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Groups in Combinatorial
Number Theory

Zhi-Wei Sun*

Abstract

In combinatorial number theory, there are many topics related to group

structure. Even for abelian or cyclic groups, there are some very chal-

lenging unsolved conjectures. In this talk we give a survey of problems,
results and methods in several fields of combinatorial number theory.

The topics include sumsets in additive combinatorics, Snevily’s conjec-

ture and Latin transversals, covers of the integers and groups.
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1. Sumsets in Additive Combinatorics

During his study of Goldbach’s conjecture, L. G. Shnirel’man intro-
duced in 1933 the Shnirel’man density of a subset A of N = {0, 1, 2, . . . }:

σ(A) := inf
n>1

|{a ∈ A : 1 6 a 6 n}|
n

.

Using this concept he showed that there exists a constant c > 0 such
that each integer greater than one can be expressed as a sum of at most
c primes; this is the first important progress on Goldbach’s conjecture.

In 1942 H. Mann [35] established the following fundamental result
conjectured by Shnirel’man.
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Theorem 1.1 (Mann’s Theorem). Let A and B be subsets of N con-
taining 0. Then

σ(A+B) > min{1, σ(A) + σ(B)},
where A+B denotes the sumset {a+ b : a ∈ A, b ∈ B}.

Let A and B be nonempty subsets of an abelian group G. For e ∈ G
we let

Ae = A ∪ (e+B) ⊇ A and Be = (A− e) ∩B ⊆ B,

and call the pair (Ae, Be) the Dyson e-transformation of the pair (A,B).
It is easy to see that Ae + Be ⊆ A + B, and |Ae| + |Be| = |A| + |B| if
A and B are finite. For some e ∈ G one might have |Be| < |B|. Thus
Dyson’s transformation plays an important role in induction proofs of
some additive results such as Mann’s theorem.

Let p be a prime. Any cyclic group of order p is isomorphic to the
additive group Zp = Z/pZ = {ā = a + pZ : a ∈ Z}. If A = {1̄, . . . , k̄}
and B = {1̄, . . . , l̄} with |A| = k 6 p and |B| = l 6 p, then A + B =
{2̄, . . . , k + l} and hence

|A+B| = min{p, k + l − 1} = min{p, |A|+ |B| − 1}.
Theorem 1.2 (Cauchy-Davenport Theorem (cf. [69])). Let p be any
prime. If A and B are nonempty subsets of Zp, then

|A+B| > min{p, |A|+ |B| − 1}.

In 1953 M. Kneser [31] extended the Cauchy-Davenport theorem
to general abelian groups.

Theorem 1.3 (Kneser’s Theorem). Let G be an additive abelian group.
Let A and B be finite nonempty subsets of G, and let H = H(A+B) be
the stabilizer {g ∈ G : g +A+B = A+B}. If |A+B| 6 |A|+ |B| − 1,
then

|A+B| = |A+H|+ |B +H| − |H|.

Corollary 1.1. Let G be an additive abelian group. Let p(G) be the
least order of a nonzero element of G, or p(G) = +∞ if G is torsion-
free. Then, for any finite nonempty subsets A and B of G, we have

|A+B| > min{p(G), |A|+ |B| − 1}.

Proof. Suppose that |A+B| < |A|+|B|−1. ThenH = H(A+B) 6=
{0} by Kneser’s theorem. Therefore |H| > p(G) and hence

|A+B| = |A+H|+ |B +H| − |H| > |A+H| > |H| > p(G). �

The following deep theorem was first established by G. Freiman
[19] in 1966 via a complicated geometric method.
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Theorem 1.4 (Freiman’s Theorem). Let A be a finite nonempty subset
of Z with |A+A| 6 c|A|. Then A is contained in an n-dimensional AP

Q = Q(a; q1, . . . , qn; l1, . . . , ln) = {a+ x1q1 + · · ·+ xnqn : 0 6 xi < li}

with |Q| 6 c′|A|, where c′ and n depend only on c.

B. Green and I. Z. Ruzsa [22] extended Freiman’s theorem to any
abelian group. Freiman’s theorem plays a crucial role in the Fields
medalist T. Gowers’ quantitative proof (cf. [20]) of the famous Sze-
merédi theorem [68], which partially motivated B. Green and T. Tao
[23] to obtain the following celebrated theorem first conjectured by P.
Erdős and P. Turán [17] in 1936.

Theorem 1.5 (Green-Tao Theorem). For each integer k > 3, there are
k distinct primes so that they form an arithmetic progression of length
k.

Conjecture 1.1 (Erdős-Szemerédi Conjecture [16]). Let A be a finite
nonempty set of integers or reals. Then for any ε > 0 there is a constant
cε > 0 such that

|A+A|+ |AA| > cε|A|2−ε,

where AA = {a1a2 : a1, a2 ∈ A}.

Theorem 1.6. Let p be a prime and let ∅ 6= A ⊆ Zp.
(i) (J. Bourgain, N. Katz & T. Tao [8], J. Bourgain & S. Konyagin

[9]) If |A| < p1−δ with δ > 0, then there are c(δ) > 0 and ε(δ) > 0 such
that

max{|A+A|, |AA|} > c(δ)|A|1+ε(δ).

(ii) (N. Katz & C. Y. Shen [29]) If |A| < √
p, then

max{|A+A|, |AA|} > c
|A|14/13

(log |A|)α
,

where c and α are positive constants (independent of p and A).

Let A1, . . . , An be sets. If a1 ∈ A1, . . . , an ∈ An, and ai 6= aj for
all 1 6 i < j 6 n, then {ai}n

i=1 is called an SDR (systems of distinct
representatives) of {Ai}n

i=1. In 1935 P. Hall proved the following fun-
damental theorem in discrete mathematics: {Ai}n

i=1 has an SDR if and
only if |

⋃
i∈I Ai| > |I| for all I ⊆ {1, . . . , n}.

If A1, . . . , An are subsets of an additive abelian group, then we may
consider the sum of the elements in an SDR of {Ai}n

i=1. Different SDR’s
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may lead the same sum. So it is interesting to find a sharp lower bound
for the cardinality of the restricted sumset

A1 u · · ·uAn = {a1 + · · ·+ an: {ai}n
i=1 forms an SDR of {Ai}n

i=1}.

In 1964 Erdős and Heilbronn [15] made the following challenging
conjecture.

Conjecture 1.2 (Erdős-Heilbronn Conjecture). Let p be a prime, and
let A be a subset of the field Zp. Then |2∧A| > min{p, 2|A| − 3}, where

2∧A = AuA = {a+ b : a, b ∈ A, and a 6= b}.

This conjecture is so difficult that it had been open for thirty years
until it was finally confirmed by J. A. Dias da Silva and Y. O. Hamidoune
[13] in 1994, with the help of the representation theory of groups.

For a field F , clearly p(F ) coincides with the additive order of the
(multiplicative) identity of F , which is either a prime or the infinity +∞.

Theorem 1.7 (Dias da Silva–Hamidoune Theorem). Let F be a field
and n be a positive integer. Then for any finite subset A of F we have

|n∧A| ≥ min{p(F ), n|A| − n2 + 1},

where n∧A denotes the set of all sums of n distinct elements of A.

Corollary 1.2. If p is a prime, A ⊆ Zp and |A| >
√

4p− 7, then any
element of Zp can be written as a sum of b|A|/2c distinct elements of A.

Proof. Let n = b|A|/2c. It is easy to see that n|A| − n2 + 1 > p.
Thus, by the Dias da Silva–Hamidoune theorem, we have |n∧A| > p and
hence n∧A = Zp. �

Motivated by his study of graph theory, F. Jäger posed in 1982 the
following conjecture.

Conjecture 1.3 (Jäger’s Conjecture). Let F be a finite field with at
least 4 elements, and let A be an invertible n× n matrix with entries in
F . There there exists a vector ~x ∈ Fn such that both ~x and A~x have no
zero component.

In 1989 N. Alon and M. Tarsi [5] confirmed the conjecture in the
case when |F | is not a prime. Moreover their method later resulted in
the following powerful principle (see Alon [1]).
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Theorem 1.8 (Combinatorial Nullstellensatz). Let A1, . . . , An be fi-
nite subsets of a field F with |Ai| > ki ∈ N for i = 1, . . . , n. If
f(x1, . . . , xn) ∈ F [x1, . . . , xn] has degree

∑n
i=1 ki, and the coefficient

[xk1
1 · · ·xkn

n ]f(x1, . . . , xn) (of the monomial xk1
1 · · ·xkn

n in f) does not
vanish, then there are a1 ∈ A1, . . . , an ∈ An such that f(a1, . . . , an) 6= 0.

Let F be a finite field with |F | = pα where p is a prime and α is an
integer greater than one. Let A = (aij)16i,j6n be an invertible matrix
over F . In view of the Combinatorial Nullstellensatz, Alon and Tarsi’s
result can be reduced to the following one: There exist nonnegative
integers k1, . . . , kn smaller than |F \ {0}| such that

[xk1
1 · · ·xkn

n ]
n∏

i=1

n∑
j=1

aijxj 6= 0.

The method using the Combinatorial Nullstellensatz is also called
the polynomial method. By means of this tool, Alon, Nathanson and
Ruzsa [4] obtained the following result on restricted sumsets in 1996.

Theorem 1.9 (Alon, Nathanson, Ruzsa). Let A1, . . . , An be finite
nonempty subsets of a field F with |A1| < · · · < |An|. Then

|A1 u · · ·uAn| >
{
p(F ),

n∑
i=1

(|Ai| − i) + 1
}
.

Theorem 1.7 follows from Theorem 1.9 since for each set A with
|A| = k > n we can choose subsets A1, . . . , An of A with cardinalities
k − n+ 1, k − n+ 2, . . . , k respectively.

In 2002 Q. H. Hou and Z. W. Sun [27] generalized the Erdős-
Heilbronn conjecture in another direction.

Theorem 1.10 (Hou & Sun). Let k,m ∈ N and n ∈ Z+ = {1, 2, 3, . . . }.
Let F be a field with p(F ) greater than mn and (k − 1 − m(n − 1))n.
If A1, . . . , An are subsets of F with cardinality k, and Sij ⊆ F and
|Sij | 6 m for all i, j = 1, . . . , n with i 6= j, then for the difference-
restricted sumset

C = {a1 + · · ·+ an : a1 ∈ A1, . . . , an ∈ An, ai − aj 6∈ Sij if i 6= j}

we have |C| > (k − 1−m(n− 1))n+ 1.
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A key step in the proof of Theorem 1.10 is to show that if k,m, n ∈
N, n > 2 and k > m(n− 1) then

[xk−1
1 · · ·xk−1

n ](x1 + · · ·+ xn)((k−1−m(n−1))n
∏

16i<j6n

(xj − xi)2m

=(−1)(m−1)n(n−1)/2 (((k − 1−m(n− 1))n)!
n!(m!)n

n∏
j=1

(jm)!
(k − 1− (j − 1)m)!

.

In 2004 G. Károlyi [28] was able to extend the Erdős-Heilbronn
conjecture to general abelian groups.

Theorem 1.11 (G. Károlyi). Let G be an additive abelian group. Then,
for any finite nonempty subset A of G, we have

|2∧A| > min{p(G), 2|A| − 3}.

The following conjecture of V. F. Lev [34] was motivated by the
Erdős-Heilbronn conjecture and the Kemperman-Scherk theorem (cf.
[30] and [44]).

Conjecture 1.4 (Lev’s Conjecture). Let G be an abelian group, and let
A and B be finite non-empty subsets of G. Then we have

|AuB| > |A|+ |B| − 2− min
c∈A+B

νA,B(c),

where
νA,B(c) = |{(a, b) ∈ A×B: a+ b = c}|.

In particular, |A u B| > |A| + |B| − 1 if some c ∈ G can be uniquely
written as a+ b with a ∈ A and b ∈ B.

In 2006 H. Pan and Z. W. Sun [39] applied the Combinatorial Null-
stellensatz in a new way to make the following progress on Lev’s conjec-
ture.

Theorem 1.12 (Pan and Sun). Let G be an abelian group, and let
A,B, S be finite non-empty subsets of G with

C = {a+ b: a ∈ A, b ∈ B, and a− b 6∈ S} 6= ∅.

(i) If G is torsion-free or elementary abelian, then

|C| > |A|+ |B| − |S| −min
c∈C

νA,B(c).
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(ii) If the torsion subgroup Tor(G) = {g ∈ G : g has a finite order}
is cyclic, then

|C| > |A|+ |B| − 2|S| −min
c∈C

νA,B(c).

Recently, Z. W. Sun [65] extended the Cauchy-Davenport theorem
in a new direction, and H. Pan and Sun [41] generalized the Erdős-
Heilbronn conjecture in the same spirit.

Theorem 1.13. Let A1, . . . , An be finite nonempty subsets of F , and
let

f(x1, . . . , xn) = c1x
k
1 + · · ·+ cnx

k
n + g(x1, . . . , xn) ∈ F [x1, . . . , xn]

with k ∈ Z+, c1, . . . , cn ∈ F \ {0} and deg g < k.
(i) (Sun [65]) We have

|{f(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}|

> min
{
p(F ),

n∑
i=1

⌊
|Ai| − 1

k

⌋
+ 1
}
.

If k > n and |Ai| > i for i = 1, . . . , n, then

|{f(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An, and ai 6= aj if i 6= j}|

> min
{
p(F ),

n∑
i=1

⌊
|Ai| − i

k

⌋
+ 1
}
.

If n > k, then for any finite subset A of F we have

|{f(a1, . . . , an) : a1, . . . , an ∈ A, and ai 6= aj if i 6= j}|
> min{p(F ), |A| − n+ 1}.

(ii) (Pan & Sun [41]) In the case c1 = · · · = cn, we have

|{f(a1, . . . , an) : a1, . . . , an ∈ A, and ai 6= aj if i 6= j}|
> min{p(F ), q1 + · · ·+ qn + 1},

where

qi = min
i6j6n

j≡i (mod k)

⌊
|Aj | − j

k

⌋
for i = 1, . . . , n.
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2. Snevily’s Conjecture and Latin Transversals

A line of an n×n matrix is a row or column of the matrix. A Latin
square over a set S of cardinality n is an n × n matrix whose entries
come from the set S and no line of which contains a repeated element.
A transversal of an n × n matrix is a collection of n cells no two of
which lie in the same line. A Latin transversal of an n × n matrix is a
transversal whose cells contain no repeated element.

LetG = {a1, . . . , an} be a group of order n. The matrix (aibj)16i,j6n

(i.e., the Cayley multiplication table of G) is obviously a Latin square
over G since the cancellation law holds.

Let b1, . . . , bn be (not necessarily distinct) elements of an abelian
groupG of order n. If both {ai}n

i=1 and {ai+bi}n
i=1 are numberings of the

elements of G, then
∑n

i=1(ai +bi) =
∑n

i=1 ai and hence b1 + · · ·+bn = 0.
In 1952 M. Hall [25] obtained the converse.

Theorem 2.1 (M. Hall’s Theorem). Let G = {a1, . . . , an} be an addi-
tive abelian group, and let b1, . . . , bn be elements of G with b1+· · ·+bn =
0. Then there exists a permutation σ ∈ Sn such that

{aσ(1) + b1, . . . , aσ(n) + bn} = G,

where Sn is the symmetric group of all permutations on {1, . . . , n}.

Here is a consequence observed by Sun and Yeh [67] which answers
an open question of Parker.

Corollary 2.1 (Sun and Yeh). Let G = {0, a1, . . . , an−1} be an additive
abelian group of order n > 1, and let b1, . . . , bn−1 be elements of G with
b1 + · · ·+ bn−1 = 0. Then there are permutations σ, τ ∈ Sn−1 such that
bi = aσ(i) + aτ(i) for all i = 1, . . . , n.

Proof. Set an = bn = 0. As G = {−a1, . . . ,−an}, by M. Hall’s
theorem there is a permutation λ ∈ Sn such that b1−aλ(1), . . . , bn−aλ(n)

are distinct. Choose a permutation σ ∈ Sn−1 such that

aσ(i) = aλ(i) − aλ(n) 6= 0 for every i = 1, . . . , n− 1.

Since {bi − aσ(i) : i = 1, . . . , n − 1} = G \ {0}, there is a permutation
τ ∈ Sn−1 such that for any i = 1, . . . , n − 1 we have bi − aσ(i) = aτ(i)

and hence bi = aσ(i) + aτ(i). �
Let n be a positive integer. If {a1, . . . , an}, {b1, . . . , bn} and {a1 +

b1, . . . , an + bn} are all complete systems of residues modulo n, then

0 + 1 + · · ·+ (n− 1) ≡ b1 + · · ·+ bn ≡ 0 (mod n)
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and hence 2 - n.
Let n be a positive odd integer, and let G = {a1, . . . , an} be an

abelian group of order n. Obviously the Cayley addition table M =
(ai + aj)16i,j6n contains a Latin transversal a1 + a1, . . . , an + an since

ai + ai = aj + aj ⇒ 2(ai − aj) = 0 ⇒ ai = aj ⇒ i = j.

In 1999 H. S. Snevily [46] made the following interesting conjecture.

Conjecture 2.1 (Snevily’s Conjecture). Let G be an additive abelian
group with |G| odd. Let A and B be subsets of G with cardinality n > 0.
Then there is a numbering {ai}n

i=1 of the elements of A and a numbering
{bi}n

i=1 of the elements of B such that a1 + b1, . . . , an + bn are distinct.

Snevily’s conjecture can be restated in terms of Latin transversals.

Conjecture 2.1′ (Snevily’s Conjecture). Let G = {a1, . . . , aN} be an
additive abelian group with |G| = N odd, and let M be the Latin square
(ai + aj)16i,j6N formed by the Cayley addition table. Then any n × n

submatrix of M contains a Latin transversal.

To prove Snevily’s conjecture for the additive group Zp where p is
an odd prime, Alon [2] first showed that if 0 < n < p then

[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(xj + bj − (xi + bi))

= [xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)2 6= 0 (in the field Zp),

and then employed the Combinatorial Nullstellensatz.
Let m > 0 be an odd integer. As 2ϕ(m) ≡ 1 (mod m) by Euler’s

theorem, the multiplicative group of the finite field F with order 2ϕ(m)

has a cyclic subgroup of order m. This observation of Dasgupta, Károlyi,
Serra and Szegedy [12] enabled them to reduce Snevily’s conjecture for
cyclic groups of odd order to the following statement in view of the
Combinatorial Nullstellensatz: If F is a field of characteristic 2 and
b1, . . . , bn are distinct elements of F ∗ = F \ {0}, then

[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(bjxj − bixi) 6= 0.

This can be easily shown via Vandermonde determinants.

Theorem 2.2 (Dasgupta, Károlyi, Serra and Szegedy). Snevily’s con-
jecture holds for any cyclic group of odd order.

By using some knowledge from algebraic number theory, Z. W. Sun
[57] established the following extension of Theorem 2.2.
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Theorem 2.3 (Sun). Let G be an additive abelian group with Tor(G)
cyclic. Let A1, . . . , An be finite subsets of G with cardinality k > m(n−1)
(where m ∈ Z+), and let b1, . . . , bn be elements of G.

(i) If b1, . . . , bn are distinct, then there are at least (k−1)n−m
(
n
2

)
+

1 multi-sets {a1, . . . , an} such that ai ∈ Ai for i = 1, . . . , n and all the
mai + bi are distinct.

(ii) The sets

{{a1, . . . , an}: ai ∈ Ai, ai 6= aj and mai + bi 6= maj + bj if i 6= j}

and

{{a1, . . . , an}: ai ∈ Ai, mai 6= maj and ai + bi 6= aj + bj if i 6= j}

have more than (k − 1)n− (m+ 1)
(
n
2

)
> (m− 1)

(
n
2

)
elements, provided

that b1, . . . , bn are distinct and of odd order, or they have finite order
and n! cannot be written in the form

∑
p∈P pxp with xp ∈ N, where P is

the set of primes dividing one of the orders of b1, . . . , bn.

When G is a cyclic group with |G| odd or a prime power, our
Theorem 2.3 (ii) in the case k = n and m = 1, yields the main results of
Dasgupta et al. [12]

Actually Theorem 2.3 follows from Sun’s following result on sumsets
with polynomial restrictions.

Theorem 2.4 (Sun). Let k,m, n ∈ Z+ with k > m(n − 1), and let
Ai ⊆ F and |Ai| = k for i = 1, . . . , n. Let P1(x), . . . , Pn(x) ∈ F [x] have
degree m with leading coefficients b1, . . . , bn respectively.

(i) If p(F ) > (k − 1)n−m
(
n
2

)
and b1, . . . , bn are distinct, then∣∣∣∣{ n∑

i=1

ai: a1 ∈ A1, . . . , an ∈ An, and Pi(ai) 6= Pj(aj) if i 6= j

}∣∣∣∣
> (k − 1)n−m

(
n

2

)
+ 1.

(ii) If p(F ) > (k − 1)n − (m + 1)
(
n
2

)
and

∑
σ∈Sn

∏n
i=1 b

i−1
σ(i) 6= 0,

then ∣∣∣∣{ n∑
i=1

ai: ai ∈ Ai, ai 6= aj and Pi(ai) 6= Pj(aj) if i 6= j

}∣∣∣∣
> (k − 1)n− (m+ 1)

(
n

2

)
+ 1.
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In Snevily’s conjecture the abelian group is required to have odd
order. (An abelian group of positive even order has an element g of order
2 and hence we don’t have the described result for A = B = {0, g}.) For
a general abelian group G with cyclic torsion subgroup, if we make no
hypothesis on the order of G, what additive properties can we impose
on several subsets of G with cardinality n? Here is a recent result due
to Z. W. Sun [66].

Theorem 2.5 (Sun). Let G be any additive abelian group with cyclic
torsion subgroup, and let A1, . . . , Am be subsets of G with cardinality
n ∈ Z+. If m is odd or all the elements of Am are of odd order, then the
elements of Ai (1 6 i 6 m) can be listed in a suitable order ai1, . . . , ain,
so that all the sums

∑m
i=1 aij (1 6 j 6 n) are distinct.

Theorem 2.5 is sharp. We even cannot replace the group G in
Theorem 2.5 by the Klein quaternion group

Z2 ⊕ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Recall that a line of an n × n matrix is a row or column of the
matrix. We define a line of an n× n× n cube in a similar way. A Latin
cube over a set S of cardinality n is an n × n × n cube whose entries
come from the set S and no line of which contains a repeated element.
A transversal of an n × n × n cube is a collection of n cells no two of
which lie in the same line. A Latin transversal of a cube is a transversal
whose cells contain no repeated element.

Corollary 2.2 (Sun). Let N be any positive integer. For the N×N×N
Latin cube over ZN formed by the Cayley addition table, each n× n× n
sub-cube with n 6 N contains a Latin transversal.

Proof. Just apply Theorem 2.5 with G = ZN and m = 3. �

In 1967 H. J. Ryser [43] conjectured that every Latin square of odd
order has a Latin transversal. Here is a similar conjecture of Z. W. Sun
[66] motivated by Corollary 2.2.

Conjecture 2.2 (Sun). Every n × n × n Latin cube contains a Latin
transversal.

Note that Conjecture 2.2 does not imply Corollary 2.2 since an
n × n × n sub-cube of a Latin cube might have more than n distinct
entries.

Theorem 2.5 can be further extended via restricted sumsets in a
field (cf. Sun [66]).
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3. Covers of the Integers and Groups
Any infinite cyclic group is isomorphic to the additive group Z of all

integers. Subgroups of Z different from {0} are those nZ = {nq : q ∈ Z}
with n ∈ Z+. A coset of the subgroup nZ of Z has the form

a+ nZ = {a+ nq : q ∈ Z} = {x ∈ Z : x ≡ a (mod n)}

which is called a residue class with modulus n or an arithmetic se-
quence with common difference n. For convenience we also write a(n)
or a(mod n) for a + nZ, thus 0(1) coincides with Z, and 1(2) is the set
of odd integers.

We can decompose the group Z into n cosets of nZ, namely

{r(n)}n−1
r=0 = {0(n), 1(n), . . . , n− 1(n)}

is a partition of Z (i.e., a disjoint cover of Z). For the index of the
subgroup nZ of Z, we clearly have [Z : nZ] = |Z/nZ| = n.

A finite system A = {as(ns)}k
s=1 of residue classes is called a

cover of Z or a covering system if
⋃k

s=1 as(ns) = Z. Covers of Z
were first introduced by P. Erdős in the early 1930s. He noted that
{0(2), 0(3), 1(4), 5(6), 7(12)} is a cover of Z with the moduli 2, 3, 4, 6, 12
distinct. A famous unsolved problem of Erdős asks whether for any c > 0
we can find a cover {as(ns)}k

s=1 of Z with c < n1 < . . . < nk (cf. R.
K. Guy [24, sections F13 & F14]). A recent breakthrough on Erdős’
problem was made by M. Filaseta, K. Ford, S, Konyagin, C. Pomerance
and G. Yu [18], who used the sieve method to get the following result:
For any L > 0 there is a constant c(L) > 0 such that

∑k
s=1 1/ns > L

for any cover {as(ns)}k
s=1 of Z with c(L) < n1 < · · · < nk.

Since 0(2n) is a disjoint union of the residue classes 2n(2n+1) and
0(2n+1), the systems

A1 ={1(2), 0(2)},
A2 ={1(2), 2(4), 0(4)},
· · · · · · · · · · · · · · · · · · · · ·

Ak ={1(2), 2(22), . . . , 2k−1(2k), 0(2k)}

are disjoint covers of Z. Note that {1(2), 2(22), . . . , 2k−1(2k)} covers
1, . . . , 2k − 1 but does not cover any multiple of 2k. In 1965 P. Erdős
made the following conjecture.
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Conjecture 3.1 (P. Erdős). A = {as(ns)}k
s=1 forms a cover of Z if it

covers those integers from 1 to 2k.

In 1969–1970 R. B. Crittenden and C. L. Vanden Eynden [10, 11]
supplied a long (and somewhat awkward) proof of the Erdős conjecture
for k > 20, which involves some deep results concerning the distribution
of primes.

By using roots of unity and Vandermonde determinants, Z. W. Sun
[49, 50] obtained the following local-global result which is stronger than
Conjecture 1.1.

Theorem 3.1 (Sun [49, 50]). Let A = {as(ns)}k
s=1 be a finite system

of residue classes, and let m1, . . . ,mk be integers relatively prime to
n1, . . . , nk respectively. Then system A forms an m-cover of Z (i.e., A
covers every integer at least m times) if it covers |S| consecutive integers
at least m times, where

S =
{{∑

s∈I

ms

ns

}
: I ⊆ {1, . . . , k}

}
.

(As usual the fractional part of a real number x is denoted by {x}.)

Now we give an interesting consequence of Theorem 3.1.

Corollary 3.1 (Sun [56]). Let m1, . . . ,mn−1 be integers relatively prime
to n > 1. Then the set {

∑
s∈I ms : I ⊆ {1, . . . , k}} contains a complete

system of residues modulo n.

Proof. Observe that the system C = {r(n)}n−1
r=1 covers n−1 consec-

utive integers 1, . . . , n−1. If W = |{{
∑

s∈I ms/n} : I ⊆ {1, . . . , n−1}}|
is less than n, then C covers 1, . . . ,W and hence it covers all the inte-
gers. Since C does not cover 0, we must have W = n and hence the
desired result follows. �

Here is another local-global result obtained by Sun [61] via recur-
rence sequences.

Theorem 3.2 (Sun [56]). Let G be any abelian group written additively,
and let ψ1, . . . , ψk be maps from Z to G with periods n1, . . . , nk ∈ Z+

respectively. Set ψ = ψ1 + · · ·+ ψk and

T (n1, . . . , nk) =
k⋃

s=1

{
r

ns
: r = 0, . . . , ns − 1

}
.

(i) There are periodic maps f0, . . . , f|T (n1,... ,nk)|−1 : Z → Z depend-
ing only on T (n1, . . . , nk) such that ψ(x) =

∑
06r<|T (n1,... ,nk)| fr(x)ψ(r)
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for all x ∈ Z. In particular, values of ψ are completely determined by the
set T (n1, . . . , nk) and the initial values ψ(0), . . . , ψ(|T (n1, . . . , nk)|−1).

(ii) ψ is constant if ψ(x) equals a constant for |T (n1, . . . , nk)| 6
n1 + · · ·+ nk − k + 1 consecutive integers x.

Corollary 3.2 (Sun [59]). Suppose that A = {as(ns)}k
s=1 covers consec-

utive |T (n1, . . . , nk)| integers exactly m times. Then it forms an exact
m-cover of Z (i.e., A covers each integer exactly m times).

Proof. For 1 6 s 6 k and x ∈ Z let ψs(x) be 1 or 0 according to
whether x ≡ as (mod ns) or not. By Theorem 3.2(ii), if

wA(x) = |{1 6 s 6 k : x ∈ as(ns)}| =
k∑

s=1

ψs(x)

coincides with m for consecutive |T (n1, . . . , nk)| integers, then wA(x) =
m for all x ∈ Z. �

Soon after his invention of covers of Z, Erdős made the following
conjecture: If A = {as(ns)}k

s=1 (k > 1) is a system of residue classes
with the moduli n1, . . . , nk distinct, then it cannot be a disjoint cover of
Z.

Theorem 3.3. Let A = {as(ns)}k
s=1.

(i) (H. Davenport, L. Mirsky, D. Newman and R. Radó) If A is a
disjoint cover of Z with 1 < n1 6 n2 6 · · · 6 nk−1 6 nk, then we must
have nk−1 = nk.

(ii) (Sun [48]) Let n0 be a positive period of the function wA(x) =
|{1 6 s 6 k : x ∈ as(ns)}|. For any positive integer d with d - n0 and
I(d) = {1 6 s 6 k : d | ns} 6= ∅, we have

|I(d)| > |{as mod d : s ∈ I(d)}| > min
06s6k

d-ns

d

gcd(d, ns)
> p(d),

where p(d) is the least prime divisor of d.

Proof of Theorem 3.3(i). Without loss of generality we assume
0 6 as < ns (1 6 s 6 k). For |z| < 1 we have

k∑
s=1

zas

1− zns
=

k∑
s=1

∞∑
q=0

zas+qns =
∞∑

n=0

zn =
1

1− z
.

If nk−1 < nk, then

∞ = lim
z→e2πi/nk

|z|<1

zak

1− znk
= lim

z→e2πi/nk

|z|<1

(
1

1− z
−

k−1∑
s=1

zas

1− zns

)
<∞,
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which leads a contradiction! �
Theorem 3.3(ii) in the case n0 = 1 and d = nk yields the Davenport-

Mirsky-Newman-Radó result; a further extension was given by Z. W. Sun
[60].

We mention that covers of Z by residue classes have many surprising
applications. In 1964 R. L. Graham [21] used covers of Z to construct two
positive integers a, b ∈ Z+ with gcd(a, b) = 1 such that the Fibonacci-like
sequence {wn}n>0 defined by

w0 = a, w1 = b and wn+1 = wn + wn−1 (n = 1, 2, 3, . . . ),

contains no primes. On the basis of Cohen and Selfridge’s work, Z. W.
Sun [53] employed covers of Z to show that if

x ≡ 47867742232066880047611079 (mod M)

then x is not of the form ±pa ± qb, where p, q are primes and a, b are
nonnegative integers, and M is a 29-digit number given by∏

p619

p× 31× 37× 41× 61× 73× 97× 109× 151× 241× 257× 331

= 66483084961588510124010691590.

Now we mention a recent result of Z. W. Sun [56, 64] which connects
covers of Z with zero-sum problems.

Theorem 3.4 (Sun). Let G be an abelian group of prime power order.
(i) If A = {as(ns)}k

s=1 covers each integer either 2|G| − 1 times or
2|G| times, then for any c1, . . . , ck ∈ G there is an I ⊆ {1, . . . , k} such
that

∑
s∈I cs = 0 and

∑
s∈I 1/ns = |G|.

(ii) If A = {as(ns)}k
s=1 covers each integer exactly 3|G| times, then

for any c1, . . . , ck ∈ G ⊕ G with c1 + · · · + ck = 0 there exists an I ⊆
{1, . . . , k} such that

∑
s∈I cs = 0 and

∑
s∈I 1/ns = |G|.

Sun conjectured that the group G in Theorem 3.4 can be replaced
by any finite abelian group, but this seems very challenging. It is inter-
esting to view 1/ns in Theorem 3.4 as a weight of s ∈ {1, . . . , k}. For
more connections between covers of Z and unit fractions, the reader may
consult [40, 51, 52, 55, 63].

Theorem 3.4 in the case n1 = · · · = nk = 1 yields the following
classical results in the theory of zero-sums.



16 Z. W. Sun

Corollary 3.3. (i) (Erdős-Ginzburg-Ziv Theorem [14]) Let q ∈ Z+ and
c1, . . . , c2q−1 ∈ Zq. Then

∑
s∈I cs = 0 for some I ⊆ {1, . . . , k} with

|I| = q.
(ii) (Alon-Dubiner Lemma [3]) Let q be a prime power, and let

c1, . . . , c3q ∈ Zq⊕Zq with c1 + · · ·+c3q = 0. Then
∑

s∈I cs = 0 for some
I ⊆ {1, . . . , k} with |I| = q.

The Erdős-Ginzburg-Ziv theorem [14] was discovered in 1961; since
then it has stimulated lots of further researches on zero-sum sequences.
The Alon-Dubiner lemma obtained in 1993, plays an indispensable role
in C. Reiher’s proof of the Kemnitz conjecture which states that if
c1, . . . , c4n−3 ∈ Zn ⊕ Zn then

∑
s∈I cs = 0 for some I ⊆ {1, . . . , 4n− 3}

with |I| = n (cf. [42]).

Let G1, · · · , Gk be subgroups of a group G, and let a1, · · · , ak ∈ G.
If the system A = {aiGi}k

i=1 of left cosets covers all the elements of G
at least m times but none of its proper subsystems does, then all the
indices [G : Gi] are known to be finite.

Theorem 3.5. Let A = {aiGi}k
i=1 be a finite system of left cosets in

a group G where G1, . . . , Gk are subgroups of G. Suppose that A forms
a minimal cover G (i.e. A covers all the elements of G but none of its
proper systems does).

(i) (B. H. Neumann [36, 37]) There is a constant ck depending only
on k such that [G : Gi] 6 ck for all i = 1, . . . , k.

(ii) (M. J. Tomkinson [70]) We have [G :
⋂k

i=1Gi] 6 k! where the
upper bound k! is best possible.

Proof (Tomkinson). We prove (ii) by induction. (Part (ii) is
stronger than part (i).)

We want to show that[⋂
i∈I

Gi :
k⋂

i=1

Gi

]
6 (k − |I|)! (∗I)

for all I ⊆ {1, . . . , k}, where
⋂

i∈∅Gi is regarded as G.
Clearly (∗I) holds for I = {1, . . . , k}.
Now let I ⊂ {1, . . . , k} and assume (∗J) for all J ⊆ {1, . . . , k}

with |J | > |I|. Since {aiGi}i∈I is not a cover of G, there is an a ∈ G

not covered by {aiGi}i∈I . Clearly a(
⋂

i∈I Gi) is disjoint from the union⋃
i∈I aiGi and hence contained in

⋃
j 6∈I ajGj . Thus

a

(⋂
i∈I

Gi

)
=

⋃
j 6∈I

ajGj∩a(
⋂

i∈I Gi) 6=∅

(
ajGj ∩ a

(⋂
i∈I

Gi

))
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and hence[⋂
i∈I

Gi : H
]

6
∑
j 6∈I

[
Gj ∩

⋂
i∈I

Gi : H
]

6
∑
j 6∈I

(k − (|I|+ 1))! = (k − |I|)!

where H =
⋂k

i=1Gi. This concludes the induction proof. �

Definition 3.1. (i) The Mycielski function f : Z+ → N is defined by

f(pa1
1 · · · par

r ) =
r∑

i=1

ai(pi − 1),

where a1, . . . , ar are nonnegative integers and p1, . . . , pr are distinct
primes.

(ii) Let H be a subnormal subgroup of a group G with finite index,
and

H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G

be a composition series from H to G (i.e. Hi is maximal normal in Hi+1

for each 0 6 i < n). If the length n is zero (i.e. H = G), then we set
d(G,H) = 0, otherwise we put

d(G,H) =
n−1∑
i=0

([Hi+1 : Hi]− 1).

(By the Jordan–Hölder theorem, d(G,H) does not depend on the choice
of the composition series from H to G.)

For a subnormal subgroup H of a group G with [G : H] <∞, it is
known that (cf. Sun [47, 54])

[G : H]− 1 > d(G,H) > f([G : H]) > log2[G : H],

and d(G,H) = f([G : H]) if and only if G/HG is solvable, where HG =⋂
g∈G gHg

−1 is the largest normal subgroup of G contained in H.

Conjecture 3.2. (i) (J. Mycielski, 1966) If {aiGi}k
i=1 is a disjoint cover

of an abelian group G, then k > 1 + f([G : Gi]) for all i = 1, . . . , k.
(ii) (Š. Znám, 1968) If A = {as(ns)}k

s=1 is a disjoint cover of Z
then

k > 1 + f(NA) and hence NA 6 2k−1,

where NA = lcm[n1, . . . , nk] = [Z :
⋂k

s=1 nsZ].

In 1974 I. Korec [32] confirmed Znám’s conjecture and Myciel-
ski’s conjecture by proving the following deep result: Let {aiGi}k

i=1
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be a partition of a group into left cosets of normal subgroups. Then
k > 1 + f([G :

⋂k
i=1Gi]). On the other hand, in 1988 M. A. Berger,

A. Felzenbaum and A. S. Fraenkel [7] obtained the following result by
geometric method: If {aiGi}k

i=1 is a disjoint cover of a finite solvable
group G by left cosets, then k > 1 + f([G : Gi]) for every i = 1, · · · , k.

Here are some further results in this direction. (Recall that a sub-
group H of a group G is called a Hall subgroup if |H| is relatively prime
to [G : H].)

Theorem 3.6. Let {aiGi}k
i=1 be a finite system of left cosets in a group

G that forms a minimal m-cover of G (i.e., it cover each elements of G
at least m times but none of its proper systems does).

(i) (Sun [47]) We have [G :
⋂k

i=1Gi] 6 k!.
(ii) (Sun [54]) Suppose that {aiGi}k

i=1 cover each elements of G
exactly m times. If G1, . . . , Gk are subnormal in G, then

k > m+ d

(
G,

k⋂
i=1

Gi

)

(and hence [G :
⋂k

i=1Gi] 6 2k−m), where the lower bound can be at-
tained; moreover, for any subgroup K of G not contained in all the Gi

we have

|{1 6 i 6 k : K 6⊆ Gi}| > 1 + d

(
K,K ∩

k⋂
i=1

Gi

)
.

For those i = 1, . . . , k with G/(Gi)G solvable we have the inequality
k > m+ f([G : Gi]).

(iii) (Sun [62]) If G is cyclic or G1, . . . , Gk are normal Hall sub-
groups of G, then

k > m+ d

(
G,

k⋂
i=1

Gi

)
.

(iv) (G. Lettl & Sun [33]) If G is abelian, then we have k > m +
f([G : Gi]) for all i = 1, . . . , k.

Proofs of Theorem 3.6(i)-(iii) involve a sophisticated use of induc-
tion argument. Part (iii) in the case G = Z and m = 1, was first con-
jectured by Š. Znám in 1975 and proved by R. J. Simpson [45] in 1985.
Part (iv) was obtained via characters of abelian groups and algebraic
number theory; below is a key lemma used for the proof.
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Lemma 3.1 (Lettl & Sun, 2004). Let n > 1 be an integer. Then f(n) is
the smallest positive integer k such that there are roots of unity ζ1, . . . , ζk
different from 1 for which

∏k
s=1(1 − ζs) ≡ 0 (mod n) in the ring of

algebraic integers.

Corollary 3.4 (Sun [47]). Let H be a subnormal subgroup of a group
G with [G : H] <∞. Then

[G : H] > 1 + d(G,HG) > 1 + f([G : HG])

and hence
|G/HG| 6 2[G:H]−1.

Proof. Let {Hai}k
i=1 be a right coset decomposition of G where

k = [G : H]. Then {aiGi}k
i=1 is a disjoint cover of G where all the

Gi = a−1
i Hai are subnormal in G. Observe that

k⋂
i=1

Gi =
k⋂

i=1

⋂
h∈H

a−1
i h−1Hhai =

⋂
g∈G

g−1Hg = HG.

So the desired result follows from Theorem 3.6. �
The following conjecture extends a conjecture of P. Erdős on covers

of Z.

Conjecture 3.3 (M. Herzog & J. Schönheim [26]). Let {aiGi}k
i=1 (k >

1) be a partition of a group G into left cosets of subgroups G1, . . . , Gk.
Then the indices n1 = [G : G1], . . . , nk = [G : Gk] cannot be distinct.

By using the structure of finite nilpotent groups and lattice paral-
lelotopes, Berger, Felzenbaum and Fraenkel [6] confirmed Conjecture 3.3
for finite nilpotent groups. Below is the latest progress due to Sun [58].

Theorem 3.7 (Sun). Let G be a group, and A = {aiGi}k
i=1 (k > 1) be

a system of left cosets of subnormal subgroups. Suppose that A covers
each x ∈ G the same number of times, and

n1 = [G : G1] 6 · · · 6 nk = [G : Gk].

Then the indices n1, . . . , nk cannot be distinct. Moreover, if each index
occurs in n1, . . . , nk at most M times, then

log n1 6
eγ

log 2
M log2M +O(M logM log logM)

where γ = 0.577 . . . is the Euler constant and the O-constant is absolute.
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The above theorem also answers a question analogous to a famous
problem of Erdős negatively. Theorem 3.7 was established by a combined
use of tools from combinatorics, group theory and number theory.

One of the key lemmas is the following one which is the main rea-
son why covers involving subnormal subgroups are better behaved than
general covers.

Lemma 3.2. Let G be a group, and let P (n) denote the set of prime
divisors of a positive integer n.

(i) (Sun [54]) If G1, . . . , Gk are subnormal subgroups of G with
finite index, then[
G :

k⋂
i=1

Gi

] ∣∣∣∣ k∏
i=1

[G : Gi] and hence P
([
G :

k⋂
i=1

Gi

])
=

k⋃
i=1

P ([G : Gi]).

(ii) (Sun [58]) Let H be a subnormal subgroup of G with finite index.
Then

P (|G/HG|) = P ([G : H]).

We mention that part (ii) is a consequence of the first part, and
the word “subnormal” cannot be removed from either part.

Here is another useful lemma of combinatorial nature.

Lemma 3.3 (Sun [58]). Let G be a group and H its subgroup with finite
index N . Let a1, . . . , ak ∈ G, and let G1, . . . , Gk be subnormal subgroups
of G containing H. Then

⋃k
i=1 aiGi contains at least |

⋃
i=1 0(ni) ∩

{0, 1, . . . , N − 1}| left cosets of H, where ni = [G : Gi].

This lemma implies the following result (cf. Sun [62, Corollary
1.2]): If G1, . . . , Gk are normal Hall subgroups of a finite group G, then
we have |

⋃k
i=1 aiGi| > |

⋃k
i=1Gi|.

The third lemma needed to prove Theorem 3.7 is well-known in
analytic number theory.

Lemma 3.4. (i) (The Prime Number Theorem) For x > 2 we have

π(x) =
x

log x
+O

(
x

log2 x

)
,

where π(x) =
∑

p6x 1 is the number of primes not exceeding x.
(ii) (Mertens’ Theorem) For x > 2 we have∏

p6x

(
1− 1

p

)
=

e−γ

log x
+O

(
1

log2 x

)
.

Let us conclude this section with a challenging conjecture appeared
in Sun [62, Conjecture 1.2].
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Conjecture 3.4 (Sun, 2004). Let G be a group, and a1G1, . . . , akGk

(k > 1) be pairwise disjoint left cosets of G with all the indices [G : Gi]
finite. Then, for some 1 6 i < j 6 k we have gcd([G : Gi], [G : Gj ]) > k.

Sun [62] noted that this conjecture holds for p-groups as well as
the special case k = 2. In 2007, Wan-Jie Zhu [71], a student at Nanjing
University, proved Conjecture 3.4 for k = 3, 4 via several sophisticated
lemmas. K. O’Bryant [38] confirmed the conjecture for G = Z in the
case k 6 20.
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