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A CHARACTERIZATION OF COVERING EQUIVALENCE

HAO PAN (SHANGHAI) AND ZHI-WEI SUN (NANJING)

ABSTRACT. Let A = {as(mod ns)}*_, and B = {bs(mod m¢)}._, be
two systems of residue classes. If [{1 < s < k: z = as (mod ns)}| and
H1 €t <1l: x = b (mod my)}| are equal for all z € Z, then A and
B are said to be covering equivalent. In this paper we characterize the
covering equivalence in a simple and new way. Using the characterization
we partially confirm a conjecture of R. L. Graham and K. O’Bryant.

1. INTRODUCTION

Forn € Z+ ={1,2,3,...} and a € {0,... ,n — 1}, we simply use a(n)
to denote the residue class {z € Z: z = a (mod n)}. For a finite system

A= {as(ns)}s—y (0<as <ny) (1.1)

of residue classes, the nq,...,n; are called its moduli and its covering
function wa : Z — N ={0,1,...} is given by

walx) =1 <s<k: x€ag(ng)} (1.2)

(The covering function wy of an empty system is regarded as the zero
function.) The periodic function wa(x) has many surprising properties
(cf. [SO3al, [S04] and [S05a]).

Let m be a positive integer. If w4 (z) = m for all z € Z, then (1.1) is
said to be an exact m-cover of Z as in [S95] and [S96]. Recently Z. W.
Sun (cf. [S04] and [SO5b]) showed that (1.1) forms an exact m-cover of Z

if it covers |S(n1,... ,n)| consecutive integers exactly m times, where
r
Sny,...,ng) = {— cr=0,...,ns—1;s=1,... ,k:}. (1.3)
Ns

For problems and results on covers of Z by residue classes, the reader is
referred to [FFKPY], [G04] and [S03b].

For two finite systems A = {as(ns)}*_; and B = {b;(m¢)}._;, Sun [S89]
called A and B covering equivalent (in short, A ~ B) if they have the same
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covering function (i.e., wa = wp). Thus (1.1) is an exact m-cover of Z
if and only if (1.1) is covering equivalent to the system consisting of m
copies of 0(1).

In [SO1] and [S02] Sun characterized the covering equivalence by various
systems of equalities. In this paper we present a simple characterization
involving roots of unity. Namely, we have the following result.

Theorem 1.1. Let A= {as(ns)}*_; (0 < as <ng) and B = {bs(m4)}_,
(0 < by < my) be two finite systems of residue classes. Let p be a prime
greater than |S(ni,... ,ng, my, ... ,my)|, and let ¢, be a primitive pth root

of unity. Then A and B are covering equivalent if and only if

k (o l Cbt
> — = > - —pcg”bt' (1.4)

3:1 t:1

Corollary 1.1. (1.1) forms an exact m-cover of Z if and only if

k 2mwias/p

e m
Z 1 — e2mins/p - 1 — e2mi/p’ (15)
s=1

where p is any fized prime greater than |S(ni,... ,ng)|.

Proof. Simply apply Theorem 1.1 with B consisting m copies of 0(1). O

Remark 1.1. In 1975 S. Znam [Z75a] used the transcendence of e to prove
that (1.1) is a disjoint cover (i.e., exact 1-cover) of Z if and only if

e%s 1
Z1—e"s T l-e

s=1

Corollary 1.2. Suppose that for nonempty system (1.1) we have

Zk: 627ria5/p 0
_ p2ming -
pt 1 e /P
where p is a prime. Then
A +ng—k+1>|S0n,. .. )| = p. (1.6)

Proof. Clearly |S(ni,...,nk)| <ni+---+ni—k+1. Since we don’t have
A ~ (, applying Theorem 1.1 with B = () we find that |S(ny,... ,ng)|
cannot be smaller than p. This concludes the proof. [J

Corollary 1.2 partially confirms the following conjecture arising from the
study of Fraenkel’s conjecture on disjoint covers of N by Beatty sequences.
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Graham—O’Bryant Conjecture ([GO]). Letnq,... ,ny be distinct pos-

itive integers less than and relatively prime to q € Z*. If ai,... ,ar € Z
and
k 627Tias/q
> T =0
s=1

then we must have 2521 ng = q.

The following example shows that we cannot replace the prime p in
Corollary 1.2 or Theorem 1.1 by a composite number.

Ezample 1.1. Let ¢ > 1 be an integer and let p be a prime divisor of q.
Then, for any n =1,... ,q¢ — 1, we have

p=1 2ri(sa/p)/q Zp_é e2mis/p
— S= —
1 — e2min/q o 1 — e2min/q =0
s=0

but |S(n,... ,n)] =n < q. Thus the conditions 0 < as < ns (s =1,... k)
in Corollary 1.2 cannot be cancelled. If ¢ is composite, then there are
q/p — 1 > 0 integers in the interval ((p — 1)q/p, ¢ — 1]. So we cannot
substitute a composite number for the prime p in Corollary 1.2.

Corollary 1.3. Let A = {as(ns)}_; (0 < as < ng) and B = {bs(my)}_;

s=1
(0 < by < my) both have distinct moduli. Let p be a prime greater than
|S(n1,... ,ng,ma, ... ,my)|, and let ¢, be a primitive pth root of unity.

Then A and B are identical if and only if (1.4) holds.

Proof. By a result of Znam [S75b], A and B are identical if they have the
same covering function. Combining this with Theorem 1.1 we immediately
get the desired result. [

Observe that A = {as(ns)}*_; and B = {b;(m4)}._, are covering equiv-
alent if and only if

k l
Z 1+ Z (=1)=0 for every z € Z.
s=1 t=1
z€as(ns) x€bs(my)

Thus Theorem 1.1 has the following equivalent form which will be proved
in the next section.

Theorem 1.2. Let A = {(\,, as,n)}*_; where \s,as,ns € Z and 0 <
as < ng. Let p > |S(ny,... ,ng)| be a prime, and let {, be any primitive
pth root of unity. Then A~ 0 (i.e., wa(T) =3 1<k vea.(n) As = 0 for
all x € Z) if and only if

k as
ZAsl E” — =0. (1.7)
s=1 P
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2. PROOF OF THEOREM 1.2

Let S = S(n1,...,ng). As p > |S| > max{ny,... ,ni}, there is a com-
mon multiple N € ZT of the moduli ny, ... ,ny such that N =1 (mod p).
Just as in [S05a], we have

N—-1 N—-1 k
E way(r)z" = E E Az = E As E 2"
r=0 r=0 1<s<k s=1 0<r<N
nslas—r r€as(ns)
k
:E As2®® E (z"=)?
s=1 O<q<N/nS
s N 2%
=N E 2% 4+ (1—2") E As .
N 1 —zms
1<s<k 1<s<k
z”szl zMs #£1

Thus

N—-1 k Cas
> walr)gy = 1= hr
r=0 — p

It follows that

k as p—1
Z)\Sl_p =0 <= > ad =0, (2.1)
s=1 P 1=0
where
N-1
= Z wA(sc) €.
x=0
z€l(p)

If wa(z) =0 for all x € Z, then (1. 7) holds by the above.

Below we assume (1.7). Then > ), clcl => . _01 w4 (r)¢, = 0. In the
case N = 1, it follows that w4(z) = wA(O) =0 for all x € Z.

Now suppose N > 1. Clearly N > pas N =1 (mod p). Since 1 +z +

-4 2P7! = (2P — 1)/(x — 1) is the minimal polynomial of ¢, over the
field of rational numbers, we must have ¢ = ¢; = --- = ¢,_1. (See also
M. Newman [N71].) Observe that if x € Z then

[

k

Y jos—e, Ae omi
_ Z n_ Z - Z e—27rzam Z n_5627rw¢a5. (22)

s=1 aES s=1
ans€Z

[V
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(This trick appeared in [S91] and [S04].) Since |S| < p, for each | =
0,...,]S| we have

N—-1 k A N—-1

— — 7's 2micas —2miax

S SIS SR T 3P
=0 a€eS s=1 =0
z€l(p) ans€Z z€l(p)
L[(N—1-1)/p] o

_ Z e—27rzal Z 8 27rmcaS Z e—27rzapj’

a€esS 7=0
om EZ
where || is the greatest integer function. If [ € {1,...,|S|} then

{N—l—lJ N -1 {—ZJ N -1
= + | —| = —1;
p p p p

if o € S\ {0} then

(N-1)/p=1 —2miapy(N—1 2mia
Coriani 1 — (e Py (N=1)/p 1—e
e 2miap] __ _
C(Oé) T Z € - 1 — e—2miap o 1 — e—2miap 7& 0.
7=0
Let ¢ = cop = --- = cp—1. By the above,
Z 6727riajf(a) —c
a€esS
for every 7 =0,...,|S| — 1, where
k
N -1 s
p ; s
and
"
—2mia s 2miaa
= C — S { € S\ {0}.
flo) =m0 3 e fora€ s\ (0)
afmZEZ
Let ag =0, aq,... ,a5—1 be all the distinct elements of S. Now that
|S|—1
Z e~ f(ay) = ¢ foreach j =0,...,|S| — 1,
t=0
by Cramer’s rule D; = D f(ay) vanishes for every t = 1,...,|S| —1, where

D = det((e=2mtt)J Jo<j,t<|s| is of Vandermonde’s type and hence nonzero.
Therefore

| >

k
Z e?™as — () forallaw € S \ {0}
Ns

a Z
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and hence w4 (x) = Z§:1 As/ns for all x € Z by (2.2). It follows that

N-1 k )\ k A 1—CN
r=0 s=1 s=1 % P

So ZS 1 As/ns = 0 and hence A ~ ). We are done.
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