1 of the elements of A such that the sums a1 + b1, · · · , an + bn are distinct.
(ii) (Q. H. Hou and Z. W. Sun [18]) Let k > n > 1 be integers, and let F be a field

with p(F ) > max{n, (k − n)n}. Let A1, . . . , An be subsets of F with cardinality k, and let
b1, . . . , bn be elements of F . Then the restricted sumset

{a1 + · · ·+ an: ai ∈ Ai, ai 6= aj and ai + bi 6= aj + bj if i 6= j}

has more than (k − n)n elements.
Note that part (ii) in the case k = n and A1 = · · · = An yields part (i). In order to get

part (i) by the polynomial method, Alon noted that

[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(xj + bj − (xi + bi)) = (−1)n(n−1)/2n!.

Part (ii) is a consequence of Theorem 2.2 (due to Hou and Sun) with m = 1.
Theorem 3.2 (Dasgupta, Károlyi, Serra and Szegedy [10]). Snevily’s conjecture holds

for any cyclic group of odd order.
Proof (Dasgupta, Károlyi, Serra and Szegedy). Let m > 0 be any odd integer. As 2ϕ(m) ≡
1 (mod m) by Euler’s theorem, the multiplicative group of the finite field with order
2ϕ(m) has a cyclic subgroup of order m. Thus, in view of the Combinatorial Nullstellensatz,
Snevily’s conjecture for the cyclic group of order m follows from the following statement: If
F is a field of characteristic 2 and b1, . . . , bn are distinct elements of F ∗ = F \ {0}, then

c := [xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(bjxj − bixi) 6= 0.
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In fact, ∏
16i<j6n

(xj − xi)(bjxj − bixi)

=(−1)(
n
2)|xn−i

j |16i,j6n|bi−1
j xi−1

j |16i,j6n (Vandermonde)

=(−1)(
n
2)
∑

σ∈Sn

sign(σ)
n∏

i=1

xn−i
σ(i) ·

∑
τ∈Sn

sign(τ)
n∏

i=1

bi−1
τ(i)x

i−1
τ(i),

where sign(σ) (the sign of σ) is 1 or −1 according as σ ∈ Sn is even or odd. Therefore

(−1)(
n
2)c =

∑
τ∈Sn

n∏
i=1

bi−1
τ(i)

=
∑

τ∈Sn

sign(τ)
n∏

i=1

bi−1
τ(i) (because ch(F ) = 2)

=|bi−1
j |16i,j6n =

∏
16i<j6n

(bj − bi) 6= 0.

It is well known that all finite subgroups of the multiplicative group of a field are cyclic.
On the other hand, Z. W. Sun [33] observed that any finitely generated abelian group whose
finite subgroups are all cyclic, can be embedded in the unit group of a suitable cyclotomic
field, which allows us to view it as a subgroup of the multiplicative group C∗ of non-zero
complex numbers. So we have the following lemma.

Lemma 3.1. Let G be a finitely generated abelian group. Then the torsion group

Tor(G) = {a ∈ G : a has a finite order} (3.1)

is cyclic if and only if there is a field F such that the multiplicative group F ∗ = F \ {0}
contains a subgroup isomorphic to G.

This lemma, together with Theorem 2.4, enabled the author to establish the following
theorem which extends both Theorem 3.1 and Theorem 3.2.

Theorem 3.3 (Z. W. Sun [33]). Let G be an additive abelian group whose finite subgroups
are all cyclic. Let m,n be positive integers and let b1, . . . , bn be elements of G. Assume that
A1, . . . , An are finite subsets of G with cardinality k > m(n− 1).

(i) If b1, . . . , bn are distinct, then there are at least (k − 1)n − m
(n
2

)
+ 1 multi-sets

{a1, . . . , an} such that ai ∈ Ai for i = 1, . . . , n and all the mai + bi are distinct.
(ii) The sets

{{a1, . . . , an}: ai ∈ Ai, ai 6= aj and mai + bi 6= maj + bj if i 6= j} (3.2)

and
{{a1, . . . , an}: ai ∈ Ai, mai 6= maj and ai + bi 6= aj + bj if i 6= j} (3.3)

have more than (k − 1)n − (m + 1)
(n
2

)
> (m − 1)

(n
2

)
elements, provided that b1, . . . , bn are

distinct and of odd order, or they have finite order and n! cannot be written in the form∑
p∈P pxp where all the xp are non-negative integers and P is the set of primes dividing one

of the orders of b1, . . . , bn.
In Snevily’s conjecture the abelian group is required to have odd order. For a general

abelian group G with cyclic torsion subgroup, what additive properties can we impose on
several subsets of G with cardinality n?
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Lemma 3.1 and Theorem 2.6 together yield the following result.
Theorem 3.4 (Z. W. Sun [35]). Let G be an additive abelian group with cyclic torsion

subgroup. Let h, k, l, m, n ∈ Z+ with k > m(n−1) and l > h(n−1). Assume that c1, . . . , cn ∈
G are distinct, and A1, . . . , An, B1, . . . , Bn are subsets of G with |A1| = · · · = |An| = k and
|B1| = · · · = |Bn| = l. Then, for any sets S and T with |S| 6 (k − 1)n − (m + 1)

(n
2

)
and

|T | 6 (l − 1)n − (h + 1)
(n
2

)
, there are a1 ∈ A1, . . . , an ∈ An, b1 ∈ B1, . . . , bn ∈ Bn such that

{a1, . . . , an} 6∈ S, {b1, . . . , bn} 6∈ T , and also

ai + bi + ci 6= aj + bj + cj , mai 6= maj , hbi 6= hbj if 1 6 i < j 6 n. (3.4)

Corollary 3.1 (Z. W. Sun [35]). Let G be an additive abelian group with cyclic torsion
subgroup, and let A1, . . . , An, B1, . . . , Bn and C = {c1, . . . , cn} be finite subsets of G with
the same cardinality n > 0. Then there are distinct a1 ∈ A1, . . . , an ∈ An and distinct
b1 ∈ B1, . . . , bn ∈ Bn such that all the sums a1 + b1 + c1, . . . , an + bn + cn are distinct.
Proof. Just apply Theorem 3.4 with k = l = n and m = h = 1.

In contrast with Snevily’s conjecture, Corollary 3.1 in the case A1 = · · · = An = A and
B1 = · · · = Bn = B is of particular interest. Here we state a general additive theorem.

Theorem 3.5 (Z. W. Sun [35]). Let G be any additive abelian group with cyclic torsion
subgroup, and let A1, . . . , Am be subsets of G with the same cardinality n ∈ Z+. If m is odd
or all the elements of Am are of odd order, then the elements of Ai (1 6 i 6 m) can be listed
in a suitable order ai1, . . . , ain, so that all the sums

∑m
i=1 aij (1 6 j 6 n) are distinct.

Sun [35] also noted that Theorem 3.5 with m odd cannot be extended to general abelian
groups since there are counter-examples for the Klein quaternion group Z/2Z⊕ Z/2Z.

A line of a square, an n×n matrix, is a row or column of the matrix. We define a line of
an n×n×n cube in a similar way. A Latin cube over a set S of cardinality n is an n×n×n
cube whose entries come from the set S and no line of which contains a repeated element.
A transversal of an n× n× n cube is a collection of n cells no two of which lie in the same
line. A Latin transversal of a cube is a transversal whose cells contain no repeated element.

Corollary 3.2 (Z. W. Sun [35]). Let N be any positive integer. For the N × N × N
Latin cube over Z/NZ formed by the Cayley addition table, each n × n × n sub-cube with
n 6 N contains a Latin transversal.
Proof. Just apply Theorem 3.5 with m = 3 (or Corollary 3.1) to the cyclic group Z/NZ.

In contrast, Theorem 3.2 has the following equivalent version observed by Snevily [28]:
Let N be a positive odd integer. For the N × N Latin square over Z/NZ formed by the
Cayley addition table, each of its sub-squares contains a Latin transversal.

Conjecture 3.1 (Z. W. Sun [35]). Every n×n×n Latin cube contains a Latin transversal.

4. On a conjecture of Lev and related results

Let A and B be finite non-empty subsets of an additive abelian group G. In contrast with
the Cauchy-Davenport theorem, J.H.B. Kemperman [21] and P. Scherk [27] proved that

|A + B| > |A|+ |B| − min
c∈A+B

νA,B(c), (4.1)

where
νA,B(c) = |{(a, b) ∈ A×B: a + b = c}|; (4.2)
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in particular, we have |A + B| > |A|+ |B| − 1 if some c ∈ A + B can be uniquely written as
a + b with a ∈ A and b ∈ B.

Motivated by the Kemperman-Scherk theorem and the Erdős-Heilbronn conjecture, V.
F. Lev [22] proposed the following interesting conjecture.

Lev’s Conjecture. Let G be an abelian group, and let A and B be finite non-empty
subsets of G. Then we have

|A u B| > |A|+ |B| − 2− min
c∈A+B

νA,B(c). (4.3)

By a sophisticated application of the first part of the Combinatorial Nullstellensatz, H.
Pan and Z. W. Sun [26] made the following progress on Lev’s conjecture.

Theorem 4.1 (H. Pan and Z. W. Sun [26]). Let A and B be finite non-empty subsets
of a field F . Let P (x, y) ∈ F [x, y] and

C = {a + b: a ∈ A, b ∈ B, and P (a, b) 6= 0}. (4.4)

If C is non-empty, then

|C| > |A|+ |B| − deg P −min
c∈C

νA,B(c). (4.5)

Theorem 4.2 (H. Pan and Z. W. Sun [26]). Let A and B be finite non-empty subsets
of an abelian group G with cyclic torsion subgroup. For i = 1, . . . , l let mi and ni be non-
negative integers and let di ∈ G. Suppose that

C = {a + b: a ∈ A, b ∈ B, and mia− nib 6= di for all i = 1, . . . , l} (4.6)

is non-empty. Then

|C| > |A|+ |B| −
l∑

i=1

(mi + ni)−min
c∈C

νA,B(c). (4.7)

The following result on difference-restricted sumsets follows from Theorems 4.1 and 4.2.
Theorem 4.3 (H. Pan and Z. W. Sun [26]). Let G be an abelian group, and let A,B, S

be finite non-empty subsets of G with

C = {a + b: a ∈ A, b ∈ B, and a− b 6∈ S} 6= ∅. (4.8)

(i) If G is torsion-free or elementary abelian, then

|C| > |A|+ |B| − |S| −min
c∈C

νA,B(c). (4.9)

(ii) If Tor(G) is cyclic, then

|C| > |A|+ |B| − 2|S| −min
c∈C

νA,B(c). (4.10)

Proof. Without loss of generality we can assume that G is generated by the finite set A∪B.
If G ∼= Zn, then we can simply view G as the ring of algebraic integers in an algebraic

number field K with [K : Q] = n. If G ∼= (Z/pZ)n where p is a prime, then G is isomorphic
to the additive group of the finite field with pn elements. Thus part (i) follows from Theorem
4.1 with P (x, y) =

∏
s∈S(x− y − s).
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Let d1, . . . , dl be all the distinct elements of S. Applying Theorem 4.2 with mi = ni = 1
for all i = 1, . . . , l, we immediately get part (ii), completing the proof.

Given two finite subsets A and B of a field F and a general P (x, y) ∈ F [x, y], what can we
say about the cardinality of the restricted sumset {a+b: a ∈ A, b ∈ B, and P (a, b) 6= 0}? In
2002 H. Pan and Z. W. Sun [25] made progress in this direction by relaxing (to some extent)
the limitations of the polynomial method, their approach allows one to draw conclusions
even if no coefficients in question are explicitly known.

Lemma 4.1 (H. Pan and Z. W. Sun [25]). Let P (x) be a polynomial over a field F . Let
F̄ be the algebraic closure of the field F and mP (α) be the multiplicity of α ∈ F̄ as a root of
P (x) = 0 over F̄ . Suppose that there exist non-negative integers k < l such that [xi]P (x) = 0
for all i with k < i < l. Then either xl | P (x), or deg P (x) 6 k, or Nq(P ) > l − k for some
q ∈ P(p) = {1, p, p2, . . .}, where p = ch(F ),

Nq(P ) = q|{α ∈ F̄ \ {0}: mP (α) > q}| −
∑

α∈F̄\{0}
{mP (α)}q (4.11)

and {m}q denotes the least non-negative residue of m ∈ Z modulo q.
We remark that N1(P ) is the number of distinct roots in F̄ \{0} of the equation P (x) = 0

over F̄ .

Theorem 4.4 (H. Pan and Z. W. Sun [25]). Let A and B be two finite non-empty subsets
of a field F . Furthermore, let P (x, y) be a polynomial over F of degree d = deg P (x, y) such
that for some i < |A| and j < |B| we have [xiyd−i]P (x, y) 6= 0 and [xd−jyj ]P (x, y) 6= 0.
Define P0(x, y) to be the homogeneous polynomial of degree d such that P (x, y) = P0(x, y)+
R(x, y) for some R(x, y) ∈ F [x, y] with deg R(x, y) < d, and put P ∗(x) = P0(x, 1). For any
α in the algebraic closure F̄ of F , let mP ∗(α) denote the multiplicity of α as a zero of P ∗(x).
Then

|{a + b: a ∈ A, b ∈ B, and P (a, b) 6= 0}|
> min{p−mP ∗(−1), |A|+ |B| − 1− d−N(P ∗)},

(4.12)

where p = ch(F ) and

N(P ∗) = max
q∈P(p)

q|{α ∈ F̄ \ {0,−1} : mP ∗(α) > q}|. (4.13)

For the sake of clarity, here we state a consequence of Theorem 4.4.
Corollary 4.1 (H. Pan and Z. W. Sun [25]). Let F be a field with p = ch(F ) 6= 2, and

let A,B and S be finite non-empty subsets of F . Then

|{a + b: a ∈ A, b ∈ B, and a− b 6∈ S}| ≥ min{p, |A|+ |B| − |S| − q − 1}, (4.14)

where q is the largest element of P(p) not exceeding |S|.

5. Working with general abelian groups

Theorem 5.1 (Kneser’s Theorem). Let G be an additive abelian group. Let A and B be finite
non-empty subsets of G, and let H = H(A+B) be the stabilizer {g ∈ G : g+A+B = A+B}.
If |A + B| 6 |A|+ |B| − 1, then

|A + B| = |A + H|+ |B + H| − |H|. (5.1)
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This is an extension of the Cauchy-Davenport theorem. For, if G is Z/pZ with p a prime,
and also |A + B| < |A| + |B| − 1, then H 6= {0} by Kneser’s theorem, whence H = G and
|A + B| > |G|+ |G| − |G| = p.

Corollary 5.1. Let G be an additive abelian group. Let p(G) = +∞ if G is torsion-free,
otherwise we let p(G) be the least order of a non-zero element of G. Then, for any finite
non-empty subsets A and B of G, we have

|A + B| > min{p(G), |A|+ |B| − 1}. (5.2)

Proof. Suppose that |A + B| < |A| + |B| − 1. Then H = H(A + B) 6= {0} by Kneser’s
theorem. Therefore |H| > p(G) and hence

|A + B| = |A + H|+ |B + H| − |H| > |A + H| > |H| > p(G).

We are done.
G. Károlyi ([19], [20]) extended the Erdős-Heilbronn conjecture to general abelian groups.
Theorem 5.2. Let G be an additive abelian group and let A be a finite non-empty subset

of G.
(i) (G. Károlyi [19]) We have

|2∧A| > min{p(G), 2|A| − 3}. (5.3)

(ii) (G. Károlyi [20]) When |A| > 5 and p(G) > 2|A| − 3, the equality |2∧A| = 2|A| − 3
holds if and only if A is an arithmetic progression.

Using the fact that any finitely generated abelian group can be written as the direct sum
of some cyclic groups of infinite or prime power order, Károlyi proved Theorem 5.2 in two
steps. First, he showed that Theorem 5.2 is true for any cyclic group G of infinite or prime
power order; then, he proved that those abelian groups possessing the required property
are closed under direct sum. In the first step for Theorem 5.2(i), he actually obtained the
following more general result.

Theorem 5.3 (G. Károlyi [19]). Let ∅ 6= A,B ⊆ Z/qZ, where q = pα is a power of a
prime p. Then

|A u B| > min{p, |A|+ |B| − 3}. (5.4)

For non-empty subsets A and B of Z/pZ with p a prime, if |A| 6= |B| then we have

|A u B| > min
{

p, |A|+ |B| − 2(2 + 1)
2

+ 1
}

= min{p, |A|+ |B| − 2}

by the ANR theorem; if |A| = |B| then

|A u B| > |(A \ {a0}) u B)| > min{p, (|A| − 1) + |B| − 2},

where a0 is any fixed element of A.
When q = pα is not a prime, Z/qZ is not a subgroup of the additive group of a field but

Károlyi considered it as the group of qth roots of unity (up to isomorphism) which can be
viewed as a subgroup of the multiplicative group C∗ of non-zero complex numbers.

Lemma 5.1 (Z. W. Sun [29][32]). Let λ1, . . . , λk be qth roots of unity, and let c1, . . . , ck

be non-negative integers with c1λ1 + · · ·+ ckλk = 0. Then c1 + · · ·+ ck ∈ D(q), where D(q)
is as in Theorem 2.4(iii).
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Proof of Theorem 5.3. Since Z/qZ is isomorphic to the multiplicative group Cq of qth roots
of unity, we may view A and B as subsets of Cq. If |A| + |B| − 3 > p, then we can choose
∅ 6= A′ ⊆ A and ∅ 6= B′ ⊆ B so that |A′|+ |B′| − 3 = p. Thus, without loss of generality, we
may assume that k + l − 3 6 p where k = |A| and l = |B|.

Suppose that |C| 6> min{p, k + l − 3} = k + l − 3, where

C = {ab : a ∈ A, b ∈ B and a 6= b}.

If
c0 := [xk−1yl−1](xy − 1)

∏
c∈C

(x− cy)× (x− y)k+l−4−|C| 6= 0,

then by the polynomial method, there exist a ∈ A and b−1 ∈ B−1 such that ab−1 6= 1 and
a 6= cb−1 for all c ∈ C, which leads to a contradiction since a 6= b and ab ∈ C. Thus, it
suffices to show c0 6= 0.

Observe that

c0 = [xk−2yl−2]
k+l−4∏
s=1

(x− ρsy) = (−1)l−2
∑

16i1<···<il−26k+l−4

ρi1 · · · ρil−2
,

where ρ1, . . . , ρk+l−4 are suitable qth roots of unity. Since
(k+l−4

l−2

)
6∈ D(q) = {pn : n ∈ N},

we have c0 6= 0 by Lemma 5.1.

Now we mention a celebrated theorem of M. Hall which was conjectured by G. Cramer
for cyclic groups.

Theorem 5.4 (M. Hall [16]). Let G = {b1, . . . , bn} be an additive abelian group of order
n, and let a1, . . . , an be (not necessarily distinct) elements of G. Then a1 + · · · + an = 0 if
and only if {ai + bσ(i) : i = 1, . . . , n} = G for some σ ∈ Sn.

Z. W. Sun and Y. N. Yeh [37] observed that Hall’s theorem implies the following conjec-
ture of Parker (cf. [14]): For integers a1, . . . , an with a1 + · · · + an ≡ 0 (mod n + 1), there
are σ, τ ∈ Sn such that ai ≡ σ(i) + τ(i) (mod n + 1) for all i = 1, . . . , n.

In contrast with Snevily’s conjecture, we have the following consequence of Theorem 5.4.
Corollary 5.2. Let G be a finite abelian group, and let a1, . . . , an ∈ G with n < |G|.

Then there are distinct b1, . . . , bn ∈ G such that the sums a1 + b1, . . . , an + bn are distinct.
Proof. Write G = {c1, . . . , cm} with m = |G|. Set an+1 = −(a1 + · · · + an) and ak = 0
for n + 1 < k 6 m. As a1 + · · · + am = 0, by Theorem 5.4, for some σ ∈ Sm we have
{ai + cσ(i) : i = 1, . . . ,m} = G. Let bi = cσ(i) for i = 1, . . . , n. Then b1, . . . , bn are distinct,
and so are the sums a1 + b1, . . . , an + bn. We are done.

Let us conclude this paper with a new open problem.
Problem 5.1. Let G be a finite abelian group, and let n be a positive integer smaller

than |G|. Determine the smallest positive integer m 6 |G| such that whenever a1, . . . , an ∈ G
are distinct and B ⊆ G with |B| > m there are distinct b1, . . . , bn ∈ B such that all the sums
a1 + b1, . . . , an + bn are distinct.

6. On value sets of polynomials

Given a field F , we consider polynomials of the form
What can we say about the solvability of the equation f(x1, . . . , xn) = 0 over Fn?
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Let p be a prime, and let c1, . . . , cn be non-zero elements of the field Fp = Z/pZ. In 1959
Chowla, Mann and Straus (cf. Theorem 2.8 of [24]) used Vosper’s theorem (cf. pp. 52-57
of [24]) to deduce that if p > 3, 1 < k < (p− 1)/2 and k | p− 1, then

|{c1x
k
1 + · · ·+ cnxk

n : x1, . . . , xn ∈ Fp}| > min
{

p, (2n− 1)
p− 1

k
+ 1

}
.

In 1956 Carlitz [8] proved that whenever n > k > 1, k | p − 1 and g(x1, . . . , xn) ∈
Fp[x1, . . . , xn] with deg g < k, the equation

c1x
k
1 + · · ·+ cnxk

n + g(x1, . . . , xn) = 0

has a solution with x1, . . . , xn ∈ Fp. In 2006 Felszeghy [15] extended this result by showing
that

{c1x
k
1 + · · ·+ cnxk

n + g(x1, . . . , xn) : x1, . . . , xn ∈ Fp} = Fp

if k ∈ {1, . . . , p− 1} and n > (p− 1)/b(p− 1)/kc.
With the help of the Combinatorial Nullstellensatz, recently Z. W. Sun established the

following result on value sets of polynomials.
Theorem 6.1 (Z. W. Sun [36]). Let F be a field, and let

f(x1, . . . , xn) = c1x
k
1 + · · ·+ cnxk

n + g(x1, . . . , xn) ∈ F (x1, . . . , xn), (6.1)

where
c1, . . . , cn ∈ F ∗ = F \ {0} and deg g < k ∈ Z+. (6.2)

Then, for any non-empty finite subsets A1, . . . , An of F , we have

|{f(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}|

> min

{
p(F ),

n∑
i=1

⌊ |Ai| − 1
k

⌋
+ 1

}
.

(6.3)

Note that Theorem 6.1 in the case f(x1, . . . , xn) = x1 + · · · + xn yields the Cauchy-
Davenport theorem. Felszeghy’s result is also a special case of Theorem 6.1.

Here is another result of [36] obtained by the Combinatorial Nullstellensatz.
Theorem 6.2 (Z. W. Sun [36]). Let f(x1, . . . , xn) be a polynomial over a field F given

by (6.1) and (6.2) with n 6 k = deg f . And let A1, . . . , An be finite subsets of F with |Ai| > i
for i = 1, . . . , n. Then, for the restricted value set

V = {f(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An, and ai 6= aj if i 6= j}, (6.4)

we have

|V | > min

{
p(F ),

n∑
i=1

⌊ |Ai| − i

k

⌋
+ 1

}
. (6.5)

Theorem 6.2 has the following consequence for the case n > k.
Corollary 6.1 (Z. W. Sun [36]). Let A be a finite subset of a field F , and let f(x1, . . . , xn)

be a polynomial given by (6.1) and (6.2). If n > k, then we have

|{f(a1, . . . , an) : a1, . . . , an ∈ A, and ai 6= aj if i 6= j}|
> min{p(F ), |A| − n + 1}.

(6.6)
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Let us conclude this paper with a conjecture raised in [36].
Conjecture 6.1 (Z. W. Sun [36]). Let f(x1, . . . , xn) be a polynomial over a field F given

by (6.1) and (6.2), and let A be any finite subset of F . Provided n > k, we have

|{f(a1, . . . , an) : a1, . . . , an ∈ A, and ai 6= aj if i 6= j}|

> min
{

p(F )− δ,
n(|A| − n)

k
− k

{
n

k

}{ |A| − n

k

}
+ 1

}
,

(6.7)

where {α} denotes the fractional part α− bαc of a real number α, and

δ =

{
1 if n = 2 and c1 = −c2,

0 otherwise.

By Corollary 3 of [25], this conjecture holds when n = 2. Note also that the Dias da
Silva–Hamidoune theorem is a special case of Conjecture 6.1 with k = 1.
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