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Abstract. Additive combinatorics is currently a highly active area of re-

search which has attracted many first-rate mathematicians including Noga

Alon, Ben Green and Terence Tao. We will talk about the main results
in this field and the powerful polynomial method. In particular, we will

focus on two famous conjectures of Snevily and related Latin transversals.

While in the past many of the basic combinatorial results were

obtained mainly by ingenuity and detailed reasoning, the modern

theory has grown out of this early stage, and often relies on deep,

well developed tools.

—Noga Alon (ICM, Beijing, 2002)

Additive combinatorics is currently a highly active area of

research. One remarkable feature of the field is the use of tools

from many diverse fields of mathematics.

—Terence Tao & V. Vu (2006)
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1. Introduction to additive combinatorics

During his study of Goldbach’s conjecture, L. G. Shnirel’man intro-

duced in 1933 the Shnirel’man density of a subset A of N = {0, 1, 2, . . . }:

σ(A) := inf
n>1

|{a ∈ A : 0 6 a < n}|
n

.

Using this concept he showed that there exists a constant c > 0 such that

each integer greater than one can be expressed as a sum of at most c

primes; this is the first important progress on Goldbach’s conjecture.

In 1942 Mann established the following fundamental result conjectured

by Shnirel’man.

Mann’s Theorem. Let A and B be subsets of N containing 0. Then

σ(A + B) > min{1, σ(A) + σ(B)},

where A + B denotes the sumset {a + b : a ∈ A, b ∈ B}.

Let A and B be nonempty subsets of an abelian group G. For e ∈ G

we let

Ae = A ∪ (e + B) ⊇ A and Be = (A− e) ∩B ⊆ B,

and call the pair (Ae, Be) the Dyson e-transformation of the pair (A,B).

It is easy to see that Ae + Be ⊆ A + B, and |Ae| + |Be| = |A| + |B| if

A and B are finite. For some e ∈ G one might have |Be| < |B|. Thus

Dyson’s transformation plays an important role in induction proofs of some

additive results such as Mann’s theorem.
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Let p be a prime. Then Zp = Z/pZ = {ā = a + pZ : a ∈ Z} is a field

with p elements. If A = {1̄, . . . , k̄} and B = {1̄, . . . , l̄} with |A| = k 6 p

and |B| = l 6 p, then A + B = {2̄, . . . , k + l} and hence

|A + B| = min{p, k + l − 1} = min{p, |A|+ |B| − 1}.

Cauchy-Davenport Theorem. Let p be any prime. If A and B are

nonempty subsets of Zp, then

|A + B| > min{p, |A|+ |B| − 1}.

In 1953 Kneser extended the Cauchy-Davenport theorem to general

abelian groups.

Kneser’s Theorem. Let G be an additive abelian group. Let A and B

be finite nonempty subsets of G, and let H = H(A + B) be the stablizer

{g ∈ G : g + A + B = A + B}. If |A + B| 6 |A|+ |B| − 1, then

|A + B| = |A + H|+ |B + H| − |H|.

Corollary. Let G be an additive abelian group. Let p(G) be the least order

of a nonzero element of G, or p(G) = +∞ if G is torsion-free. Then, for

any finite nonempty subsets A and B of G, we have

|A + B| > min{p(G), |A|+ |B| − 1}.

Proof. Suppose that |A + B| < |A|+ |B| − 1. Then H = H(A + B) 6= {0}

by Kneser’s theorem. Therefore |H| > p(G) and hence

|A + B| = |A + H|+ |B + H| − |H| > |A + H| > |H| > p(G). �
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Freiman’s Theorem (Freiman, 1966). Let A be a finite nonempty subset

of Z with |A + A| 6 c|A|. Then A is contained in an n-dimensional AP

Q = Q(a; q1, . . . , qn; l1, . . . , ln) = {a + x1q1 + · · ·+ xnqn : 0 6 xi < li}}

with |Q| 6 c′|A|, where c′ and n only depend on c.

This deep theorem plays a crucial role in the Fields medalist W. T.

Gowers’ quantitative proof [Geom. Func. Analysis Appl., 2001] of the

famous Szemerédi theorem. Ben Green and I. Z. Ruzsa [J. London Math.

Soc., in press] extended Freiman’s theorem to any abelian group.

Let A1, . . . , An be sets. If a1 ∈ A1, . . . , an ∈ An, and ai 6= aj for

all 1 6 i < j 6 n, then {ai}n
i=1 is called an SDR (systems of distinct

representatives of {Ai}n
i=1. In 1935 P. Hall proved the following funda-

mental theorem in discrete mathematics: {Ai}n
i=1 has an SDR if and only

if |
⋃

i∈I Ai| > |I| for all I ⊆ {1, . . . , n}.

If A1, . . . , An are subsets of an additive abelian group, then we may

consider the sum of the elements in an SDR of {Ai}n
i=1. Different SDR’s

may lead the same sum. So it is interesting to find a sharp lower bound

for the cardinality of the restricted sumset

A1 u · · ·u An = {a1 + · · ·+ an: {ai}n
i=1 forms an SDR of {Ai}n

i=1}.

In 1964 Erdős and Heilbronn [Acta Arith.] made the following chal-

lenging conjecture.

Erdős-Heilbronn Conjecture. Let p be a prime, and let A be a subset

of the field Zp. Then |2∧A| > min{p, 2|A| − 3}, where

2∧A = A u A = {a + b : a, b ∈ A, and a 6= b}.
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This conjecture is so difficult that it had been open for thirty years

until it was finally confirmed by Dias da Silva and Y. Hamidoune [Bull.

London. Math. Soc. 1994], with the help of the representation theory of

groups.

For a field F , p(F ) is the additive order of the (multiplicative) identity

of F , and the characteristic of F is given by

ch(F ) =
{

p if p(F ) is a prime p,

0 if p(F ) = ∞.

Dias da Silva–Hamidoune Theorem [Bull. London Math. Soc. 1994].

Let F be a field and n be a positive integer. Then for any finite subset A

of F we have

|n∧A| ≥ min{p(F ), n|A| − n2 + 1},

where n∧A denotes the set of all sums of n distinct elements of A.

If p is a prime, A ⊆ Zp and |A| >
√

4p− 7, then by the Dias da Silva–

Hamidoune theorem, any element of Zp can be written as a sum of b|A|/2c

distinct elements of A.

Motivated by his study of graph theory, F. Jaeger posed in 1982 the

following conjecture.

Jaeger’s Conjecture. Let F be a finite field with at least 4 elements,

and let A be an invertible n × n matrix with entries in F . There there

exists a vector ~x ∈ Fn such that both ~x and A~x have no zero component.

In 1989 N. Alon and M. Tarsi [Combinarorica, 9(1989)] confirmed the

conjecture in the case when |F | is not a prime. Moreover their method

later resulted in the following powerful principle.
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Combinatorial Nullstellensatz [Alon, Comb. Probab. Comput. 1999].

Let A1, . . . , An be finite subsets of a field F with |Ai| > ki ∈ N for

i = 1, . . . , n. If f(x1, . . . , xn) ∈ F [x1, . . . , xn] has degree k1 + · · · + kn,

and [xk1
1 · · ·xkn

n ]f(x1, . . . , xn) (the coefficient of xk1
1 · · ·xkn

n in f) does not

vanish, then there are a1 ∈ A1, . . . , an ∈ An such that f(a1, . . . , an) 6= 0.

Let F be a finite field with |F | = pα where p is a prime and α is an

integer greater than one. Let A = (aij)16i,j6n be an invertible matrix over

F . In view of Combinatorial Nullstellensatz, Alon and Tarsi’s result can be

reduced to the following one: There exist nonnegative integers k1, . . . , kn

smaller than |F \ {0}| such that

[xk1
1 · · ·xkn

n ]
n∏

i=1

n∑
j=1

aijxj 6= 0.

Combinatorial Nullstellensatz implies the following useful lemma of N.

Alon, M. B. Nathanson and I. Z. Ruzsa [J. Number Theory 56(1996)].

ANR Lemma. Let A1, . . . , An be finite nonempty subsets of a field F

with ki = |Ai| for i = 1, . . . , n. Let P (x1, . . . , xn) ∈ F [x1, . . . , xn] \ {0}

and deg P 6
∑n

i=1(ki − 1). If

[xk1−1
1 · · ·xkn−1

n ]P (x1, . . . , xn)(x1 + · · ·+ xn)
∑n

i=1(ki−1)−deg P 6= 0,

then we have

|{a1 + · · ·+ an: ai ∈ Ai, P (a1, . . . , an) 6= 0}| >
n∑

i=1

(ki − 1)− deg P + 1.
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Proof. Let C = {a1 + · · ·+ an: ai ∈ Ai, P (a1, . . . , an) 6= 0}. Assume that

|C| 6 K =
∑n

i=1(ki − 1)− deg P . Then the polynomial

f(x1, . . . , xn) = P (x1, . . . , xn)(x1 + · · ·+ xn)K−|C|
∏
c∈C

(x1 + · · ·+ xn − c)

is of degree
∑n

i=1(ki − 1) and its coefficient of xk1−1
1 · · ·xkn−1

n is nonzero.

Applying the Combinatorial Nullstellensatz we find that f(a1, . . . , an) 6= 0

for some a1 ∈ A1, . . . , an ∈ An. This is impossible since a1 + · · ·+ an ∈ C

if P (a1, . . . , an) 6= 0. �

The ANR lemma can be used to obtain lower bounds for various re-

stricted sumsets, e.g. the Erdős-Heilbronn conjecture can be proved easily

with the help of this lemma while the first proof of the conjecture given

by Dias da Silva and Hamidoune [Bull. London. Math. Soc.] in 1994

involved the representation theory of symmetric groups.

Alon-Nathanson-Ruzsa Theoreom [J. Number Theory 1996]. Let

A1, . . . , An be finite nonempty subsets of a field F with |A1| < · · · < |An|.

Then

|A1 u · · ·u An| >
{

p(F ),
n∑

i=1

(|Ai| − i) + 1
}

.

This follows from the ANR lemma and the following fact: If k1, · · · , kn

are positive integers, then

[xk1−1
1 · · ·xkn−1

n ]
∏

16i<j6n

(xj − xi)× (x1 + · · ·+ xn)
∑n

i=1 ki−n(n+1)/2

=
(k1 + · · ·+ kn − n(n + 1)/2)!

(k1 − 1)! · · · (kn − 1)!

∏
16i<j6n

(kj − ki).
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The Dias da Silva–Hamidoune theorem can be deduced from the ANR

theorem in the following way: Suppose that |A| = k > n. Let A1, . . . , An

be subsets of A with cardinalities k − n + 1, k − n + 2, . . . , k respectively.

By the ANR theorem,

|A1 u · · ·u An| >
{

p(F ),
n∑

i=1

(|Ai| − i) + 1
}

= min{p(F ), n(k − n) + 1}.

As n∧A ⊇ A1 u · · ·u An, the desired inequality follows.

The speaker has published several papers on sumsets with polynomial

restrictions; see Z. W. Sun [Acta Arith. 2001], Q. H. Hou and Z. W. Sun

[Acta Arith. 102(2002)], J. X. Liu and Z. W. Sun [J. Number Theory

2002], H. Pan and Z. W. Sun [J. Combin. Theory Ser. A 2002], Z. W. Sun

[J. Combin. Theory Ser. A, 2003], Z. W. Sun and Y. N. Yeh [J. Number

Theory 2005]), H. Pan and Z. W. Sun [Israel J. Math. 2006].

In 2004 G. Károlyi was able to extend the Erdős-Heilbronn conjecture

to abelian groups.

Theorem [G. Károlyi, Israel J. Math. 139(2004)]. Let G be an additive

abelian group. Then, for any finite nonempty subset A of G, we have

|2∧A| > min{p(G), 2|A| − 3}.

Finally we mention a recent result which is an improvement of previous

work of J. Bourgain, N. Katz and T. Tao [Geom. Func. Analysis Appl.

14(2004)] and M. Z. Garaev [arXiv:math.NT/0702780].
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Theorem (N. Katz and C. Y. Shen, arXiv:math.NT/0703614). Let p be

a prime and let A ⊆ Zp with |A| < √
p. Then

max{|A + A|, |AA|} > c|A|14/13/(ln |A|)α,

where c and α are positive constants (independent of p and A).

2. On two conjectures of Snevily and Latin transversals

A line of an n × n matrix is a row or column of the matrix. A Latin

square over a set S of cardinality n is an n × n matrix whose entries

come from the set S and no line of which contains a repeated element. A

transversal of an n× n matrix is a collection of n cells no two of which lie

in the same line. A Latin transversal of an n × n matrix is a transversal

whose cells contain no repeated element.

Let G = {a1, . . . , an} be a group of order n. The matrix (aibj)16i,j6n

(i.e., the Cayley multiplication table of G) is obviously a Latin square over

G since the cancellation law holds.

Let b1, . . . , bn be (not necessarily distinct) elements of an abelian group

G of order n. If both {ai}n
i=1 and {ai + bi}n

i=1 are numberings of the

elements of G, then
∑n

i=1(ai + bi) =
∑n

i=1 ai and hence b1 + · · ·+ bn = 0.

In 1952 M. Hall [Proc. Amer. Math. Soc.] obtained the converse.

M. Hall’s theorem. Let G = {a1, . . . , an} be an additive abelian group,

and let b1, . . . , bn be elements of G with b1 + · · · + bn = 0. Then there

exists σ ∈ Sn such that aσ(1) + b1, . . . , aσ(n) + bn are distinct, where Sn is

the symmetric group of all permutations on {1, . . . , n}.
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Hall’s proof of the above theorem is highly technical. Here is a con-

sequence (observed by Sun and Yeh) which answers an open question of

Parker (cf. Guy [Amer. Math. Monthly 100(1993)]).

Corollary 2.1[Z. W. Sun and Y. N. Yeh, J. Number Theory 2005]. Let

G = {0, a1, . . . , an−1} be an additive abelian group of order n > 1, and let

b1, . . . , bn−1 be elements of G with b1 + · · · + bn−1 = 0. Then there are

permutations σ, τ ∈ Sn−1 such that bi = aσ(i) + aτ(i) for all i = 1, . . . , n.

Proof. Set an = bn = 0. As G = {−a1, . . . ,−an}, by M. Hall’s theorem

there is a permutation λ ∈ Sn such that b1 − aλ(1), . . . , bn − aλ(n) are

distinct. Choose a permutation σ ∈ Sn−1 such that

aσ(i) = aλ(i) − aλ(n) 6= 0 for every i = 1, . . . , n− 1.

Since {bi − aσ(i) : i = 1, . . . , n − 1} = G \ {0}, there is a permutation

τ ∈ Sn−1 such that for any i = 1, . . . , n− 1 we have bi − aσ(i) = aτ(i) and

hence bi = aσ(i) + aτ(i). �

In 1999 H. Snevily [Amer. Math. Monthly] made the following conjec-

ture.

Conjecture 2.1 (Snevily, 1999). Let m > n > 0 be integer. Then, for

any b1, . . . , bn ∈ Z, there exists a permutation σ ∈ Sn such that 1 +

bσ(1), . . . , n + bσ(n) are pairwise distinct modulo m.

In 2002 Kézdy and Snevily [Combin. Probab. Comput.] proved that

the conjecture holds when n 6 (m + 1)/2. This follows from the following

result in the case α1 = · · · = αn = 1 and A1 = · · · = An = {1, . . . , n}.
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Theorem 2.2 (Sun and Yeh, J. Number Theory 2005]). Let α1, . . . , αn

be positive reals, and let b1, . . . , bn be integers. Let A1, . . . , An be finite

subsets of Z with cardinality k > n. For 1 6 i < j 6 n let mij be an

integer greater than 2 max{|xi − xj | : xi ∈ Ai, xj ∈ Aj}|. Then the

restricted sumset{ n∑
i=1

ai : ai ∈ Ai, aiαi 6= ajαj and ai + bi 6≡ aj + bj (mod mij) if i < j

}
has more than (k − n)n elements.

For 1 6 i < j 6 n, let rij denote the unique integer in the interval

(−mij/2,mij/2] which is congruent to bi − bj modulo mij . For xi ∈ Ai

and xj ∈ Aj , as |xi − xj | < mij/2 we have

xi + bi ≡ xj + bj (mod mij) ⇐⇒ xj − xi = rij .

In view of the ANR Lemma, it suffices to show that the coefficient

[xk−1
1 · · ·xk−1

n ](x1 + · · ·+ xn)(k−n)n
∏

16i<j6n

(αjxj − αixi)(xj − xi − rij)

= [xk−1
1 · · ·xk−1

n ](x1 + · · ·+ xn)(k−n)n
∏

16i<j6n

(xj − xi)(αjxj − αixi)

is nonzero. In fact, the coefficient equals

(−1)n(n−1)/2 ((k − n)n)!∏
n6j<k(j)n

per(αi−1
j )16i,j6n,

where (j)n = j(j − 1) · · · (j − n + 1) and

per(αi−1
j )16i,j6n =

∑
σ∈Sn

n∏
i=1

αi−1
σ(i) > 0.
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Let n be a positive integer. If {a1, . . . , an}, {b1, . . . , bn} and {a1 +

b1, . . . , an + bn} are all complete systems of residues modulo n, then

0 + 1 + · · ·+ (n− 1) ≡ b1 + · · ·+ bn ≡ 0 (mod n)

and hence 2 - n.

Let n be a positive odd integer, and let G = {a1, . . . , an} be an abelian

group of order n. Clearly the Cayley addition table M = (ai + aj)16i,j6n

contains a Latin transversal a1 + a1, . . . , an + an since

ai + ai = aj + aj ⇒ 2(ai − aj) = 0 ⇒ ai = aj ⇒ i = j.

In 1999 H. S. Snevily [Amer. Math. Monthly] made the following

interesting conjecture.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd.

Let A and B be subsets of G with cardinality n > 0. Then there are a

numbering {ai}n
i=1 of the elements of A and a numbering {bi}n

i=1 of the

elements of B such that a1 + b1, . . . , an + bn are pairwise distinct.

To prove Snevily’s conjecture for the additive group Z/pZ where p is an

odd prime, Alon [Israel J. Math. 117(2000)] first showed that if 0 < n < p

then

[xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(xj + bj − (xi + bi))

= [xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)2 6= 0 (in the field Z/pZ),
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and then employed the Combinatorial Nullstellensatz. It should be men-

tioned that Hou and Sun [Acta Arith. 102(2002)] obtained the following

further result: If k,m, n are positive integers with k− 1 > m(n− 1), then

[xk−1
1 · · ·xk−1

n ](x1 + · · ·+ xn)(k−1−m(n−1))n
∏

16i<j6n

(xj − xi)2m

= (−1)mn(n−1)/2 ((k − 1−m(n− 1))n)!
(m!)n

n∏
j=1

(jm)!
(k − 1− (j − 1)m)!

.

Let m > 0 be an odd integer. As 2ϕ(m) ≡ 1 (mod m), the multiplicative

group of the finite field F with order 2ϕ(m) has a cyclic subgroup of order

m. This observation of Dasgupta, Károlyi, Serra and Szegedy enabled

them to reduce Snevily’s conjecture for cyclic groups of odd order to the

following statement in view of Combinatorial Nullstellensatz: If F is a field

of characteristic 2 and b1, . . . , bn are distinct elements of F ∗ = F \ {0},

then

c := [xn−1
1 · · ·xn−1

n ]
∏

16i<j6n

(xj − xi)(bjxj − bixi) 6= 0.

In fact,

∏
16i<j6n

(xj − xi)(bjxj − bixi) = (−1)(
n
2)|xn−i

j |16i,j6n × |bi−1
j xi−1

j |16i,j6n

= (−1)(
n
2)

∑
σ∈Sn

ε(σ)
n∏

i=1

xn−i
σ(i)

∑
τ∈Sn

ε(τ)
n∏

i=1

bi−1
τ(i)x

i−1
τ(i),

where ε(σ) denotes the sign of σ ∈ Sn which is 1 or −1 according as σ is
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even or odd. Therefore

(−1)(
n
2)c =

∑
τ∈Sn

n∏
i=1

bi−1
τ(i)

=
∑

τ∈Sn

ε(τ)
n∏

i=1

bi−1
τ(i) (because ch(F ) = 2)

=‖bi−1
j ‖16i,j6n =

∏
16i<j6n

(bj − bi) 6= 0.

This is exactly the way Dasgupta, Károlyi, Serra and Szegedy [Israel J.

Math. 126(2001)] proved Snevily’s conjecture for cyclic groups with odd

order.

By using some knowledge from Algebraic Number Theory, Z. W. Sun

[J. Combin. Theory Ser. A 103(2003)] was able to establish the following

theorem.

Theorem 2.3 [Z. W. Sun, 2003]. Let G be an additive abelian group whose

finite subgroups are all cyclic. Let A1, . . . , An (n > 1) be finite subsets of

G with cardinality k > n, and let b1, . . . , bn be elements of G. Let m be

any positive integer not exceeding (k − 1)/(n− 1).

(i) If b1, . . . , bn are pairwise distinct, then there are at least (k− 1)n−

m
(
n
2

)
+ 1 multisets {a1, . . . , an} such that ai ∈ Ai for i = 1, . . . , n and all

the mai + bi are pairwise distinct.

(ii) The sets

{{a1, . . . , an}: ai ∈ Ai, ai 6= aj and mai + bi 6= maj + bj if i 6= j}

and

{{a1, . . . , an}: ai ∈ Ai, mai 6= maj and ai + bi 6= aj + bj if i 6= j}
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have more than (k − 1)n − (m + 1)
(
n
2

)
> (m − 1)

(
n
2

)
elements, provided

that b1, . . . , bn are pairwise distinct and of odd order, or they have finite

order and n! cannot be written in the form
∑

p∈P pxp where all the xp are

nonnegative integers and P is the set of primes dividing one of the orders

of b1, . . . , bn.

When G is a cyclic group with |G| odd or a prime power, our Theorem

2.3 (ii) in the case k = n and m = 1, yields the main results of Dasgupta

et al.

Actually Theorem 2.3 follows from Sun’s stronger results on sumsets

with polynomial restrictions.

3. Some recent results of the speaker

In Snevily’s conjecture the abelian group is required to have odd order.

(An abelian group of positive even order has an element g of order 2 and

hence we don’t have the described result for A = B = {0, g}.) For a general

abelian group G with cyclic torsion subgroup, if we make no hypothesis on

the order of G, what additive properties can we impose on several subsets

of G with cardinality n? In this direction we establish the following new

theorem of additive nature.

Theorem 3.1 [Z. W. Sun, arXiv:math.CO/0610981]. Let G be any ad-

ditive abelian group with cyclic torsion subgroup, and let A1, . . . , Am be

arbitrary subsets of G with cardinality n ∈ Z+ = {1, 2, 3, . . . }, where m

is odd. Then the elements of Ai (1 6 i 6 m) can be listed in a suitable
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order ai1, . . . , ain, so that all the sums
∑m

i=1 aij (1 6 j 6 n) are dis-

tinct. In other words, for a certain subset Am+1 of G with |Am+1| = n,

there is a matrix (aij)16i6m+1, 16j6n such that {ai1, . . . , ain} = Ai for

all i = 1, . . . , m + 1 and the column sum
∑m+1

i=1 aij vanishes for every

j = 1, . . . , n.

Theorem 3.1 in the case m = 3 is essential; the result for m = 5, 7, . . .

can be obtained by repeated use of the case m = 3.

Example 3.1. In Theorem 3.1 the condition 2 - m is indispensable. Let

G be an additive cyclic group of even order n. Then G has a unique

element g of order 2 and hence a 6= −a for all a ∈ G \ {0, g}. Thus∑
a∈G a = 0+ g = g. For each i = 1, . . . , m let ai1, . . . , ain be a list of the

n elements of G. If those
∑m

i=1 aij with 1 6 j 6 n are distinct, then

∑
a∈G

a =
n∑

j=1

m∑
i=1

aij =
m∑

i=1

n∑
j=1

aij = m
∑
a∈G

a,

hence (m− 1)g = (m− 1)
∑

a∈G a = 0 and therefore m is odd.

Example 3.2. The group G in Theorem 3.1 cannot be replaced by an

arbitrary abelian group. To illustrate this, we look at the Klein quaternion

group

Z/2Z⊕ Z/2Z = {(0, 0), (0, 1), (1, 0), (1, 1)}

and its subsets

A1 = {(0, 0), (0, 1)}, A2 = {(0, 0), (1, 0)}, A3 = · · · = Am = {(0, 0), (1, 1)},
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where m > 3 is odd. For i = 1, . . . , m let ai, a
′
i be a list of the two elements

of Ai, then

m∑
i=1

(ai + a′i) = (0, 1) + (1, 0) + (m− 2)(1, 1) = (0, 0)

and hence
∑m

i=1 ai = −
∑m

i=1 a′i =
∑m

i=1 a′i.

Recall that a line of an n× n matrix is a row or column of the matrix.

We define a line of an n× n× n cube in a similar way. A Latin cube over

a set S of cardinality n is an n× n× n cube whose entries come from the

set S and no line of which contains a repeated element. A transversal of

an n× n× n cube is a collection of n cells no two of which lie in the same

line. A Latin transversal of a cube is a transversal whose cells contain no

repeated element.

Corollary 3.1. Let N be any positive integer. For the N ×N ×N Latin

cube over Z/NZ formed by the Cayley addition table, each n×n×n subcube

with n 6 N contains a Latin transversal.

Proof. Just apply Theorem 3.1 with G = Z/NZ and m = 3. �

In 1967 H. J. Ryser conjectured that every Latin square of odd order has

a Latin transversal. Another conjecture of Brualdi states that every Latin

square of order n has a partial Latin transversal of size n− 1. These and

Corollary 3.1 suggest that our following conjecture might be reasonable.

Conjecture 3.1 (Z. W. Sun, 2006). Every n×n×n Latin cube contains

a Latin transversal.
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Note that Conjecture 3.1 does not imply Theorem 3.1 since an n×n×n

subcube of a Latin cube might have more than n distinct entries.

Corollary 3.2. Let G be any additive abelian group with cyclic torsion

subgroup, and let A1, . . . , Am be subsets of G with cardinality n ∈ Z+,

where m is even. Suppose that all the elements of Am have odd order.

Then the elements of Ai (1 6 i 6 m) can be listed in a suitable order

ai1, . . . , ain, so that all the sums
∑m

i=1 aij (1 6 j 6 n) are distinct.

Proof. As m−1 is odd, by Theorem 3.1 the elements of Ai (1 6 i 6 m−1)

can be listed in a suitable order ai1, . . . , ain, such that all the sums sj =∑m−1
i=1 aij (1 6 j 6 n) are distinct. Since all the elements of Am have odd

order, by Theorem 1.1(ii) of Z. W. Sun [J. Combin. Theory Ser. A] there

is a numbering {amj}n
j=1 of the elements of Am such that all the sums

sj + amj =
∑m

i=1 aij (1 6 j 6 n) are distinct. We are done. �

As an essential result, Theorem 3.1 might have various potential appli-

cations in additive number theory and combinatorial designs.

Since any abelian group with cyclic torsion subgroup can be embedded

in the multiplicative group C∗ = C \ {0} (see Z. W. Sun [J. Combin.

Theory Ser. A 2003] for the reason), Theorem 3.1 actually follows from

the following result.

Theorem 3.2 [Z. W. Sun, arXiv:math.CO/0610981]. Let A1, . . . , An

and B1, . . . , Bn be subsets of a field F with cardinality n, and let c1, . . . , cn

be distinct elements of F . Then there is an SDR {ai}n
i=1 of {Ai}n

i=1 and

an SDR {bi}n
i=1 of {Bi}n

i=1 such that the products a1b1c1, . . . , anbncn are
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distinct.

Proof. In view of the Combinatorial Nullstellensatz, it suffices to show

that

c := [xn−1
1 · · ·xn−1

n yn−1
1 · · · yn−1

n ]
∏

16i<j6n

(xj −xi)(yj − yi)(cjxjyj − cixiyi)

does not vanish. In fact,∏
16i<j6n

(xj − xi)(yj − yi)(cjxjyj − cixiyi)

=|xj−1
i |16i,j6n|yj−1

i |16i,j6n|(cixiyi)j−1|16i,j6n

=
∑

σ∈Sn

ε(σ)
n∏

i=1

x
σ(i)−1
i ×

∑
τ∈Sn

ε(τ)
n∏

i=1

y
τ(i)−1
i ×

∑
λ∈Sn

ε(λ)
n∏

i=1

(cixiyi)λ(i)−1

=
∑

λ∈Sn

ε(λ)
n∏

i=1

c
λ(i)−1
i

∑
σ,τ∈Sn

ε(στ)
n∏

i=1

(
x

λ(i)+σ(i)−2
i y

λ(i)+τ(i)−2
i

)
.

and hence

c =
∑

λ∈Sn

(
ε(λ)

n∏
i=1

c
λ(i)−1
i

)
ε(λ̄λ̄) = |cj−1

i |16i,j6n =
∏

16i<j6n

(cj − ci) 6= 0,

where λ̄(i) = n + 1− λ(i) for i = 1, . . . , n. �

We can further extend Theorem 3.1 via restricted sumsets in a field.

Theorem 3.3 [Z. W. Sun, arXiv:math.CO/0610981]. Let h, k, l,m, n be

positive integers satisfying

k − 1 > m(n− 1) and l − 1 > h(n− 1). (3.1)

Let F be a field with p(F ) > max{K, L}, where

K = (k − 1)n− (m + 1)
(

n

2

)
and L = (l − 1)n− (h + 1)

(
n

2

)
. (3.2)
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Assume that c1, . . . , cn ∈ F are distinct and A1, . . . , An, B1, . . . , Bn are

subsets of F with

|A1| = · · · = |An| = k and |B1| = · · · = |Bn| = l.

Let P1(x), . . . , Pn(x), Q1(x), . . . , Qn(x) ∈ F [x] be monic polynomials with

deg Pi(x) = m and deg Qi(x) = h for i = 1, . . . , n. Then, for any S, T ⊆

F with |S| 6 K and |T | 6 L, there exist a1 ∈ A1, . . . , an ∈ An, b1 ∈

B1, . . . , bn ∈ Bn such that a1 + · · ·+ an 6∈ S, b1 + · · ·+ bn 6∈ T , and also

aibici 6= ajbjcj , Pi(ai) 6= Pj(aj), Qi(bi) 6= Qj(bj) if 1 6 i < j 6 n.

If h, k, l, m, n are positive integers satisfying (3.1), then the integers K

and L given by (3.2) are nonnegative since

K > m(n− 1)n− (m + 1)
(

n

2

)
= (m− 1)

(
n

2

)
and L > (h− 1)

(
n

2

)
.

From Theorem 3.3 we can deduce the following extension of Theorem

3.1.

Theorem 3.4 [Z. W. Sun, arXiv:math.CO/0610981]. Let G be an ad-

ditive abelian group with cyclic torsion subgroup. Let h, k, l, m, n be pos-

itive integers satisfying (3.1). Assume that c1, . . . , cn ∈ G are distinct,

and A1, . . . , An, B1, . . . , Bn are subsets of G with |A1| = · · · = |An| = k

and |B1| = · · · = |Bn| = l. Then, for any sets S and T with |S| 6

(k − 1)n − (m + 1)
(
n
2

)
and |T | 6 (l − 1)n − (h + 1)

(
n
2

)
, there are a1 ∈

A1, . . . , an ∈ An, b1 ∈ B1, . . . , bn ∈ Bn such that {a1, . . . , an} 6∈ S,

{b1, . . . , bn} 6∈ T , and also

ai + bi + ci 6= aj + bj + cj , mai 6= maj , hbi 6= hbj if 1 6 i < j 6 n.
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Here is another extension of Theorem 3.1 via restricted sumsets in a

field.

Theorem 3.5 [Z. W. Sun, arXiv:math.CO/0610981]. Let k,m, n be pos-

itive integers with k − 1 > m(n − 1), and let F be a field with p(F ) >

max{mn, (k − 1−m(n− 1))n}. Assume that c1, . . . , cn ∈ F are distinct,

and A1, . . . , An, B1, . . . , Bn are subsets of F with |A1| = · · · = |An| = k

and |B1| = · · · = |Bn| = n. Let Sij ⊆ F with |Sij | < 2m for all

1 6 i < j 6 n. Then there is an SDR {bi}n
i=1 of {Bi}n

i=1 such that

the restricted sumset

S = {a1 + · · ·+ an : ai ∈ Ai, ai − aj 6∈ Sij and aibici 6= ajbjcj if i < j}

has at least (k − 1−m(n− 1))n + 1 elements.


